Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Int J Mol Sci ; 25(2)2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38279262

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is the most aggressive type of pancreatic cancer, which rapidly develops resistance to the current standard of care. Several oncolytic Human AdenoViruses (HAdVs) have been reported to re-sensitize drug-resistant cancer cells and in combination with chemotherapeutics attenuate solid tumour growth. Obstacles preventing greater clinical success are rapid hepatic elimination and limited viral replication and spread within the tumour microenvironment. We hypothesised that higher intratumoural levels of the virus could be achieved by altering cellular epigenetic regulation. Here we report on the screening of an enriched epigenetics small molecule library and validation of six compounds that increased viral gene expression and replication. The greatest effects were observed with three epigenetic inhibitors targeting bromodomain (BRD)-containing proteins. Specifically, BRD4 inhibitors enhanced the efficacy of Ad5 wild type, Ad∆∆, and Ad-3∆-A20T in 3-dimensional co-culture models of PDAC and in vivo xenografts. RNAseq analysis demonstrated that the inhibitors increased viral E1A expression, altered expression of cell cycle regulators and inflammatory factors, and attenuated expression levels of tumour cell oncogenes such as c-Myc and Myb. The data suggest that the tumour-selective Ad∆∆ and Ad-3∆-A20T combined with epigenetic inhibitors is a novel strategy for the treatment of PDAC by eliminating both cancer and associated stromal cells to pave the way for immune cell access even after systemic delivery of the virus.


Assuntos
Carcinoma Ductal Pancreático , Terapia Viral Oncolítica , Vírus Oncolíticos , Neoplasias Pancreáticas , Humanos , Proteínas Nucleares/genética , Epigênese Genética , Vírus Oncolíticos/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Linhagem Celular Tumoral , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/terapia , Neoplasias Pancreáticas/patologia , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/terapia , Carcinoma Ductal Pancreático/patologia , Terapia Viral Oncolítica/métodos , Adenoviridae/genética , Microambiente Tumoral , Proteínas que Contêm Bromodomínio , Proteínas de Ciclo Celular/metabolismo
2.
Int J Mol Sci ; 23(16)2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-36012152

RESUMO

Oncolytic adenoviruses (OAd) can be employed to efficiently eliminate cancer cells through multiple mechanisms of action including cell lysis and immune activation. Our OAds, AdΔΔ and Ad-3∆-A20T, selectively infect, replicate in, and kill adenocarcinoma cells with the added benefit of re-sensitising drug-resistant cells in preclinical models. Further modifications are required to enable systemic delivery in patients due to the rapid hepatic elimination and neutralisation by blood factors and antibodies. Here, we show data that support the use of coating OAds with gold nanoparticles (AuNPs) as a possible new method of virus modification to help augment tumour uptake. The pre-incubation of cationic AuNPs with AdΔΔ, Ad-3∆-A20T and wild type adenovirus (Ad5wt) was performed prior to infection of prostate/pancreatic cancer cell lines (22Rv, PC3, Panc04.03, PT45) and a pancreatic stellate cell line (PS1). Levels of viral infection, replication and cell viability were quantified 24-72 h post-infection in the presence and absence of AuNPs. Viral spread was assessed in organotypic cultures. The presence of AuNPs significantly increased the uptake of Ad∆∆, Ad-3∆-A20T and Ad5wt in all the cell lines tested (ranging from 1.5-fold to 40-fold), compared to virus alone, with the greatest uptake observed in PS1, a usually adenovirus-resistant cell line. Pre-coating the AdΔΔ and Ad-3∆-A20T with AuNPs also increased viral replication, leading to enhanced cell killing, with maximal effect in the most virus-insensitive cells (from 1.4-fold to 5-fold). To conclude, the electrostatic association of virus with cationic agents provides a new avenue to increase the dose in tumour lesions and potentially protect the virus from detrimental blood factor binding. Such an approach warrants further investigation for clinical translation.


Assuntos
Nanopartículas Metálicas , Terapia Viral Oncolítica , Vírus Oncolíticos , Neoplasias Pancreáticas , Viroses , Adenoviridae/fisiologia , Linhagem Celular Tumoral , Ouro/metabolismo , Humanos , Masculino , Terapia Viral Oncolítica/métodos , Vírus Oncolíticos/fisiologia , Neoplasias Pancreáticas/patologia , Próstata/patologia , Replicação Viral , Ensaios Antitumorais Modelo de Xenoenxerto , Neoplasias Pancreáticas
3.
Pharmacol Rep ; 75(3): 570-584, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37010783

RESUMO

BACKGROUND: Pegylated arginine deiminase (ADI-PEG20; pegargiminase) depletes arginine and improves survival outcomes for patients with argininosuccinate synthetase 1 (ASS1)-deficient malignant pleural mesothelioma (MPM). Optimisation of ADI-PEG20-based therapy will require a deeper understanding of resistance mechanisms, including those mediated by the tumor microenvironment. Here, we sought to reverse translate increased tumoral macrophage infiltration in patients with ASS1-deficient MPM relapsing on pegargiminase therapy. METHODS: Macrophage-MPM tumor cell line (2591, MSTO, JU77) co-cultures treated with ADI-PEG20 were analyzed by flow cytometry. Microarray experiments of gene expression profiling were performed in ADI-PEG20-treated MPM tumor cells, and macrophage-relevant genetic "hits" were validated by qPCR, ELISA, and LC/MS. Cytokine and argininosuccinate analyses were performed using plasma from pegargiminase-treated patients with MPM. RESULTS: We identified that ASS1-expressing macrophages promoted viability of ADI-PEG20-treated ASS1-negative MPM cell lines. Microarray gene expression data revealed a dominant CXCR2-dependent chemotactic signature and co-expression of VEGF-A and IL-1α in ADI-PEG20-treated MPM cell lines. We confirmed that ASS1 in macrophages was IL-1α-inducible and that the argininosuccinate concentration doubled in the cell supernatant sufficient to restore MPM cell viability under co-culture conditions with ADI-PEG20. For further validation, we detected elevated plasma VEGF-A and CXCR2-dependent cytokines, and increased argininosuccinate in patients with MPM progressing on ADI-PEG20. Finally, liposomal clodronate depleted ADI-PEG20-driven macrophage infiltration and suppressed growth significantly in the MSTO xenograft murine model. CONCLUSIONS: Collectively, our data indicate that ADI-PEG20-inducible cytokines orchestrate argininosuccinate fuelling of ASS1-deficient mesothelioma by macrophages. This novel stromal-mediated resistance pathway may be leveraged to optimize arginine deprivation therapy for mesothelioma and related arginine-dependent cancers.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Macrófagos , Mesotelioma Maligno , Mesotelioma , Animais , Humanos , Camundongos , Arginina/metabolismo , Argininossuccinato Sintase/genética , Argininossuccinato Sintase/metabolismo , Linhagem Celular Tumoral , Mesotelioma/tratamento farmacológico , Mesotelioma/genética , Recidiva Local de Neoplasia , Polietilenoglicóis/farmacologia , Microambiente Tumoral , Fator A de Crescimento do Endotélio Vascular
4.
Front Mol Biosci ; 9: 901392, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35813830

RESUMO

Breast cancer (BC) is the most common cancer globally, accounting for 685,000 deaths in 2020. Triple-negative breast cancers (TNBC) lack oestrogen (ER) and progesterone (PR) hormone receptor expression and HER2 overexpression. TNBC represent 10-15% of all BC with high incidence in women under 50-years old that have BRCA mutations, and have a dismal prognosis. African American and Hispanic women are at higher risk partly due to the common occurrence of BRCA mutations. The standard treatment for TNBC includes surgery, radiotherapy, and chemotherapy although, resistance to all standard-of-care therapies eventually develops. It is crucial to identify and develop more efficacious therapeutics with different mechanisms of action to improve on survival in these women. Recent findings with oncolytic adenoviruses (OAds) may generate a new strategy to improve on the outcomes for women afflicted by TNBC and other types of BC. OAds are genetically engineered to selectively lyse, eliminate and recruit the host antitumour immune responses, leaving normal cells unharmed. The most common modifications are deletions in the early gene products including the E1B55 KDa protein, specific regions of the E1A protein, or insertion of tumour-specific promoters. Clinical trials using OAds for various adenocarcinomas have not yet been sufficiently evaluated in BC patients. Preclinical studies demonstrated efficacy in BC cell lines, including TNBC cells, with promising novel adenoviral mutants. Here we review the results reported for the most promising OAds in preclinical studies and clinical trials administered alone and in combination with current standard of care or with novel therapeutics. Combinations of OAds with small molecule drugs targeting the epidermal growth factor receptor (EGFR), androgen receptor (AR), and DNA damage repair by the novel PARP inhibitors are currently under investigation with reported enhanced efficacy. The combination of the PARP-inhibitor Olaparib with OAds showed an impressive anti-tumour effect. The most promising findings to date are with OAds in combination with antibodies towards the immune checkpoints or expression of cytokines from the viral backbone. Although safety and efficacy have been demonstrated in numerous clinical trials and preclinical studies with cancer-selective OAds, further developments are needed to eliminate metastatic lesions, increase immune activation and intratumoural viral spread. We discuss shortcomings of the OAds and potential solutions for improving on patient outcomes.

5.
Viruses ; 14(5)2022 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-35632748

RESUMO

The prognosis for triple-negative breast cancer (TNBC) and pancreatic ductal adenocarcinoma (PDAC) is dismal. TNBC and PDAC are highly aggressive cancers with few treatment options and a potential for rapid resistance to standard-of-care chemotherapeutics. Oncolytic adenoviruses (OAds) represent a promising tumour-selective strategy that can overcome treatment resistance and eliminate cancer cells by lysis and host immune activation. We demonstrate that histone deacetylase inhibitors (HDACi) potently enhanced the cancer-cell killing of our OAds, Ad∆∆ and Ad-3∆-A20T in TNBC and PDAC preclinical models. In the TNBC cell lines MDA-MB-436, SUM159 and CAL51, cell killing, viral uptake and replication were increased when treated with sublethal doses of the Class-I-selective HDACis Scriptaid, Romidepsin and MS-275. The pan-HDACi, TSA efficiently improved OAd efficacy, both in vitro and in SUM159 xenograft models in vivo. Cell killing and Ad∆∆ replication was also significantly increased in five PDAC cell lines when pre-treated with TSA. Efficacy was dependent on treatment time and dose, and on the specific genetic alterations in each cell line. Expression of the cancer specific αvß6-integrin supported higher viral uptake of the integrin-retargeted Ad-3∆-A20T in combination with Scriptaid. In conclusion, we demonstrate that inhibition of specific HDACs is a potential means to enhance OAd activity, supporting clinical translation.


Assuntos
Carcinoma Ductal Pancreático , Inibidores de Histona Desacetilases , Terapia Viral Oncolítica , Neoplasias Pancreáticas , Neoplasias de Mama Triplo Negativas , Adenoviridae/genética , Adenoviridae/metabolismo , Animais , Carcinoma Ductal Pancreático/terapia , Linhagem Celular Tumoral , Inibidores de Histona Desacetilases/farmacologia , Humanos , Integrinas/metabolismo , Neoplasias Pancreáticas/terapia , Neoplasias de Mama Triplo Negativas/terapia , Neoplasias Pancreáticas
6.
Acta Biomater ; 134: 593-604, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34325075

RESUMO

Adenoviral (Ad) vectors have proven to be important tools for gene and cell therapy, although some issues still need to be addressed, such as undesired interactions with blood components and off-target sequestration that ultimately hamper efficacy. In the past years, several organic and inorganic materials have been developed to reduce immunogenicity and improve biodistribution of Ad vectors. Here we investigated the influence of the functionalization of 14 nm PEGylated gold nanoparticles (AuNPs) with quaternary ammonium groups and an arginine-glycine-aspartic acid (RGD)-motif on the uptake and biodistribution of Ad vectors. We report the formation of Ad@AuNPs complexes that promote cell attachment and uptake, independently of the presence of the coxsackievirus and adenovirus receptor (CAR) and αvß3 and αvß5 integrins, significantly improving transduction without limiting Ad bioactivity. Besides, the presence of the RGD peptide favors tumor targeting and decreases Ad sequestration in the liver. Additionally, tumor delivery of a coated Ad vector expressing the human sodium iodide symporter (hNIS) by mesenchymal stem cells induces increased accumulation of radioactive iodine (131I) and tumor volume reduction compared to naked Ad-hNIS, highlighting the promising potential of our coating formulation in cancer gene therapy. STATEMENT OF SIGNIFICANCE: Modification of adenoviral vectors with lipids and polymers can reduce interactions with blood components and increase tumor accumulation; however, increased toxicity and reduced transduction efficiency were indicated. Coating with gold nanoparticles has proven to be a successful strategy for increasing the efficiency of transduction of receptor-defective cell lines. Here we explore the contribution of cell surface receptors on the mechanisms of entry of Ad vectors coated with gold nanoparticles in cell lines with varying degrees of resistance to infection. The enhancement of the anti-tumoral effect shown in this work provides new evidence for the potential of our formulation.


Assuntos
Nanopartículas Metálicas , Neoplasias da Glândula Tireoide , Adenoviridae/genética , Linhagem Celular Tumoral , Vetores Genéticos , Ouro , Humanos , Radioisótopos do Iodo , Distribuição Tecidual
7.
Clin Cancer Res ; 15(5): 1730-40, 2009 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-19223497

RESUMO

PURPOSE: Pancreatic adenocarcinoma is a rapidly progressive malignancy that is highly resistant to current chemotherapeutic modalities and almost uniformly fatal. We show that a novel targeting strategy combining oncolytic adenoviral mutants with the standard cytotoxic treatment, gemcitabine, can markedly improve the anticancer potency. EXPERIMENTAL DESIGN: Adenoviral mutants with the E1B19K gene deleted with and without E3B gene expression (AdDeltaE1B19K and dl337 mutants, respectively) were assessed for synergistic interactions in combination with gemcitabine. Cell viability, mechanism of cell death, and antitumor efficacy in vivo were determined in the pancreatic carcinoma cells PT45 and Suit2, normal human bronchial epithelial cells, and in PT45 xenografts. RESULTS: The DeltaE1B19K-deleted mutants synergized with gemcitabine to selectively kill cultured pancreatic cancer cells and xenografts in vivo with no effect in normal cells. The corresponding wild-type virus (Ad5) stimulated drug-induced cell killing to a lesser degree. Gemcitabine blocked replication of all viruses despite the enhanced cell killing activity due to gemcitabine-induced delay in G1/S-cell cycle progression, with repression of cyclin E and cdc25A, which was not abrogated by viral E1A-expression. Synergistic cell death occurred through enhancement of gemcitabine-induced apoptosis in the presence of both AdDeltaE1B19K and dl337 mutants, shown by increased cell membrane fragmentation, caspase-3 activation, and mitochondrial dysfunction. CONCLUSIONS: Our data suggest that oncolytic mutants lacking the antiapoptotic E1B19K gene can improve efficacy of DNA-damaging drugs such as gemcitabine through convergence on cellular apoptosis pathways. These findings imply that less toxic doses than currently practiced in the clinic could efficiently target pancreatic adenocarcinomas when combined with adenoviral mutants.


Assuntos
Adenocarcinoma/patologia , Adenoviridae/genética , Proteínas E1B de Adenovirus/genética , Apoptose/efeitos dos fármacos , Desoxicitidina/análogos & derivados , Deleção de Genes , Mutação/genética , Vírus Oncolíticos/fisiologia , Neoplasias Pancreáticas/patologia , Adenocarcinoma/genética , Proteínas E1B de Adenovirus/metabolismo , Animais , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Terapia Combinada , Desoxicitidina/uso terapêutico , Sinergismo Farmacológico , Citometria de Fluxo , Terapia Genética , Vetores Genéticos , Humanos , Immunoblotting , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Nus , Neoplasias Pancreáticas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fase S/efeitos dos fármacos , Fase S/fisiologia , Replicação Viral , Ensaios Antitumorais Modelo de Xenoenxerto , Gencitabina
8.
Am J Physiol Gastrointest Liver Physiol ; 297(4): G641-54, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19679818

RESUMO

P2Y5 is a G protein-coupled receptor that binds and is activated by lysophosphatidic acid (LPA). We determined that P2Y5 transcript is expressed along the intestinal mucosa and investigated the intracellular pathways induced by P2Y5 activation, which could contribute to LPA effects on intestinal cell adhesion. P2Y5 heterologously expressed in CHO and small intestinal hBRIE 380i cells was activated by LPA resulting in an increase in intracellular calcium ([Ca(2+)](i)) when the cells concurrently expressed G(alpha)(Delta6qi5myr). P2Y5 activation also increased the phosphorylation of ERK1/2 that was sensitive to pertussis toxin. Together these indicate that P2Y5 activation by LPA induces an increase in [Ca(2+)](i) and ERK1/2 phosphorylation through G(alpha)(i). We discovered that P2Y5 was activated by farnesyl pyrophosphate (FPP) without a detectable change in [Ca(2+)](i). The activation of P2Y5 by LPA or FPP induced the activity of a serum response element (SRE)-linked luciferase reporter that was inhibited by the RGS domain of p115RhoGEF, C3 exotoxin, and Y-27632, suggesting the involvement of G(alpha)(12/13), Rho GTPase, and ROCK, respectively. However, only LPA-mediated induction of SRE reporter activity was sensitive to inhibitors targeting p38 MAPK, PI3K, PLC, and PKC. In addition, only LPA transactivated the epidermal growth factor receptor, leading to an induction of ERK1/2 phosphorylation. These observations correlate with our subsequent finding that P2Y5 activation by LPA, and not FPP, reduced intestinal cell adhesion. This study elucidates a mechanism whereby LPA can act as a luminal and/or serosal cue to alter mucosal integrity.


Assuntos
Adesão Celular , Células Epiteliais/metabolismo , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Mucosa Intestinal/metabolismo , Lisofosfolipídeos/metabolismo , Receptores Purinérgicos P2/metabolismo , Animais , Células CHO , Sinalização do Cálcio , Adesão Celular/efeitos dos fármacos , Cricetinae , Cricetulus , Regulação para Baixo , Inibidores Enzimáticos/farmacologia , Células Epiteliais/efeitos dos fármacos , Receptores ErbB/metabolismo , Quinase 2 de Receptor Acoplado a Proteína G/genética , Quinase 2 de Receptor Acoplado a Proteína G/metabolismo , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/antagonistas & inibidores , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/genética , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/antagonistas & inibidores , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/genética , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Células HeLa , Humanos , Mucosa Intestinal/efeitos dos fármacos , MAP Quinase Quinase 1/metabolismo , MAP Quinase Quinase 2/metabolismo , Masculino , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Fosforilação , Fosfatos de Poli-Isoprenil/metabolismo , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Receptor Cross-Talk , Receptores Purinérgicos P2/genética , Proteínas Recombinantes de Fusão/metabolismo , Fatores de Troca de Nucleotídeo Guanina Rho , Elemento de Resposta Sérica , Sesquiterpenos/metabolismo , Transfecção , Proteínas rho de Ligação ao GTP/metabolismo , Quinases Associadas a rho/metabolismo
9.
Clin Cancer Res ; 14(20): 6505-14, 2008 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-18927290

RESUMO

PURPOSE: Anaplastic thyroid carcinoma is a prime target for innovative therapy because it represents one of the most lethal human neoplasms and is refractory to conventional treatments such as chemotherapy and radiotherapy. We have evaluated a novel therapeutic approach based on the oncolytic replication-selective adenovirus dl922-947. EXPERIMENTAL DESIGN: The antitumor efficacies of the E1ADeltaCR2 (dl922-947) and DeltaE1B55K (dl1520) mutants were compared in human thyroid anaplastic carcinoma cells in culture and in xenografts in vivo. To enhance the effects of dl922-947, anaplastic thyroid carcinoma tumor xenografts were treated with dl922-947 in combination with bevacizumab. RESULTS: We showed that the efficacy of dl922-947 exceeded that of dl1520 in all tested anaplastic thyroid carcinoma cells in vitro and in vivo. Furthermore, bevacizumab in combination with dl922-947 significantly reduced tumor growth compared with single treatments alone. Bevacizumab treatment significantly improved viral distribution in neoplastic tissues. CONCLUSIONS: Our data showed that dl922-947 had a higher oncolytic activity compared with dl1520 in anaplastic thyroid carcinoma cell lines and might represent a better option for virotherapy of anaplastic thyroid carcinoma. Moreover, bevacizumab increased the oncolytic effects of dl922-947 by enhancing viral distribution in tumors. The results described herein encourage the use of the dl922-947 virus in combination with bevacizumab.


Assuntos
Adenoviridae/efeitos dos fármacos , Inibidores da Angiogênese/uso terapêutico , Anticorpos Monoclonais/uso terapêutico , Carcinoma/terapia , Terapia Viral Oncolítica , Neoplasias da Glândula Tireoide/terapia , Adenoviridae/genética , Infecções por Adenoviridae/patologia , Infecções por Adenoviridae/terapia , Infecções por Adenoviridae/virologia , Proteínas E1A de Adenovirus/deficiência , Animais , Anticorpos Monoclonais Humanizados , Bevacizumab , Carcinoma/patologia , Carcinoma/virologia , Células Cultivadas , Terapia Combinada , Sinergismo Farmacológico , Humanos , Masculino , Camundongos , Camundongos Nus , Neoplasias da Glândula Tireoide/patologia , Neoplasias da Glândula Tireoide/virologia , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Fator A de Crescimento do Endotélio Vascular/imunologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Replicação Viral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Cancer Res ; 67(15): 7284-94, 2007 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-17671197

RESUMO

There is no effective medical treatment for oral precancer, and surgery to remove these lesions is imprecise because abnormal mucosa extends beyond the visible lesion. Development of vectors for tumor-selective viral replication has been a significant advance, and viral lysis is well suited to destruction of oral precancerous mucosa. To facilitate evaluation of new treatments, we engineered dysplastic oral epithelium using keratinocytes isolated from dysplastic lesions. We show that these model systems recapitulate the key characteristics of the clinical lesions closely, and that topical delivery of the conditionally replicating adenovirus (CRAd) dl922-947 can lyse tissue-engineered epithelia that show mild, moderate, or severe dysplasia, but normal oral epithelia are very resistant to this treatment. The lytic effect is determined by various factors, including the grade and proliferation index of the dysplastic epithelia. The presence of suprabasal cycling cells, expression of the coxsackie adenovirus receptor (CAR), the transcription cofactor p300, and other aberrations that affect the regulation of the cell cycle or apoptosis and promote viral replication may also be important. The ability of dl922-947 to destroy engineered oral dysplasia was significantly greater than that observed using wild-type adenovirus, d/1520, or viruses modified to bypass cell entry dependent on the presence of CAR. Evidence of infection in clinical dysplastic lesions was also shown ex vivo using tissue explants. We conclude that dl922-947 may provide an efficient molecular cytotoxic to dissolve oral dysplastic lesions.


Assuntos
Adenoviridae/fisiologia , Leucoplasia Oral/metabolismo , Mucosa Bucal/metabolismo , Lesões Pré-Cancerosas/metabolismo , Engenharia Tecidual , Replicação Viral , Adenoviridae/patogenicidade , Infecções por Adenoviridae/genética , Infecções por Adenoviridae/terapia , Infecções por Adenoviridae/virologia , Sobrevivência Celular , DNA Viral/genética , Humanos , Queratinócitos/citologia , Queratinócitos/metabolismo , Queratinócitos/virologia , Leucoplasia Oral/patologia , Mucosa Bucal/patologia , Técnicas de Cultura de Órgãos , Lesões Pré-Cancerosas/patologia
11.
Sci Rep ; 9(1): 12840, 2019 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-31492884

RESUMO

Early phase clinical trials have demonstrated good therapeutic index for oncolytic adenoviruses in patients with solid tumours when administered intratumorally, resulting in local tumour elimination. Entrapment and binding of adenovirus to erythrocytes, blood factors, and neutralising antibodies have prevented efficient systemic delivery and targeting of distant lesions in the clinic. We previously generated the novel replication-selective Ad-3∆-A20T to improve tumour targeting by increasing the viral dose at distant sites. Here, we developed a protocol to directly radiolabel the virus for rapid and sensitive detection by single-photon emitted computed tomography (SPECT/CT) providing a convenient method for determining biodistribution following intravenous administration in murine models. Longitudinal whole-body scans, demonstrated efficient viral uptake in pancreatic Suit-2 and Panc04.03 xenografts with trace amounts of 125I-Ad-3∆-A20T up to 48 h after tail vein delivery. Hepatic and splenic radioactivity decreased over time. Analysis of tissues harvested at the end of the study, confirmed potency and selectivity of mutant viruses. Ad-3∆-A20T-treated animals showed higher viral genome copy numbers and E1A gene expression in tumors than in liver and spleen compared to Ad5wt. Our direct radiolabeling approach, allows for immediate screening of novel oncolytic adenoviruses and selection of optimal viral genome alterations to generate improved mutants.


Assuntos
Adenoviridae/genética , Radioisótopos do Iodo/administração & dosagem , Mutação/genética , Vírus Oncolíticos/genética , Neoplasias Pancreáticas/diagnóstico por imagem , Tomografia Computadorizada de Emissão de Fóton Único , Tomografia Computadorizada por Raios X , Ensaios Antitumorais Modelo de Xenoenxerto , Proteínas E1A de Adenovirus/metabolismo , Animais , Antígenos de Neoplasias/metabolismo , Linhagem Celular Tumoral , Genoma Viral , Humanos , Integrinas/metabolismo , Fígado/diagnóstico por imagem , Camundongos Nus , Baço/diagnóstico por imagem , Distribuição Tecidual
12.
Cancer Lett ; 434: 56-69, 2018 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-29981812

RESUMO

Survival rates for pancreatic cancer patients have remained unchanged for the last four decades. The most aggressive, and most common, type of pancreatic cancer is pancreatic ductal adenocarcinoma (PDAC), which has the lowest 5-year survival rate of all cancers globally. The poor prognosis is typically due to late presentation of often non-specific symptoms and rapid development of resistance to all current therapeutics, including the standard-of-care cytotoxic drug gemcitabine. While early surgical intervention can significantly prolong patient survival, there are few treatment options for late-stage non-resectable metastatic disease, resulting in mostly palliative care. In addition, a defining feature of pancreatic cancer is the immunosuppressive and impenetrable desmoplastic stroma that blocks access to tumour cells by therapeutic drugs. The limited effectiveness of conventional chemotherapeutics reveals an urgent need to develop novel therapies with different mechanisms of action for this malignancy. An emerging alternative to current therapeutics is oncolytic adenoviruses; these engineered biological agents have proven efficacy and tumour-selectivity in preclinical pancreatic cancer models, including models of drug-resistant cancer. Safety of oncolytic adenoviral mutants has been extensively assessed in clinical trials with only limited toxicity to normal healthy tissue being reported. Promising efficacy in combination with gemcitabine was demonstrated in preclinical and clinical studies. A recent surge in novel adenoviral mutants entering clinical trials for pancreatic cancer indicates improved efficacy through activation of the host anti-tumour responses. The potential for adenoviruses to synergise with chemotherapeutics, activate anti-tumour immune responses, and contribute to stromal dissemination render these mutants highly attractive candidates for improved patient outcomes. Currently, momentum is gathering towards the development of systemically-deliverable mutants that are able to overcome anti-viral host immune responses, erythrocyte binding and hepatic uptake, to promote elimination of primary and metastatic lesions. This review will cover the key components of pancreatic cancer oncogenesis; novel oncolytic adenoviruses; clinical trials; and the current progress in overcoming the challenges of systemic delivery.


Assuntos
Adenoviridae/genética , Carcinoma Ductal Pancreático/terapia , Desoxicitidina/análogos & derivados , Terapia Viral Oncolítica/métodos , Vírus Oncolíticos/genética , Neoplasias Pancreáticas/terapia , Antimetabólitos Antineoplásicos/farmacologia , Terapia Combinada , Desoxicitidina/farmacologia , Humanos , Terapia Viral Oncolítica/tendências , Gencitabina
13.
Cancers (Basel) ; 10(6)2018 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-29904022

RESUMO

The licensing of talimogene laherparepvec (T-Vec) represented a landmark moment for oncolytic virotherapy, since it provided unequivocal evidence for the long-touted potential of genetically modified replicating viruses as anti-cancer agents. Whilst T-Vec is promising as a locally delivered virotherapy, especially in combination with immune-checkpoint inhibitors, the quest continues for a virus capable of specific tumour cell killing via systemic administration. One candidate is oncolytic adenovirus (Ad); it’s double stranded DNA genome is easily manipulated and a wide range of strategies and technologies have been employed to empower the vector with improved pharmacokinetics and tumour targeting ability. As well characterised clinical and experimental agents, we have detailed knowledge of adenoviruses’ mechanisms of pathogenicity, supported by detailed virological studies and in vivo interactions. In this review we highlight the strides made in the engineering of bespoke adenoviral vectors to specifically infect, replicate within, and destroy tumour cells. We discuss how mutations in genes regulating adenoviral replication after cell entry can be used to restrict replication to the tumour, and summarise how detailed knowledge of viral capsid interactions enable rational modification to eliminate native tropisms, and simultaneously promote active uptake by cancerous tissues. We argue that these designer-viruses, exploiting the viruses natural mechanisms and regulated at every level of replication, represent the ideal platforms for local overexpression of therapeutic transgenes such as immunomodulatory agents. Where T-Vec has paved the way, Ad-based vectors now follow. The era of designer oncolytic virotherapies looks decidedly as though it will soon become a reality.

14.
Oncogenesis ; 7(1): 6, 2018 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-29362360

RESUMO

Anti-apoptotic Bcl-2 is frequently activated in human malignant cells to promote cell survival and inhibit cell death. Replication-selective oncolytic adenoviruses deleted in the functional Bcl-2 homologue E1B19K potently synergise with apoptosis-inducing chemotherapeutic drugs, including mitoxantrone for prostate cancer. Here, we demonstrate that our previously generated oncolytic mutant Ad∆∆ (E1B19K- and E1ACR2-deleted) caused potent synergistic apoptotic cell death in both drug-sensitive 22Rv1, and drug-insensitive PC3 and PC3M prostate cancer cells. The synergistic cell killing was dependent on Bcl-2 expression and was prevented by Bcl-2 knockdown, which led to activation of the autophagy pathway. Mitoxantrone-induced autophagy, which was decreased in combination with Ad∆∆-infection resulting in increased apoptosis. Expression of the viral E1A12S protein alone mimicked the synergistic effects with Ad∆∆ in combination with mitoxantrone while intact wild-type virus (Ad5) had no effect. Early and late-stage inhibition of autophagy by Atg7 knockdown and chloroquine respectively, promoted apoptotic cell killing with mitoxantrone similar to Ad∆∆. These findings revealed currently unexplored actions of E1B19K-deleted oncolytic adenoviruses and the central role of Bcl-2 in the synergistic cell killing. This study suggests that cancers with functional Bcl-2 expression may be selectively re-sensitised to drugs by Ad∆∆.

15.
Mol Cancer Ther ; 17(2): 575-587, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29367266

RESUMO

Metastatic pancreatic ductal adenocarcinomas (PDAC) are incurable due to the rapid development of resistance to all current therapeutics. Oncolytic adenoviral mutants have emerged as a promising new strategy that negates such resistance. In contrast to normal tissue, the majority of PDACs express the αvß6 integrin receptor. To exploit this feature, we modified our previously reported oncolytic adenovirus, AdΔΔ, to selectively target αvß6 integrins to facilitate systemic delivery. Structural modifications to AdΔΔ include the expression of the small but potent αvß6-binding peptide, A20FMDV2, and ablation of binding to the native coxsackie and adenovirus receptor (CAR) within the fiber knob region. The resultant mutant, Ad5-3Δ-A20T, infected and killed αvß6 integrin-expressing cells more effectively than the parental wild-type (Ad5wt) virus and AdΔΔ. Viral uptake through αvß6 integrins rather than native viral receptors (CAR, αvß3 and αvß5 integrins) promoted viral propagation and spread. Superior efficacy of Ad5-3Δ-A20T compared with Ad5wt was demonstrated in 3D organotypic cocultures, and similar potency between the two viruses was observed in Suit-2 in vivo models. Importantly, Ad5-3Δ-A20T infected pancreatic stellate cells at low levels, which may further facilitate viral spread and cancer cell elimination either as a single agent or in combination with the chemotherapy drug, gemcitabine. We demonstrate that Ad5-3Δ-A20T is highly selective for αvß6 integrin-expressing pancreatic cancer cells, and with further development, this new and exciting strategy can potentially be extended to improve the systemic delivery of adenoviruses to pancreatic cancer patients. Mol Cancer Ther; 17(2); 575-87. ©2018 AACR.


Assuntos
Adenoviridae/genética , Antígenos de Neoplasias/genética , Carcinoma Ductal Pancreático/terapia , Integrinas/genética , Terapia Viral Oncolítica/métodos , Neoplasias Pancreáticas/terapia , Adenoviridae/metabolismo , Animais , Antígenos de Neoplasias/metabolismo , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patologia , Carcinoma Ductal Pancreático/virologia , Linhagem Celular Tumoral , Células HEK293 , Humanos , Integrinas/metabolismo , Camundongos , Camundongos Nus , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/virologia , Ensaios Antitumorais Modelo de Xenoenxerto
17.
Nat Biotechnol ; 21(11): 1328-35, 2003 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-14555956

RESUMO

Oncolytic replication-selective adenoviruses constitute a rapidly growing therapeutic platform for cancer. However, the role of the host immune response and the E3 immunoregulatory genes of the human adenovirus were unknown until now. We identified four mouse carcinoma lines of variable permissivity for adenoviral gene expression, cytopathic effects and/or burst size. To determine E3 gene effects in immunocompetent tumor-bearing hosts, we injected tumors with one of three adenoviruses: Ad5 (E3 wild type), dl309 (del. E3 10.4/14.5, 14.7 kDa) or dl704 (del. E3 gp19 kDa). Compared with Ad5 and dl704, dl309 was cleared much more rapidly and/or its activity was lower in all four models. Intratumoral injection with dl309 resulted in markedly greater macrophage infiltration and expression of both tumor necrosis factor and interferon-gamma. Adenovirus replication, CD8(+) lymphocyte infiltration and efficacy were similar upon intratumoral injection with either dl704 or Ad5. E3-dependent differences were not evident in athymic mice. These findings have important implications for the design of oncolytic adenoviruses and may explain the rapid clearance of E3-10.4/14.5,14.7-deleted adenoviruses in patients.


Assuntos
Adenoviridae/crescimento & desenvolvimento , Adenoviridae/metabolismo , Proteínas E3 de Adenovirus/metabolismo , Carcinoma/virologia , Imunocompetência/imunologia , Ativação Viral/fisiologia , Adenoviridae/genética , Adenoviridae/imunologia , Proteínas E3 de Adenovirus/genética , Proteínas E3 de Adenovirus/imunologia , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Camundongos , Camundongos Nus , Proteínas Recombinantes/metabolismo
18.
Cancer Res ; 65(4): 1523-31, 2005 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-15735041

RESUMO

Given the growing number of tumor types recognizably associated with EBV infection, it is critically important that therapeutic strategies are developed to treat such tumors. Replication-selective oncolytic adenoviruses represent a promising new platform for anticancer therapy. Virus-associated I (VAI) RNAs of adenoviruses are required for efficient translation of viral mRNAs. When the VAI gene is deleted, adenovirus replication is impeded in most cells (including HEK 293 cells). EBV-encoded small RNA1 is uniformly expressed in most EBV-associated human tumors and can functionally substitute for the VAI RNAs of adenovirus. It enables replication to proceed through complementation of VAI-deletion mutants. We hypothesized that VAI-deleted adenovirus would selectively replicate in EBV-positive tumor cells due to the presence of EBV-encoded small RNA1 with no (or poor) replication in normal or EBV-negative tumor cells. In this report, we show that high levels of replication occurred in the VAI-deleted mutant in the EBV-positive tumor cells compared with low (or negligible) levels in EBV-negative and normal human primary cells. Correspondingly, high toxicity levels were observed in EBV-positive tumor cells but not in EBV-negative tumor or normal human primary cells. In vivo, VAI-deleted adenovirus showed superior antitumoral efficacy to wild-type adenovirus in EBV-positive tumor xenografts, with lower hepatotoxicity than wild-type adenovirus. Our data suggest that VAI-deleted adenovirus is a promising replication-selective oncolytic virus with targeting specificity for EBV-associated tumors.


Assuntos
Adenovírus Humanos/fisiologia , Infecções por Vírus Epstein-Barr/complicações , Herpesvirus Humano 4 , Neoplasias/terapia , Neoplasias/virologia , RNA Viral/genética , Adenovírus Humanos/genética , Animais , Linhagem Celular Tumoral , Fator de Iniciação 2 em Eucariotos/metabolismo , Humanos , Fígado/virologia , Camundongos , Camundongos Endogâmicos C57BL , Biossíntese de Proteínas , RNA Mensageiro/genética , RNA Viral/biossíntese , Replicação Viral/genética
19.
Clin Cancer Res ; 11(1): 351-60, 2005 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-15671566

RESUMO

PURPOSE: Replication-selective oncolytic adenoviruses hold promise for cancer treatment, but the predictive use of cell lines, dissociated tumor tissue, and animal models for efficacy against primary cancers are unclear. To further evaluate cytotoxicity and the potential for efficacy of replication-competent adenoviruses we therefore developed a novel methodology using primary human cancer specimens ex vivo; ovarian, colon, rectal, and breast carcinomas were included. EXPERIMENTAL DESIGN: Tissue culture conditions were developed to maintain viability of adenocarcinomas ex vivo for 48 hours postsurgery. Explants were infected by replication-competent (wild type 5 and E1A mutant dl922-947) and replication-defective (dl312) adenoviruses; early (E1A) and late (hexon) viral gene expression, alphav integrins, coxsackievirus and adenovirus receptor (CAR) and tissue viability were assessed by immunohistochemistry and histopathology. Viral replication was verified by replication assays on selected samples. RESULTS: Viral gene expression varied dramatically among cancer specimens (n = 41). With Ad5, hexon expression was high in 8 of 11 tested specimens, whereas E1A levels were detectable in 16 of 27 tumor explants. Viral gene expression, distribution, and cytopathic effects were greater postinfection with dl922-947. Specimens that supported early gene expression (E1A) also supported viral replication in 13 of 14 tested cases, determined by recovery of infectious units. As predicted, the replication-defective adenovirus dl312 was not associated with viral gene expression. CONCLUSIONS: Primary human tumor tissue remained viable when cultured ex vivo enabling evaluation of viral mutants in tissue with intact morphology. This assay may have great use in determining treatment-sensitive cancers and assess specific oncolytic mutants in individual cases.


Assuntos
Adenocarcinoma/patologia , Adenoviridae/genética , Regulação Viral da Expressão Gênica , Técnicas Genéticas , Neoplasias/metabolismo , Adenocarcinoma/metabolismo , Proteínas E1A de Adenovirus/biossíntese , Linhagem Celular Tumoral , Proteína de Membrana Semelhante a Receptor de Coxsackie e Adenovirus , Efeito Citopatogênico Viral , Feminino , Humanos , Imuno-Histoquímica , Integrina alfaV/metabolismo , Masculino , Mutação , Antígeno Nuclear de Célula em Proliferação/metabolismo , Receptores Virais/metabolismo , Fatores de Tempo , Células Tumorais Cultivadas , Replicação Viral
20.
Oncolytic Virother ; 5: 45-57, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27579296

RESUMO

Prostate cancer is a leading cause of cancer-related death and morbidity in men in the Western world. Tumor progression is dependent on functioning androgen receptor signaling, and initial administration of antiandrogens and hormone therapy (androgen-deprivation therapy) prevent growth and spread. Tumors frequently develop escape mechanisms to androgen-deprivation therapy and progress to castration-resistant late-stage metastatic disease that, in turn, inevitably leads to resistance to all current therapeutics, including chemotherapy. In spite of the recent development of more effective inhibitors of androgen-androgen receptor signaling such as enzalutamide and abiraterone, patient survival benefits are still limited. Oncolytic adenoviruses have proven efficacy in prostate cancer cells and cause regression of tumors in preclinical models of numerous drug-resistant cancers. Data from clinical trials demonstrate that adenoviral mutants have limited toxicity to normal tissues and are safe when administered to patients with various solid cancers, including prostate cancer. While efficacy in response to adenovirus administration alone is marginal, findings from early-phase trials targeting local-ized and metastatic prostate cancer suggest improved efficacy in combination with cytotoxic drugs and radiation therapy. Here, we review recent progress in the development of multimodal oncolytic adenoviruses as biological therapeutics to improve on tumor elimination in prostate cancer patients. These optimized mutants target cancer cells by several mechanisms including viral lysis and by expression of cytotoxic transgenes and immune-stimulatory factors that activate the host immune system to destroy both infected and noninfected prostate cancer cells. Additional modifications of the viral capsid proteins may support future systemic delivery of oncolytic adenoviruses.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA