Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
G3 (Bethesda) ; 14(3)2024 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-38124489

RESUMO

Mutations in the phosphatidylinositol glycan biosynthesis class A (PIGA) gene cause a rare, X-linked recessive congenital disorder of glycosylation. Phosphatidylinositol glycan biosynthesis class A congenital disorder of glycosylation (PIGA-CDG) is characterized by seizures, intellectual and developmental delay, and congenital malformations. The PIGA gene encodes an enzyme involved in the first step of glycosylphosphatidylinositol (GPI) anchor biosynthesis. There are over 100 GPI-anchored proteins that attach to the cell surface and are involved in cell signaling, immunity, and adhesion. Little is known about the pathophysiology of PIGA-CDG. Here, we describe the first Drosophila model of PIGA-CDG and demonstrate that loss of PIG-A function in Drosophila accurately models the human disease. As expected, complete loss of PIG-A function is larval lethal. Heterozygous null animals appear healthy but, when challenged, have a seizure phenotype similar to what is observed in patients. To identify the cell-type specific contributions to disease, we generated neuron- and glia-specific knockdown of PIG-A. Neuron-specific knockdown resulted in reduced lifespan and a number of neurological phenotypes but no seizure phenotype. Glia-knockdown also reduced lifespan and, notably, resulted in a very strong seizure phenotype. RNA sequencing analyses demonstrated that there are fundamentally different molecular processes that are disrupted when PIG-A function is eliminated in different cell types. In particular, loss of PIG-A in neurons resulted in upregulation of glycolysis, but loss of PIG-A in glia resulted in upregulation of protein translation machinery. Here, we demonstrate that Drosophila is a good model of PIGA-CDG and provide new data resources for future study of PIGA-CDG and other GPI anchor disorders.


Assuntos
Drosophila , Glicosilfosfatidilinositóis , Animais , Humanos , Glicosilação , Fosfatidilinositóis , Fenótipo , Convulsões/genética , Mutação
2.
bioRxiv ; 2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37961693

RESUMO

Mutations in the phosphatidylinositol glycan biosynthesis class A (PIGA) gene cause a rare, X-linked recessive congenital disorder of glycosylation (CDG). PIGA-CDG is characterized by seizures, intellectual and developmental delay, and congenital malformations. The PIGA gene encodes an enzyme involved in the first step of GPI anchor biosynthesis. There are over 100 GPI anchored proteins that attach to the cell surface and are involved in cell signaling, immunity, and adhesion. Little is known about the pathophysiology of PIGA-CDG. Here we describe the first Drosophila model of PIGA-CDG and demonstrate that loss of PIG-A function in Drosophila accurately models the human disease. As expected, complete loss of PIG-A function is larval lethal. Heterozygous null animals appear healthy, but when challenged, have a seizure phenotype similar to what is observed in patients. To identify the cell-type specific contributions to disease, we generated neuron- and glia-specific knockdown of PIG-A. Neuron-specific knockdown resulted in reduced lifespan and a number of neurological phenotypes, but no seizure phenotype. Glia-knockdown also reduced lifespan and, notably, resulted in a very strong seizure phenotype. RNAseq analyses demonstrated that there are fundamentally different molecular processes that are disrupted when PIG-A function is eliminated in different cell types. In particular, loss of PIG-A in neurons resulted in upregulation of glycolysis, but loss of PIG-A in glia resulted in upregulation of protein translation machinery. Here we demonstrate that Drosophila is a good model of PIGA-CDG and provide new data resources for future study of PIGA-CDG and other GPI anchor disorders.

3.
Behav Neurosci ; 136(4): 293-299, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35357863

RESUMO

Serotonin is an important modulator of feeding behavior across animal species. In invertebrates, much is known about the regulation of feeding in several model organisms, but comparative data are limited. We examined the modulation of feeding behavior in crayfish by administering serotonin and two serotonin receptor ligands, mianserin and 5-carboxamidotryptamine. We found that, compared to control injections, exogenous serotonin significantly reduced appetitive behaviors in response to a chemical food stimulant and reduced consumption when food was present. The two ligands also significantly reduced the amount of food consumed. However, they had no significant effects on appetitive feeding movements, suggesting that appetitive and consummatory feeding phases may be regulated by different serotonergic mechanisms. (PsycInfo Database Record (c) 2022 APA, all rights reserved).


Assuntos
Astacoidea , Serotonina , Animais , Comportamento Apetitivo , Comportamento Alimentar , Serotonina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA