Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 171
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Lancet ; 403(10437): 1660-1670, 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38583454

RESUMO

BACKGROUND: The RTS,S/AS01E malaria vaccine (RTS,S) was introduced by national immunisation programmes in Ghana, Kenya, and Malawi in 2019 in large-scale pilot schemes. We aimed to address questions about feasibility and impact, and to assess safety signals that had been observed in the phase 3 trial that included an excess of meningitis and cerebral malaria cases in RTS,S recipients, and the possibility of an excess of deaths among girls who received RTS,S than in controls, to inform decisions about wider use. METHODS: In this prospective evaluation, 158 geographical clusters (66 districts in Ghana; 46 sub-counties in Kenya; and 46 groups of immunisation clinic catchment areas in Malawi) were randomly assigned to early or delayed introduction of RTS,S, with three doses to be administered between the ages of 5 months and 9 months and a fourth dose at the age of approximately 2 years. Primary outcomes of the evaluation, planned over 4 years, were mortality from all causes except injury (impact), hospital admission with severe malaria (impact), hospital admission with meningitis or cerebral malaria (safety), deaths in girls compared with boys (safety), and vaccination coverage (feasibility). Mortality was monitored in children aged 1-59 months throughout the pilot areas. Surveillance for meningitis and severe malaria was established in eight sentinel hospitals in Ghana, six in Kenya, and four in Malawi. Vaccine uptake was measured in surveys of children aged 12-23 months about 18 months after vaccine introduction. We estimated that sufficient data would have accrued after 24 months to evaluate each of the safety signals and the impact on severe malaria in a pooled analysis of the data from the three countries. We estimated incidence rate ratios (IRRs) by comparing the ratio of the number of events in children age-eligible to have received at least one dose of the vaccine (for safety outcomes), or age-eligible to have received three doses (for impact outcomes), to that in non-eligible age groups in implementation areas with the equivalent ratio in comparison areas. To establish whether there was evidence of a difference between girls and boys in the vaccine's impact on mortality, the female-to-male mortality ratio in age groups eligible to receive the vaccine (relative to the ratio in non-eligible children) was compared between implementation and comparison areas. Preliminary findings contributed to WHO's recommendation in 2021 for widespread use of RTS,S in areas of moderate-to-high malaria transmission. FINDINGS: By April 30, 2021, 652 673 children had received at least one dose of RTS,S and 494 745 children had received three doses. Coverage of the first dose was 76% in Ghana, 79% in Kenya, and 73% in Malawi, and coverage of the third dose was 66% in Ghana, 62% in Kenya, and 62% in Malawi. 26 285 children aged 1-59 months were admitted to sentinel hospitals and 13 198 deaths were reported through mortality surveillance. Among children eligible to have received at least one dose of RTS,S, there was no evidence of an excess of meningitis or cerebral malaria cases in implementation areas compared with comparison areas (hospital admission with meningitis: IRR 0·63 [95% CI 0·22-1·79]; hospital admission with cerebral malaria: IRR 1·03 [95% CI 0·61-1·74]). The impact of RTS,S introduction on mortality was similar for girls and boys (relative mortality ratio 1·03 [95% CI 0·88-1·21]). Among children eligible for three vaccine doses, RTS,S introduction was associated with a 32% reduction (95% CI 5-51%) in hospital admission with severe malaria, and a 9% reduction (95% CI 0-18%) in all-cause mortality (excluding injury). INTERPRETATION: In the first 2 years of implementation of RTS,S, the three primary doses were effectively deployed through national immunisation programmes. There was no evidence of the safety signals that had been observed in the phase 3 trial, and introduction of the vaccine was associated with substantial reductions in hospital admission with severe malaria. Evaluation continues to assess the impact of four doses of RTS,S. FUNDING: Gavi, the Vaccine Alliance; the Global Fund to Fight AIDS, Tuberculosis and Malaria; and Unitaid.


Assuntos
Estudos de Viabilidade , Programas de Imunização , Vacinas Antimaláricas , Malária Cerebral , Humanos , Gana/epidemiologia , Malaui/epidemiologia , Lactente , Feminino , Quênia/epidemiologia , Vacinas Antimaláricas/administração & dosagem , Vacinas Antimaláricas/efeitos adversos , Masculino , Pré-Escolar , Malária Cerebral/epidemiologia , Malária Cerebral/mortalidade , Estudos Prospectivos , Malária Falciparum/prevenção & controle , Malária Falciparum/epidemiologia , Meningite/epidemiologia , Meningite/prevenção & controle
2.
Malar J ; 21(1): 265, 2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36100912

RESUMO

BACKGROUND: Over the last two decades, the scale-up of vector control and changes in the first-line anti-malarial, from chloroquine (CQ) to sulfadoxine-pyrimethamine (SP) and then to artemether-lumefantrine (AL), have resulted in significant decreases in malaria burden in western Kenya. This study evaluated the long-term effects of control interventions on molecular markers of Plasmodium falciparum drug resistance using parasites obtained from humans and mosquitoes at discrete time points. METHODS: Dried blood spot samples collected in 2012 and 2017 community surveys in Asembo, Kenya were genotyped by Sanger sequencing for markers associated with resistance to SP (Pfdhfr, Pfdhps), CQ, AQ, lumefantrine (Pfcrt, Pfmdr1) and artemisinin (Pfk13). Temporal trends in the prevalence of these markers, including data from 2012 to 2017 as well as published data from 1996, 2001, 2007 from same area, were analysed. The same markers from mosquito oocysts collected in 2012 were compared with results from human blood samples. RESULTS: The prevalence of SP dhfr/dhps quintuple mutant haplotype C50I51R59N108I164/S436G437E540A581A613 increased from 19.7% in 1996 to 86.0% in 2012, while an increase in the sextuple mutant haplotype C50I51R59N108I164/H436G437E540A581A613 containing Pfdhps-436H was found from 10.5% in 2012 to 34.6% in 2017. Resistant Pfcrt-76 T declined from 94.6% in 2007 to 18.3% in 2012 and 0.9% in 2017. Mutant Pfmdr1-86Y decreased across years from 74.8% in 1996 to zero in 2017, mutant Pfmdr1-184F and wild Pfmdr1-D1246 increased from 17.9% to 58.9% in 2007 to 55.9% and 90.1% in 2017, respectively. Pfmdr1 haplotype N86F184S1034N1042D1246 increased from 11.0% in 2007 to 49.6% in 2017. No resistant mutations in Pfk13 were found. Prevalence of Pfdhps-436H was lower while prevalence of Pfcrt-76 T was higher in mosquitoes than in human blood samples. CONCLUSION: This study showed an increased prevalence of dhfr/dhps resistant markers over 20 years with the emergence of Pfdhps-436H mutant a decade ago in Asembo. The reversal of Pfcrt from CQ-resistant to CQ-sensitive genotype occurred following 19 years of CQ withdrawal. No Pfk13 markers associated with artemisinin resistance were detected, but the increased haplotype of Pfmdr1 N86F184S1034N1042D1246 was observed. The differences in prevalence of Pfdhps-436H and Pfcrt-76 T SNPs between two hosts and the role of mosquitoes in the transmission of drug resistant parasites require further investigation.


Assuntos
Antimaláricos , Artemisininas , Culicidae , Malária Falciparum , Animais , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Artemeter/uso terapêutico , Combinação Arteméter e Lumefantrina/uso terapêutico , Artemisininas/uso terapêutico , Biomarcadores , Cloroquina/farmacologia , Resistência a Medicamentos/genética , Humanos , Quênia/epidemiologia , Malária Falciparum/parasitologia , Mosquitos Vetores , Oocistos , Plasmodium falciparum/genética , Tetra-Hidrofolato Desidrogenase/genética
3.
Clin Infect Dis ; 72(11): 1927-1935, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32324850

RESUMO

BACKGROUND: Global gains toward malaria elimination have been heterogeneous and have recently stalled. Interventions targeting afebrile malaria infections may be needed to address residual transmission. We studied the efficacy of repeated rounds of community-based mass testing and treatment (MTaT) on malaria infection prevalence in western Kenya. METHODS: Twenty clusters were randomly assigned to 3 rounds of MTaT per year for 2 years or control (standard of care for testing and treatment at public health facilities along with government-sponsored mass long-lasting insecticidal net [LLIN] distributions). During rounds, community health volunteers visited all households in intervention clusters and tested all consenting individuals with a rapid diagnostic test. Those positive were treated with dihydroartemisinin-piperaquine. Cross-sectional community infection prevalence surveys were performed in both study arms at baseline and each year after 3 rounds of MTaT. The primary outcome was the effect size of MTaT on parasite prevalence by microscopy between arms by year, adjusted for age, reported LLIN use, enhanced vegetative index, and socioeconomic status. RESULTS: Demographic and behavioral characteristics, including LLIN usage, were similar between arms at each survey. MTaT coverage across the 3 annual rounds ranged between 75.0% and 77.5% in year 1, and between 81.9% and 94.3% in year 2. The adjusted effect size of MTaT on the prevalence of parasitemia between arms was 0.93 (95% confidence interval [CI], .79-1.08) and 0.92 (95% CI, .76-1.10) after year 1 and year 2, respectively. CONCLUSIONS: MTaT performed 3 times per year over 2 years did not reduce malaria parasite prevalence in this high-transmission area. CLINICAL TRIALS REGISTRATION: NCT02987270.


Assuntos
Malária , Estudos Transversais , Humanos , Quênia/epidemiologia , Malária/diagnóstico , Malária/tratamento farmacológico , Malária/epidemiologia , Parasitemia/tratamento farmacológico , Parasitemia/epidemiologia , Prevalência
4.
Malar J ; 20(1): 92, 2021 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-33593329

RESUMO

BACKGROUND: Simultaneous infection with multiple malaria parasite strains is common in high transmission areas. Quantifying the number of strains per host, or the multiplicity of infection (MOI), provides additional parasite indices for assessing transmission levels but it is challenging to measure accurately with current tools. This paper presents new laboratory and analytical methods for estimating the MOI of Plasmodium falciparum. METHODS: Based on 24 single nucleotide polymorphisms (SNPs) previously identified as stable, unlinked targets across 12 of the 14 chromosomes within P. falciparum genome, three multiplex PCRs of short target regions and subsequent next generation sequencing (NGS) of the amplicons were developed. A bioinformatics pipeline including B4Screening pathway removed spurious amplicons to ensure consistent frequency calls at each SNP location, compiled amplicons by SNP site diversity, and performed algorithmic haplotype and strain reconstruction. The pipeline was validated by 108 samples generated from cultured-laboratory strain mixtures in different proportions and concentrations, with and without pre-amplification, and using whole blood and dried blood spots (DBS). The pipeline was applied to 273 smear-positive samples from surveys conducted in western Kenya, then providing results into StrainRecon Thresholding for Infection Multiplicity (STIM), a novel MOI estimator. RESULTS: The 24 barcode SNPs were successfully identified uniformly across the 12 chromosomes of P. falciparum in a sample using the pipeline. Pre-amplification and parasite concentration, while non-linearly associated with SNP read depth, did not influence the SNP frequency calls. Based on consistent SNP frequency calls at targeted locations, the algorithmic strain reconstruction for each laboratory-mixed sample had 98.5% accuracy in dominant strains. STIM detected up to 5 strains in field samples from western Kenya and showed declining MOI over time (q < 0.02), from 4.32 strains per infected person in 1996 to 4.01, 3.56 and 3.35 in 2001, 2007 and 2012, and a reduction in the proportion of samples with 5 strains from 57% in 1996 to 18% in 2012. CONCLUSION: The combined approach of new multiplex PCRs and NGS, the unique bioinformatics pipeline and STIM could identify 24 barcode SNPs of P. falciparum correctly and consistently. The methodology could be applied to field samples to reliably measure temporal changes in MOI.


Assuntos
Código de Barras de DNA Taxonômico , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Malária Falciparum/diagnóstico , Reação em Cadeia da Polimerase Multiplex/métodos , Plasmodium falciparum/isolamento & purificação , Malária Falciparum/parasitologia , Plasmodium falciparum/classificação
5.
Clin Infect Dis ; 71(4): 1063-1071, 2020 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-31555824

RESUMO

BACKGROUND: The whole Plasmodium falciparum sporozoite (PfSPZ) vaccine is being evaluated for malaria prevention. The vaccine is administered intravenously for maximal efficacy. Direct venous inoculation (DVI) with PfSPZ vaccine has been safe, tolerable, and feasible in adults, but safety data for children and infants are limited. METHODS: We conducted an age de-escalation, dose-escalation randomized controlled trial in Siaya County, western Kenya. Children and infants (aged 5-9 years, 13-59 months, and 5-12 months) were enrolled into 13 age-dose cohorts of 12 participants and randomized 2:1 to vaccine or normal saline placebo in escalating doses: 1.35 × 105, 2.7 × 105, 4.5 × 105, 9.0 × 105, and 1.8 × 106 PfSPZ, with the 2 highest doses given twice, 8 weeks apart. Solicited adverse events (AEs) were monitored for 8 days after vaccination, unsolicited AEs for 29 days, and serious AEs throughout the study. Blood taken prevaccination and 1 week postvaccination was tested for immunoglobulin G antibodies to P. falciparum circumsporozoite protein (PfCSP) using enzyme-linked immunosorbent assay. RESULTS: Rates of AEs were similar in vaccinees and controls for solicited (35.7% vs 41.5%) and unsolicited (83.9% vs 92.5%) AEs, respectively. No related grade 3 AEs, serious AEs, or grade 3 laboratory abnormalities occurred. Most (79.0%) vaccinations were administered by a single DVI. Among those in the 9.0 × 105 and 1.8 × 106 PfSPZ groups, 36 of 45 (80.0%) vaccinees and 4 of 21 (19.0%) placebo controls developed antibodies to PfCSP (P < .001). CONCLUSIONS: PfSPZ vaccine in doses as high as 1.8 × 106 can be administered to infants and children by DVI, and was safe, well tolerated, and immunogenic. CLINICAL TRIALS REGISTRATION: NCT02687373.


Assuntos
Vacinas Antimaláricas , Malária Falciparum , Adulto , Animais , Criança , Pré-Escolar , Método Duplo-Cego , Humanos , Imunogenicidade da Vacina , Lactente , Quênia , Vacinas Antimaláricas/efeitos adversos , Malária Falciparum/prevenção & controle , Plasmodium falciparum , Esporozoítos , Vacinação
7.
N Engl J Med ; 386(22): 2138, 2022 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-35648707
10.
J Gen Intern Med ; 35(7): 2076-2083, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32128689

RESUMO

BACKGROUND: Despite guidelines recommending not to continue cancer screening for adults > 75 years old, especially those with short life expectancy, primary care providers (PCPs) feel ill-prepared to discuss stopping screening with older adults. OBJECTIVE: To develop scripts and strategies for PCPs to use to discuss stopping cancer screening with adults > 75. DESIGN: Qualitative study using semi-structured interview guides to conduct individual interviews with adults > 75 years old and focus groups and/or individual interviews with PCPs. PARTICIPANTS: Forty-five PCPs and 30 patients > 75 years old participated from six community or academic Boston-area primary care practices. APPROACH: Participants were asked their thoughts on discussions around stopping cancer screening and to provide feedback on scripts that were iteratively revised for PCPs to use when discussing stopping mammography and colorectal cancer (CRC) screening. RESULTS: Twenty-one (47%) of the 45 PCPs were community based. Nineteen (63%) of the 30 patients were female, and 13 (43%) were non-Hispanic white. PCPs reported using different approaches to discuss stopping cancer screening depending on the clinical scenario. PCPs noted it was easier to discuss stopping screening when the harms of screening clearly outweighed the benefits for a patient. In these cases, PCPs felt more comfortable being more directive. When the balance between the benefits and harms of screening was less clear, PCPs endorsed shared decision-making but found this approach more challenging because it was difficult to explain why to stop screening. While patients were generally enthusiastic about screening, they also reported not wanting to undergo tests of little value and said they would stop screening if their PCP recommended it. By the end of participant interviews, no further edits were recommended to the scripts. CONCLUSIONS: To increase PCP comfort and capability to discuss stopping cancer screening with older adults, we developed scripts and strategies that PCPs may use for discussing stopping cancer screening.


Assuntos
Neoplasias Colorretais , Detecção Precoce de Câncer , Idoso , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/prevenção & controle , Feminino , Humanos , Masculino , Mamografia , Programas de Rastreamento , Pesquisa Qualitativa
11.
Malar J ; 18(1): 247, 2019 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-31337411

RESUMO

BACKGROUND: Parasite prevalence has been used widely as a measure of malaria transmission, especially in malaria endemic areas. However, its contribution and relationship to malaria mortality across different age groups has not been well investigated. Previous studies in a health and demographic surveillance systems (HDSS) platform in western Kenya quantified the contribution of incidence and entomological inoculation rates (EIR) to mortality. The study assessed the relationship between outcomes of malaria parasitaemia surveys and mortality across age groups. METHODS: Parasitological data from annual cross-sectional surveys from the Kisumu HDSS between 2007 and 2015 were used to determine malaria parasite prevalence (PP) and clinical malaria (parasites plus reported fever within 24 h or temperature above 37.5 °C). Household surveys and verbal autopsy (VA) were used to obtain data on all-cause and malaria-specific mortality. Bayesian negative binomial geo-statistical regression models were used to investigate the association of PP/clinical malaria with mortality across different age groups. Estimates based on yearly data were compared with those from aggregated data over 4 to 5-year periods, which is the typical period that mortality data are available from national demographic and health surveys. RESULTS: Using 5-year aggregated data, associations were established between parasite prevalence and malaria-specific mortality in the whole population (RRmalaria = 1.66; 95% Bayesian Credible Intervals: 1.07-2.54) and children 1-4 years (RRmalaria = 2.29; 1.17-4.29). While clinical malaria was associated with both all-cause and malaria-specific mortality in combined ages (RRall-cause = 1.32; 1.01-1.74); (RRmalaria = 2.50; 1.27-4.81), children 1-4 years (RRall-cause = 1.89; 1.00-3.51); (RRmalaria = 3.37; 1.23-8.93) and in older children 5-14 years (RRall-cause = 3.94; 1.34-11.10); (RRmalaria = 7.56; 1.20-39.54), no association was found among neonates, adults (15-59 years) and the elderly (60+ years). Distance to health facilities, socioeconomic status, elevation and survey year were important factors for all-cause and malaria-specific mortality. CONCLUSION: Malaria parasitaemia from cross-sectional surveys was associated with mortality across age groups over 4 to 5 year periods with clinical malaria more strongly associated with mortality than parasite prevalence. This effect was stronger in children 5-14 years compared to other age-groups. Further analyses of data from other HDSS sites or similar platforms would be useful in investigating the relationship between malaria and mortality across different endemicity levels.


Assuntos
Malária/epidemiologia , Parasitemia/epidemiologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Teorema de Bayes , Criança , Pré-Escolar , Estudos Transversais , Humanos , Incidência , Lactente , Recém-Nascido , Quênia/epidemiologia , Malária/mortalidade , Malária/transmissão , Pessoa de Meia-Idade , Prevalência , Adulto Jovem
12.
Malar J ; 18(1): 255, 2019 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-31357997

RESUMO

BACKGROUND: Malaria transmission is high in western Kenya and the asymptomatic infected population plays a significant role in driving the transmission. Mathematical modelling and simulation programs suggest that interventions targeting asymptomatic infections through mass testing and treatment (MTaT) or mass drug administration (MDA) have the potential to reduce malaria transmission when combined with existing interventions. OBJECTIVE: This paper describes the study site, capacity development efforts required, and lessons learned for implementing a multi-year community-based cluster-randomized controlled trial to evaluate the impact of MTaT for malaria transmission reduction in an area of high transmission in western Kenya. METHODS: The study partnered with Kenya's Ministry of Health (MOH) and other organizations on community sensitization and engagement to mobilize, train and deploy community health volunteers (CHVs) to deliver MTaT in the community. Within the health facilities, the study availed staff, medical and laboratory supplies and strengthened health information management system to monitor progress and evaluate impact of intervention. RESULTS: More than 80 Kenya MOH CHVs, 13 clinical officers, field workers, data and logistical staff were trained to carry out MTaT three times a year for 2 years in a population of approximately 90,000 individuals. A supply chain management was adapted to meet daily demands for large volumes of commodities despite the limitation of few MOH facilities having ideal storage conditions. Modern technology was adapted more to meet the needs of the high daily volume of collected data. CONCLUSIONS: In resource-constrained settings, large interventions require capacity building and logistical planning. This study found that investing in relationships with the communities, local governments, and other partners, and identifying and equipping the appropriate staff with the skills and technology to perform tasks are important factors for success in delivering an intervention like MTaT.


Assuntos
Antimaláricos/uso terapêutico , Participação da Comunidade/métodos , Malária/prevenção & controle , Administração Massiva de Medicamentos/métodos , Programas de Rastreamento/métodos , Agentes Comunitários de Saúde/estatística & dados numéricos , Quênia , Voluntários/estatística & dados numéricos
16.
Malar J ; 17(1): 37, 2018 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-29347942

RESUMO

BACKGROUND: Malaria transmission reduction is a goal of many malaria control programmes. Little is known of how much mortality can be reduced by specific reductions in transmission. Verbal autopsy (VA) is widely used for estimating malaria specific mortality rates, but does not reliably distinguish malaria from other febrile illnesses. Overall malaria attributable mortality includes both direct and indirect deaths. It is unclear what proportion of the deaths averted by reducing malaria transmission are classified as malaria in VA. METHODS: Both all-cause, and cause-specific mortality reported by VA for children under 5 years of age, were assembled from the KEMRI/CDC health and demographic surveillance system in Siaya county, rural Western Kenya for the years 2002-2004. These were linked to household-specific estimates of the Plasmodium falciparum entomological inoculation rate (EIR) based on high resolution spatio-temporal geostatistical modelling of entomological data. All-cause and malaria specific mortality (by VA), were analysed in relation to EIR, insecticide-treated net use (ITN), socioeconomic status (SES) and parameters describing space-time correlation. Time at risk for each child was analysed using Bayesian geostatistical Cox proportional hazard models, with time-dependent covariates. The outputs were used to estimate the diagnostic performance of VA in measuring mortality that can be attributed to malaria exposure. RESULTS: The overall under-five mortality rate was 80 per 1000 person-years during the study period. Eighty-one percent of the total deaths were assigned causes of death by VA, with malaria assigned as the main cause of death except in the neonatal period. Although no trend was observed in malaria-specific mortality assessed by VA, ITN use was associated with reduced all-cause mortality in infants (hazard ratio 0.15, 95% CI 0.02, 0.63) and the EIR was strongly associated with both all-cause and malaria-specific mortality. 48.2% of the deaths could be attributed to malaria by analysing the exposure-response relationship, though only 20.5% of VAs assigned malaria as the cause and the sensitivity of VAs was estimated to be only 26%. Although VAs assigned some deaths to malaria even in areas where there was estimated to be no exposure, the specificity of the VAs was estimated to be 85%. CONCLUSION: Interventions that reduce P. falciparum transmission intensity will not only significantly reduce malaria-diagnosed mortality, but also mortality assigned to other causes in under-5 year old children in endemic areas. In this setting, the VA tool based on clinician review substantially underestimates the number of deaths that could be averted by reducing malaria exposure in childhood, but has a reasonably high specificity. This suggests that malaria transmission-reducing interventions such as ITNs can potentially reduce overall child mortality by as much as twice the total direct malaria burden estimated from VAs.


Assuntos
Autopsia/métodos , Mortalidade da Criança , Mortalidade Infantil , Malária Falciparum/mortalidade , Animais , Anopheles/parasitologia , Teorema de Bayes , Causas de Morte , Pré-Escolar , Humanos , Lactente , Recém-Nascido , Quênia/epidemiologia , Plasmodium falciparum , População Rural
18.
Malar J ; 16(1): 240, 2017 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-28592250

RESUMO

Most human Plasmodium infections in western Kenya are asymptomatic and are believed to contribute importantly to malaria transmission. Elimination of asymptomatic infections requires active treatment approaches, such as mass testing and treatment (MTaT) or mass drug administration (MDA), as infected persons do not seek care for their infection. Evaluations of community-based approaches that are designed to reduce malaria transmission require careful attention to study design to ensure that important effects can be measured accurately. This manuscript describes the study design and methodology of a cluster-randomized controlled trial to evaluate a MTaT approach for malaria transmission reduction in an area of high malaria transmission. Ten health facilities in western Kenya were purposively selected for inclusion. The communities within 3 km of each health facility were divided into three clusters of approximately equal population size. Two clusters around each health facility were randomly assigned to the control arm, and one to the intervention arm. Three times per year for 2 years, after the long and short rains, and again before the long rains, teams of community health volunteers visited every household within the intervention arm, tested all consenting individuals with malaria rapid diagnostic tests, and treated all positive individuals with an effective anti-malarial. The effect of mass testing and treatment on malaria transmission was measured through population-based longitudinal cohorts, outpatient visits for clinical malaria, periodic population-based cross-sectional surveys, and entomological indices.


Assuntos
Antimaláricos/uso terapêutico , Malária/diagnóstico , Malária/tratamento farmacológico , Projetos de Pesquisa , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , Análise por Conglomerados , Estudos Transversais , Testes Diagnósticos de Rotina , Feminino , Humanos , Lactente , Quênia , Estudos Longitudinais , Malária/prevenção & controle , Masculino , Programas de Rastreamento , Pessoa de Meia-Idade , Ensaios Clínicos Controlados Aleatórios como Assunto , Adulto Jovem
20.
Malar J ; 15: 221, 2016 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-27091142

RESUMO

BACKGROUND: Coverage with malaria in pregnancy interventions remains unacceptably low. Implementation research is needed to identify and quantify the bottlenecks for the delivery and use of these life-saving interventions through antenatal clinics (ANC). METHODS: A cross-sectional study was carried out in ANC across nine health facilities in western Kenya. Data were collected for an individual ANC visit through structured observations and exit interviews with the same ANC clients. The cumulative and intermediate systems effectiveness for the delivery of intermittent preventive treatment (IPTp) and insecticide-treated nets (ITNs) to eligible pregnant women on this one specific visit to ANC were estimated. RESULTS: Overall the ANC systems effectiveness for delivering malaria in pregnancy interventions was suboptimal. Only 40 and 53 % of eligible women received IPTp by directly observed therapy as per policy in hospitals and health centres/dispensaries respectively. The overall systems effectiveness for the receipt of IPTp disregarding directly observed therapy was 62 and 72 % for hospitals and lower level health facilities, respectively. The overall systems effectiveness for ITNs for first ANC visit was 63 and 67 % for hospitals and lower level facilities, respectively. CONCLUSION: This study found that delivery of IPTp and ITNs through ANC was ineffective and more so for higher-level facilities. This illustrates missed opportunities and provider level bottlenecks to the scale up and use of interventions to control malaria in pregnancy delivered through ANC. The high level of clustering within health facilities suggest that future studies should assess the feasibility of implementing interventions to improve systems effectiveness tailored to the health facility level.


Assuntos
Antimaláricos/administração & dosagem , Mosquiteiros Tratados com Inseticida/estatística & dados numéricos , Malária/prevenção & controle , Complicações Parasitárias na Gravidez/prevenção & controle , Adolescente , Adulto , Instituições de Assistência Ambulatorial/estatística & dados numéricos , Criança , Estudos Transversais , Feminino , Humanos , Quênia , Malária/tratamento farmacológico , Pessoa de Meia-Idade , Gravidez , Complicações Parasitárias na Gravidez/tratamento farmacológico , Cuidado Pré-Natal/estatística & dados numéricos , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA