Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Pathog ; 18(8): e1010349, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-36007063

RESUMO

SARS-CoV-2 is a betacoronavirus and the etiological agent of COVID-19, a devastating infectious disease. Due to its far-reaching effect on human health, there is an urgent and growing need to understand the viral molecular biology of SARS-CoV-2 and its interaction with the host cell. SARS-CoV-2 encodes 9 predicted accessory proteins, which are presumed to be dispensable for in vitro replication, most likely having a role in modulating the host cell environment to aid viral replication. Here we show that the ORF6 accessory protein interacts with cellular Rae1 to inhibit cellular protein production by blocking mRNA export. We utilised cell fractionation coupled with mRNAseq to explore which cellular mRNA species are affected by ORF6 expression and show that ORF6 can inhibit the export of many mRNA including those encoding antiviral factors such as IRF1 and RIG-I. We also show that export of these mRNA is blocked in the context of SARS-CoV-2 infection. Together, our studies identify a novel mechanism by which SARS-CoV-2 can manipulate the host cell environment to supress antiviral responses, providing further understanding to the replication strategies of a virus that has caused an unprecedented global health crisis.


Assuntos
COVID-19 , SARS-CoV-2 , Proteínas Virais/metabolismo , Antivirais , COVID-19/genética , Humanos , Imunidade Inata , Proteínas Associadas à Matriz Nuclear , Proteínas de Transporte Nucleocitoplasmático/genética , RNA Mensageiro/genética
2.
Nature ; 479(7374): 529-33, 2011 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-22031327

RESUMO

Parasitic diseases have a devastating, long-term impact on human health, welfare and food production worldwide. More than two billion people are infected with geohelminths, including the roundworms Ascaris (common roundworm), Necator and Ancylostoma (hookworms), and Trichuris (whipworm), mainly in developing or impoverished nations of Asia, Africa and Latin America. In humans, the diseases caused by these parasites result in about 135,000 deaths annually, with a global burden comparable with that of malaria or tuberculosis in disability-adjusted life years. Ascaris alone infects around 1.2 billion people and, in children, causes nutritional deficiency, impaired physical and cognitive development and, in severe cases, death. Ascaris also causes major production losses in pigs owing to reduced growth, failure to thrive and mortality. The Ascaris-swine model makes it possible to study the parasite, its relationship with the host, and ascariasis at the molecular level. To enable such molecular studies, we report the 273 megabase draft genome of Ascaris suum and compare it with other nematode genomes. This genome has low repeat content (4.4%) and encodes about 18,500 protein-coding genes. Notably, the A. suum secretome (about 750 molecules) is rich in peptidases linked to the penetration and degradation of host tissues, and an assemblage of molecules likely to modulate or evade host immune responses. This genome provides a comprehensive resource to the scientific community and underpins the development of new and urgently needed interventions (drugs, vaccines and diagnostic tests) against ascariasis and other nematodiases.


Assuntos
Ascaris suum/genética , Genoma Helmíntico/genética , Animais , Antinematódeos , Ascaríase/tratamento farmacológico , Ascaríase/parasitologia , Ascaris suum/efeitos dos fármacos , Desenho de Fármacos , Genes de Helmintos/genética , Genômica , Anotação de Sequência Molecular , Terapia de Alvo Molecular
3.
Appl Psychophysiol Biofeedback ; 41(3): 263-74, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-26782084

RESUMO

Support and management staff in elite sport experience work-related stress and emotional disturbance to a similar extent as athletes (Fletcher and Wagstaff 2009). The resonant frequency breathing technique (Lehrer et al. 2000) can inhibit autonomic changes associated with stressful situations or events and as such provides a potential emotional regulation tool. The present study utilised five practitioner-led heart rate variability (HRV) biofeedback sessions and home practice via mobile applications to train support and management staff (n = 9) in resonant frequency breathing techniques. Although baseline HRV did not change from pre to post training, participants increased total HRV (i.e., SDNN; p = .006), parasympathetic HRV (i.e., RMSSD; p = .028) and HRV reflective of baroreflex function (i.e., low frequency power; p = .018) while accurately performing resonant frequency breathing without a breath pacer. Post-intervention questionnaire data revealed an increase (p = .032) in habitual use of somatic strategies for emotional regulation, and social validation data suggested that the technique enhanced emotional regulation at home, work and during international competition. HRV biofeedback and the resonant frequency technique provided an on-demand emotional regulation technique for elite sport support and management staff.


Assuntos
Pessoal Administrativo/psicologia , Frequência Cardíaca/fisiologia , Respiração , Esportes , Sistema Nervoso Autônomo/fisiologia , Biorretroalimentação Psicológica/fisiologia , Feminino , Humanos , Masculino , Aplicativos Móveis/estatística & dados numéricos , Estresse Psicológico/prevenção & controle , Inquéritos e Questionários
4.
J Sports Sci ; 33(9): 935-44, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25553589

RESUMO

This qualitative study explored the career termination experiences of 9 male, retired professional cricketers between the ages of 28 and 40 (mean value 34, s = 4.65 m). The participants took part in retrospective, semi-structured interviews. Data from the interviews were inductively content analysed within three transition phases of the retirement process: reasons for retirement, factors affecting adaptation and reactions to retirement. The reasons for retirement were multicausal with the majority of the participants highlighting contractual pressures and a lack of communication as important precursors to retirement. Three main themes accounted for the factors affecting adaptation: a limited pursuit of other interests, developmental experiences and coping strategies. In terms of reactions to retirement, all of the participants reflected negatively on the termination of their career, with a sense of loss and resentment characterising the post-retirement period. The findings illustrated the sport-specific nature of career termination in professional cricket and added further support to the emerging consensus that the distinction between voluntary and involuntary retirement is, at best, unclear.


Assuntos
Aposentadoria/psicologia , Esportes/psicologia , Adaptação Psicológica , Adulto , Esgotamento Profissional , Comunicação , Contratos , Inglaterra , Humanos , Entrevistas como Assunto , Masculino , Pesquisa Qualitativa , Estudos Retrospectivos , Estresse Psicológico , País de Gales
5.
Int J Parasitol Parasites Wildl ; 23: 100902, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38292245

RESUMO

Blastocystis is a genus of intestinal stramenopiles that infect vertebrates, and may cause disease of the alimentary tract. Currently, at least 40 genotypes ("subtypes") of Blastocystis are recognised worldwide based on sequence data for the small subunit of the nuclear ribosomal RNA (SSU-rRNA) gene. Despite the numerous studies of Blastocystis worldwide, very few studies have explored Blastocystis in wild animals, particularly in Australia. Here, we used a PCR-based next generation sequencing (NGS)-phylogenetic approach to genetically characterise and classify Blastocystis variants from selected wildlife in the Australian state of Victoria. In total, 1658 faecal samples were collected from nine host species, including eastern grey kangaroo, swamp wallaby, common wombat, deer, European rabbit, canines and emu. Genomic DNA was extracted from these samples, a 500 bp region of the SSU-rRNA gene amplified by polymerase chain reaction (PCR) and, then, a subset of samples sequenced using Illumina technology. Primary PCR detected Blastocystis in 482 of the 1658 samples (29%), with the highest percentage in fallow deer (63%). Subsequent, Illumina-based sequencing of a subset of 356 samples revealed 55 distinct amplicon sequence variants (ASVs) representing seven currently-recognised subtypes (STs) [ST13 (prominent in marsupials), ST10, ST14, ST21, ST23, ST24 and ST25 (prominent in deer)] and two novel STs (ST45 and ST46) in marsupials. Mixed infections of different STs were observed in macropods, deer, emu and canids (fox, feral dog or dingo), but no infection was detected in rabbits or wombats. This study reveals marked genetic diversity within Blastocystis in a small number of species of wild animals in Australia, suggesting complexity in the genetic composition and transmission patterns of members of the genus Blastocystis in this country.

6.
Sports Med ; 53(4): 777-801, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36696042

RESUMO

Taper is a common training strategy used to reduce fatigue and enhance athletic performance. However, currently, no review has summarised what psychological research has been conducted examining taper, what this research shows and what future research needs to be undertaken to extend the field. Consequently, a scoping review was conducted with three aims: (a) to determine the characteristics of psychological research examining taper, (b) to summarise psychological research collected during taper with adult athletes and coaches, and (c) to identify gaps in psychological research examining taper. Forty-eight articles were identified following an exhaustive search strategy and charted following scoping review guidelines. Results showed most research was quantitative, used a longitudinal design, was conducted in swimming, triathlon, cycling or across multiple sports, and used a university-, regional- or national-level male athlete sample. Eight themes were developed to summarise the research: Mood, Perception of Effort, Perceived Fatigue and Wellness, Recovery-Stress, Taper as a Stressor, Stress Tolerance, Psychological Preparation and Cognitive Functioning. Additionally, four research recommendations were identified: (a) conducting exploratory research that examines the impact taper has on athletes' and coaches' competition preparation and stress experience, (b) asking more advanced psychological questions and conducting multi-disciplinary research, (c) including a more diverse participant sample in studies and (d) examining the impact of psychological interventions during taper. Overall, this scoping review has highlighted the limited research examining the psychology of taper and the need for focused research that asks more complex questions across diverse populations.


Assuntos
Atletas , Desempenho Atlético , Adulto , Humanos , Masculino , Atletas/psicologia , Desempenho Atlético/psicologia , Natação , Ciclismo , Fadiga
7.
Nucleic Acids Res ; 38(2): 522-33, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19892826

RESUMO

Mitochondrial (mt) genomics represents an understudied but important field of molecular biology. Increasingly, mt dysfunction is being linked to a range of human diseases, including neurodegenerative disorders, diabetes and impairment of childhood development. In addition, mt genomes provide important markers for systematic, evolutionary and population genetic studies. Some technological limitations have prevented the expanded generation and utilization of mt genomic data for some groups of organisms. These obstacles most acutely impede, but are not limited to, studies requiring the determination of complete mt genomic data from minute amounts of material (e.g. biopsy samples or microscopic organisms). Furthermore, post-sequencing bioinformatic annotation and analyses of mt genomes are time consuming and inefficient. Herein, we describe a high-throughput sequencing and bioinformatic pipeline for mt genomics, which will have implications for the annotation and analysis of other organellar (e.g. plastid or apicoplast genomes) and virus genomes as well as long, contiguous regions in nuclear genomes. We utilize this pipeline to sequence and annotate the complete mt genomes of 12 species of parasitic nematode (order Strongylida) simultaneously, each from an individual organism. These mt genomic data provide a rich source of markers for studies of the systematics and population genetics of a group of socioeconomically important pathogens of humans and other animals.


Assuntos
Genoma Mitocondrial , Genômica/métodos , Estrongilídios/genética , Animais , Sequência Consenso , Genoma Helmíntico , Filogenia , Reação em Cadeia da Polimerase , Análise de Sequência de DNA , Análise de Sequência de Proteína , Estrongilídios/classificação
8.
Nucleic Acids Res ; 38(17): e171, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20682560

RESUMO

Transcriptomics (at the level of single cells, tissues and/or whole organisms) underpins many fields of biomedical science, from understanding the basic cellular function in model organisms, to the elucidation of the biological events that govern the development and progression of human diseases, and the exploration of the mechanisms of survival, drug-resistance and virulence of pathogens. Next-generation sequencing (NGS) technologies are contributing to a massive expansion of transcriptomics in all fields and are reducing the cost, time and performance barriers presented by conventional approaches. However, bioinformatic tools for the analysis of the sequence data sets produced by these technologies can be daunting to researchers with limited or no expertise in bioinformatics. Here, we constructed a semi-automated, bioinformatic workflow system, and critically evaluated it for the analysis and annotation of large-scale sequence data sets generated by NGS. We demonstrated its utility for the exploration of differences in the transcriptomes among various stages and both sexes of an economically important parasitic worm (Oesophagostomum dentatum) as well as the prediction and prioritization of essential molecules (including GTPases, protein kinases and phosphatases) as novel drug target candidates. This workflow system provides a practical tool for the assembly, annotation and analysis of NGS data sets, also to researchers with a limited bioinformatic expertise. The custom-written Perl, Python and Unix shell computer scripts used can be readily modified or adapted to suit many different applications. This system is now utilized routinely for the analysis of data sets from pathogens of major socio-economic importance and can, in principle, be applied to transcriptomics data sets from any organism.


Assuntos
Biologia Computacional/métodos , Perfilação da Expressão Gênica/métodos , Análise de Sequência de DNA/métodos , Animais , DNA Complementar/química , Feminino , Masculino , Oesophagostomum/genética , Oesophagostomum/crescimento & desenvolvimento , Oesophagostomum/metabolismo , Fluxo de Trabalho
9.
Animals (Basel) ; 12(21)2022 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-36359023

RESUMO

Australasian marsupials harbour a diverse group of gastrointestinal strongyloid nematodes. These nematodes are currently grouped into two subfamilies, namely the Cloacininae and Phascolostrongylinae. Based on morphological criteria, the Cloacininae and Phascolostrongylinae were defined as monophyletic and placed in the family Cloacinidae, but this has not been supported by molecular data and they are currently placed in the Chabertiidae. Although molecular data (internal transcribed spacers of the nuclear ribosomal RNA genes or mitochondrial protein-coding genes) have been used to verify morphological classifications within the Cloacininae and Phascolostrongylinae, the phylogenetic relationships between the subfamilies have not been rigorously tested. This study determined the phylogenetic relationships of the subfamilies Cloacininae and Phascolostrongylinae using amino acid sequences conceptually translated from the twelve concatenated mitochondrial protein-coding genes. The findings demonstrated that the Cloacininae and Phascolostrongylinae formed a well-supported monophyletic assemblage, consistent with their morphological classification as an independent family, Cloacinidae. Unexpectedly, however, the subfamily Phascolostrongylinae was split into two groups comprising the genera from macropodid hosts (kangaroos and wallabies) and those from vombatid hosts (wombats). Genera of the Cloacininae and Phascolostrongylinae occurring in macropodid hosts were more closely related compared to genera of the Phascolostrongylinae occurring in wombats that formed a sister relationship with the remaining genera from macropods. These findings provide molecular evidence supporting the monophyly of the family Cloacinidae and an alternative hypothesis for the origin of marsupial strongyloid nematodes in vombatid hosts that requires further exploration using molecular approaches and additional samples.

10.
Parasit Vectors ; 14(1): 523, 2021 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-34627345

RESUMO

BACKGROUND: The subfamily Phascolostrongylinae (Superfamily Strongyloidea) comprises nematodes that are parasitic in the gastrointestinal tracts of macropodid (Family Macropodidae) and vombatid (Family Vombatidae) marsupials. Currently, nine genera and 20 species have been attributed to the subfamily Phascolostrongylinae. Previous studies using sequence data sets for the internal transcribed spacers (ITS) of nuclear ribosomal DNA showed conflicting topologies between the Phascolostrongylinae and related subfamilies. Therefore, the aim of this study was to validate the phylogenetic relationships within the Phascolostrongylinae and its relationship with the families Chabertiidae and Strongylidae using mitochondrial amino acid sequences. METHODS: The sequences of all 12 mitochondrial protein-coding genes were obtained by next-generation sequencing of individual adult nematodes (n = 8) representing members of the Phascolostrongylinae. These sequences were conceptually translated and the phylogenetic relationships within the Phascolostrongylinae and its relationship with the families Chabertiidae and Strongylidae were inferred from aligned, concatenated amino acid sequence data sets. RESULTS: Within the Phascolostrongylinae, the wombat-specific genera grouped separately from the genera occurring in macropods. Two of the phascolostrongyline tribes were monophyletic, including Phascolostrongylinea and Hypodontinea, whereas the tribe Macropostrongyloidinea was paraphyletic. The tribe Phascolostrongylinea occurring in wombats was closely related to Oesophagostomum spp., also from the family Chabertiidae, which formed a sister relationship with the Phascolostrongylinae. CONCLUSION: The current phylogenetic relationship within the subfamily Phascolostrongylinae supports findings from a previous study based on ITS sequence data. This study contributes also to the understanding of the phylogenetic position of the subfamily Phascolostrongylinae within the Chabertiidae. Future studies investigating the relationships between the Phascolostrongylinae and Cloacininae from macropodid marsupials may advance our knowledge of the phylogeny of strongyloid nematodes in marsupials.


Assuntos
Macropodidae/parasitologia , Marsupiais/parasitologia , Proteínas Mitocondriais/genética , Filogenia , Strongyloidea/classificação , Strongyloidea/genética , Animais , DNA Espaçador Ribossômico/genética , Feminino , Trato Gastrointestinal/parasitologia , Masculino , Marsupiais/classificação , Análise de Sequência de DNA
11.
Artigo em Inglês | MEDLINE | ID: mdl-35284899

RESUMO

Despite advances in high-throughput sequencing and bioinformatics, molecular investigations of snail intermediate hosts that transmit parasitic trematodes are scant. Here, we report the first transcriptome for Bulinus truncatus - a key intermediate host of Schistosoma haematobium - a blood fluke that causes urogenital schistosomiasis in humans. We assembled this transcriptome from short- and long-read RNA-sequence data. From this transcriptome, we predicted 12,998 proteins, 58% of which had orthologs in Biomphalaria glabrata - an intermediate host of Schistosoma mansoni - a blood fluke that causes hepato-intestinal schistosomiasis. We predicted that select protein groups are involved in signal transduction, cell growth and death, the immune system, environmental adaptation and/or the excretory/secretory system, suggesting roles in immune responses, pathogen defence and/or parasite-host interactions. The transcriptome of Bu. truncatus provides a useful resource to underpin future molecular investigations of this and related snail species, and its interactions with pathogens including S. haematobium. The present resource should enable comparative investigations of other molluscan hosts of socioeconomically important parasites in the future.

12.
Pharmaceuticals (Basel) ; 14(7)2021 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-34206910

RESUMO

Parasitic worms cause very significant diseases in animals and humans worldwide, and their control is critical to enhance health, well-being and productivity. Due to widespread drug resistance in many parasitic worms of animals globally, there is a major, continuing demand for the discovery and development of anthelmintic drugs for use to control these worms. Here, we established a practical, cost-effective and semi-automated high throughput screening (HTS) assay, which relies on the measurement of motility of larvae of the barber's pole worm (Haemonchus contortus) using infrared light-interference. Using this assay, we screened 80,500 small molecules and achieved a hit rate of 0.05%. We identified three small molecules that reproducibly inhibited larval motility and/or development (IC50 values of ~4 to 41 µM). Future work will critically assess the potential of selected hits as candidates for subsequent optimisation or repurposing against parasitic nematodes. This HTS assay has a major advantage over most previous assays in that it achieves a ≥ 10-times higher throughput (i.e., 10,000 compounds per week), and is thus suited to the screening of libraries of tens of thousands to hundreds of thousands of compounds for subsequent hit-to-lead optimisation or effective repurposing and development. The current assay should be adaptable to many socioeconomically important parasitic nematodes, including those that cause neglected tropical diseases (NTDs). This aspect is of relevance, given the goals of the World Health Organization (WHO) Roadmap for NTDs 2021-2030, to develop more effective drugs and drug combinations to improve patient outcomes and circumvent the ineffectiveness of some current anthelmintic drugs and possible drug resistance.

13.
BMC Genomics ; 11: 222, 2010 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-20361874

RESUMO

BACKGROUND: New drug targets are urgently needed for parasites of socio-economic importance. Genes that are essential for parasite survival are highly desirable targets, but information on these genes is lacking, as gene knockouts or knockdowns are difficult to perform in many species of parasites. We examined the applicability of large-scale essentiality information from four model eukaryotes, Caenorhabditis elegans, Drosophila melanogaster, Mus musculus and Saccharomyces cerevisiae, to discover essential genes in each of their genomes. Parasite genes that lack orthologues in their host are desirable as selective targets, so we also examined prediction of essential genes within this subset. RESULTS: Cross-species analyses showed that the evolutionary conservation of genes and the presence of essential orthologues are each strong predictors of essentiality in eukaryotes. Absence of paralogues was also found to be a general predictor of increased relative essentiality. By combining several orthology and essentiality criteria one can select gene sets with up to a five-fold enrichment in essential genes compared with a random selection. We show how quantitative application of such criteria can be used to predict a ranked list of potential drug targets from Ancylostoma caninum and Haemonchus contortus--two blood-feeding strongylid nematodes, for which there are presently limited sequence data but no functional genomic tools. CONCLUSIONS: The present study demonstrates the utility of using orthology information from multiple, diverse eukaryotes to predict essential genes. The data also emphasize the challenge of identifying essential genes among those in a parasite that are absent from its host.


Assuntos
Ancylostoma/efeitos dos fármacos , Ancylostoma/genética , Anti-Helmínticos/farmacologia , Haemonchus/efeitos dos fármacos , Haemonchus/genética , Animais , Etiquetas de Sequências Expressas , Genes Essenciais
14.
BMC Genomics ; 11: 266, 2010 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-20420710

RESUMO

BACKGROUND: The disease caused by Haemonchus contortus, a blood-feeding nematode of small ruminants, is of major economic importance worldwide. The infective third-stage larva (L3) of this gastric nematode is enclosed in a cuticle (sheath) and, once ingested with herbage by the host, undergoes an exsheathment process that marks the transition from the free-living (L3) to the parasitic (xL3) stage. This study explored changes in gene transcription associated with this transition and predicted, based on comparative analysis, functional roles for key transcripts in the metabolic pathways linked to larval development. RESULTS: Totals of 101,305 (L3) and 105,553 (xL3) expressed sequence tags (ESTs) were determined using 454 sequencing technology, and then assembled and annotated; the most abundant transcripts encoded transthyretin-like, calcium-binding EF-hand, NAD(P)-binding and nucleotide-binding proteins as well as homologues of Ancylostoma-secreted proteins (ASPs). Using an in silico-subtractive analysis, 560 and 685 sequences were shown to be uniquely represented in the L3 and xL3 stages, respectively; the transcripts encoded ribosomal proteins, collagens and elongation factors (in L3), and mainly peptidases and other enzymes of amino acid catabolism (in xL3). Caenorhabditis elegans orthologues of transcripts that were uniquely transcribed in each L3 and xL3 were predicted to interact with a total of 535 other genes, all of which were involved in embryonic development. CONCLUSION: The present study indicated that some key transcriptional alterations taking place during the transition from the L3 to the xL3 stage of H. contortus involve genes predicted to be linked to the development of neuronal tissue (L3 and xL3), formation of the cuticle (L3) and digestion of host haemoglobin (xL3). Future efforts using next-generation sequencing and bioinformatic technologies should provide the efficiency and depth of coverage required for the determination of the complete transcriptomes of different developmental stages and/or tissues of H. contortus as well as the genome of this important parasitic nematode. Such advances should lead to a significantly improved understanding of the molecular biology of H. contortus and, from an applied perspective, to novel methods of intervention.


Assuntos
Perfilação da Expressão Gênica , Haemonchus/genética , Animais , Caenorhabditis elegans/genética , Dióxido de Carbono/metabolismo , Haemonchus/crescimento & desenvolvimento , Haemonchus/patogenicidade , Larva/genética , Larva/patogenicidade , Larva/fisiologia , Análise de Sequência de DNA
15.
Pathogens ; 9(12)2020 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-33322694

RESUMO

Nematodes of the genus Macropostrongyloides inhabit the large intestines or stomachs of macropodid (kangaroos and wallabies) and vombatid (wombats) marsupials. This study established the relationships of seven species of Macropostrongyloides using mitochondrial (mt) protein amino acid sequence data sets. Phylogenetic analyses revealed that species of Macropostrongyloides (M. lasiorhini, M. baylisi, M. yamagutii, M. spearei, M. mawsonae and M. woodi) from the large intestines of their hosts formed a monophyletic assemblage with strong nodal support to the exclusion of M. dissimilis from the stomach of the swamp wallaby. Furthermore, the mitochondrial protein-coding genes provided greater insights into the diversity and phylogeny of the genus Macropostrongyloides; such data sets could potentially be used to elucidate the relationships among other parasitic nematodes of Australian marsupials.

16.
Pathogens ; 9(6)2020 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-32517045

RESUMO

Oriental theileriosis is an economically important tickborne disease of bovines, caused by some members of the Theileria orientalis complex. Currently, 11 distinct operational taxonomic units (OTUs), or genotypes, are recognized based on their major piroplasm surface protein (MPSP) gene sequences. Two of these genotypes (i.e., chitose and ikeda) are recognized as pathogenic in cattle, causing significant disease in countries of the Asia-Pacific region. However, the true extent of genetic variation and associated virulence/pathogenicity within this complex is unknown. Here, we undertook a proof-of-principle study of a small panel of genomic DNAs (n = 13) from blood samples originating from individual cattle known to harbor T. orientalis, in order to assess the performance of a targeted "next-generation" sequencing-informatic approach to identify genotypes. Five genotypes (chitose, ikeda, buffeli, type 4, and type 5) were defined; multiple genotypes were found within individual samples, with dominant and minor sequence types representing most genotypes. This study indicates that this sequencing-informatic workflow could be useful to assess the nature and extent of genetic variation within and among populations of T. orientalis on a large scale, and to potentially employ panels of distinct gene markers for expanded molecular epidemiological investigations of socioeconomically important protistan pathogens more generally.

17.
Microorganisms ; 9(1)2020 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-33374586

RESUMO

Protists of the genera Babesia and Theileria (piroplasms) cause some of the most prevalent and debilitating diseases for bovines worldwide. In this study, we established and used a next-generation sequencing-informatic approach to explore the composition of Babesia and Theileria populations in cattle and water buffalo in a country (Pakistan) endemic for these pathogens. We collected individual blood samples from cattle (n = 212) and water buffalo (n = 154), extracted genomic DNAs, PCR-amplified the V4 hypervariable region of 18S small subunit rRNA gene from piroplasms, sequenced amplicons using Illumina technology, and then analysed data using bioinformatic platforms. The results revealed piroplasms in 68.9% (252/366) samples, with overall occurrence being markedly higher in cattle (85.8%) than in water buffaloes (45.5%). Babesia (B.) occultans and Theileria (T.) lestoquardi-like species were recorded for the first time in Pakistan, and, overall, T. annulata was most commonly detected (65.8%) followed by B. bovis (7.1%), B. bigemina (4.4%), and T. orientalis (0.5%), with the genetic variability within B. bovis being pronounced. The occurrence and composition of piroplasm species varied markedly across different agro-ecological zones. The high detection of T. annulata in asymptomatic animals suggested a relatively high level of endemic stability of tropical theileriosis in the bovine population.

18.
Parasit Vectors ; 13(1): 38, 2020 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-31973758

RESUMO

BACKGROUND: The parasitic flatworm Clonorchis sinensis inhabits the biliary tree of humans and other piscivorous mammals. This parasite can survive and thrive in the bile duct, despite exposure to bile constituents and host immune attack. Although the precise biological mechanisms underlying this adaptation are unknown, previous work indicated that Niemann-pick type C2 (NPC2)-like sterol-binding proteins might be integral in the host-parasite interplay. Expansions of this family in some invertebrates, such as arthropods, have shown functional diversification, including novel forms of chemoreception. Thus, here we curated the NPC2-like protein gene complement in C. sinensis, and predicted their conserved and/or divergent functional roles. METHODS: We used an established comparative genomic-bioinformatic approach to curate NPC2-like proteins encoded in published genomes of Korean and Chinese isolates of C. sinensis. Protein sequence and structural homology, presence of conserved domains and phylogeny were used to group and functionally classify NPC2-like proteins. Furthermore, transcription levels of NPC2-like protein-encoding genes were explored in different developmental stages and tissues. RESULTS: Totals of 35 and 32 C. sinensis NPC2-like proteins were predicted to be encoded in the genomes of the Korean and Chinese isolates, respectively. Overall, these proteins had low sequence homology and high variability of sequence alignment coverage when compared with curated NPC2s. Most C. sinensis proteins were predicted to retain a conserved ML domain and a conserved fold conformation, with a large cavity within the protein. Only one protein sequence retained the conserved amino acid residues required in bovine NPC2 to bind cholesterol. Non-canonical C. sinensis NPC2-like protein-coding domains clustered into four distinct phylogenetic groups with members of a group frequently encoded on the same genome scaffolds. Interestingly, NPC2-like protein-encoding genes were predicted to be variably transcribed in different developmental stages and adult tissues, with most being transcribed in the metacercarial stage. CONCLUSIONS: The results of the present investigation confirms an expansion of NPC2-like proteins in C. sinensis, suggesting a diverse array of functions beyond sterol binding and transport. Functional explorations of this protein family should elucidate the mechanisms enabling the establishment and survival of C. sinensis and related flukes in the biliary systems of mammalian hosts.


Assuntos
Clonorchis sinensis/genética , Proteínas de Helminto/genética , Doença de Niemann-Pick Tipo C/genética , Animais , Sequência de Bases , Teorema de Bayes , Ductos Biliares/parasitologia , Sistema Biliar/parasitologia , China , Clonorquíase/etiologia , Clonorchis sinensis/classificação , Clonorchis sinensis/fisiologia , Biologia Computacional , Peixes/parasitologia , Parasitologia de Alimentos , Genômica , Proteínas de Helminto/química , Humanos , Coreia (Geográfico) , Metacercárias/patogenicidade , Filogenia , Estrutura Terciária de Proteína , Alinhamento de Sequência , Análise de Sequência de Proteína , Homologia de Sequência
19.
Parasit Vectors ; 13(1): 598, 2020 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-33246493

RESUMO

BACKGROUND: Larvae of the Australian sheep blowfly, Lucilia cuprina, parasitise sheep by feeding on skin excretions, dermal tissue and blood, causing severe damage known as flystrike or myiasis. Recent advances in -omic technologies and bioinformatic data analyses have led to a greater understanding of blowfly biology and should allow the identification of protein families involved in host-parasite interactions and disease. Current literature suggests that proteins of the SCP (Sperm-Coating Protein)/TAPS (Tpx-1/Ag5/PR-1/Sc7) (SCP/TAPS) superfamily play key roles in immune modulation, cross-talk between parasite and host as well as developmental and reproductive processes in parasites. METHODS: Here, we employed a bioinformatics workflow to curate the SCP/TAPS protein gene family in L. cuprina. Protein sequence, the presence and number of conserved CAP-domains and phylogeny were used to group identified SCP/TAPS proteins; these were compared to those found in Drosophila melanogaster to make functional predictions. In addition, transcription levels of SCP/TAPS protein-encoding genes were explored in different developmental stages. RESULTS: A total of 27 genes were identified as belonging to the SCP/TAPS gene family: encoding 26 single-domain proteins each with a single CAP domain and a solitary double-domain protein containing two conserved cysteine-rich secretory protein/antigen 5/pathogenesis related-1 (CAP) domains. Surprisingly, 16 SCP/TAPS predicted proteins formed an extended tandem array spanning a 53 kb region of one genomic region, which was confirmed by MinION long-read sequencing. RNA-seq data indicated that these 16 genes are highly transcribed in all developmental stages (excluding the embryo). CONCLUSIONS: Future work should assess the potential of selected SCP/TAPS proteins as novel targets for the control of L. cuprina and related parasitic flies of major socioeconomic importance.


Assuntos
Dípteros/genética , Proteínas de Insetos/química , Proteínas de Insetos/genética , Miíase/veterinária , Doenças dos Ovinos/parasitologia , Sequência de Aminoácidos , Animais , Austrália , Dípteros/química , Dípteros/crescimento & desenvolvimento , Dípteros/metabolismo , Feminino , Amplificação de Genes , Proteínas de Insetos/metabolismo , Masculino , Miíase/parasitologia , Filogenia , Domínios Proteicos , Alinhamento de Sequência , Ovinos
20.
Ecol Evol ; 10(1): 70-80, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31988717

RESUMO

Increasing access to next-generation sequencing (NGS) technologies is revolutionizing the life sciences. In disease ecology, NGS-based methods have the potential to provide higher-resolution data on communities of parasites found in individual hosts as well as host populations.Here, we demonstrate how a novel analytical method, utilizing high-throughput sequencing of PCR amplicons, can be used to explore variation in blood-borne parasite (Theileria-Apicomplexa: Piroplasmida) communities of African buffalo at higher resolutions than has been obtained with conventional molecular tools.Results reveal temporal patterns of synchronized and opposite fluctuations of prevalence and relative abundance of Theileria spp. within the host population, suggesting heterogeneous transmission across taxa. Furthermore, we show that the community composition of Theileria spp. and their subtypes varies considerably between buffalo, with differences in composition reflected in mean and variance of overall parasitemia, thereby showing potential to elucidate previously unexplained contrasts in infection outcomes for host individuals.Importantly, our methods are generalizable as they can be utilized to describe blood-borne parasite communities in any host species. Furthermore, our methodological framework can be adapted to any parasite system given the appropriate genetic marker.The findings of this study demonstrate how a novel NGS-based analytical approach can provide fine-scale, quantitative data, unlocking opportunities for discovery in disease ecology.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA