Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 125
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Emerg Infect Dis ; 28(2): 425-428, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35076377

RESUMO

Mosquito control is essential to reduce vectorborne disease risk. We surveyed residents in Harris, Tarrant, and Hidalgo Counties, Texas, USA, to estimate willingness-to-pay for mosquito control and acceptance of control methods. Results show an unmet demand for expanded mosquito control that could be funded through local taxes or fees.


Assuntos
Controle de Mosquitos , Doenças Transmitidas por Vetores , Humanos , Mosquitos Vetores , Texas
3.
Malar J ; 21(1): 244, 2022 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-35996189

RESUMO

BACKGROUND: Parasites are recognized for their ability to modify host physiology and behaviours in ways that increase parasite fitness. Protozoan parasites of the genus Plasmodium are a group of widespread vector-borne parasites of vertebrates, causing disease to a wide range of hosts, but most notably to human and avian hosts. METHODS: The hypothesis that infection with the avian malaria, Plasmodium relictum (GRW4 lineage) impacts flight activity in one of their natural vectors, Culex quinquefasciatus, was tested using both parasites and mosquitoes colonized from local populations in East-Central Texas, USA. Groups of Cx. quinquefasciatus were allowed to feed directly on canaries with active P. relictum infections and control canaries with no P. relictum exposure history. Additionally, how P. relictum sporozoite invasion of mosquito salivary glands impacts mosquito flight activity behaviour was tested using a Locomotor Activity Monitor for both control and infected females. Generalized linear mixed models were used to evaluate the influence of infection status on the response variables of flight activity (continuous) and probability of flight occurring (binomial). RESULTS: Infection status was a significant predictor of flight activity and flight probability and interactions between infection status and experimental period of infection as well as infection status and dusk were statistically significant predictors of flight activity. Plasmodium relictum infected mosquitoes had a mean flight activity of 3.10 and control mosquitoes had an overall mean flight activity of 3.13. DISCUSSION: Based on these results, avian malaria parasites increase the flight activity of these mosquitoes at hours known for peak host-seeking behaviour but decrease overall diel activity. CONCLUSION: Although the ramifications of this behavioural change for P. relictum transmission are unclear, these results provide additional empirical evidence suggesting that avian malaria can influence mosquito behaviour and modulate transmission potential.


Assuntos
Culex , Culicidae , Malária Aviária , Malária , Plasmodium , Animais , Culex/fisiologia , Culicidae/parasitologia , Feminino , Humanos , Malária Aviária/parasitologia , Mosquitos Vetores
4.
BMC Public Health ; 22(1): 1176, 2022 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-35698216

RESUMO

Mosquitoes and the diseases they transmit continue to place millions of people at risk of infection around the world. Novel methods of vector control are being developed to provide public health officials with the necessary tools to prevent disease transmission and reduce local mosquito populations. However, these methods will require public acceptance for a sustainable approach and evaluations at local settings. We present our efforts in community engagement carried out in colonias of the Lower Rio Grande Valley in south Texas for mosquito surveillance, control, and ecological projects. Along the US-Mexico border the term colonia refers to impoverished communities that are usually inhabited by families of Hispanic heritage. The different engagements were carried out from September 2016 to February 2019; during this time, we had three distinct phases for community engagement. In Phase 1 we show the initial approach to the colonias in which we assessed security and willingness to participate; in Phase 2 we carried out the first recruitment procedure involving community meetings and house-to-house recruitment; and in Phase 3 we conducted a modified recruitment procedure based on community members' input. Our findings show that incorporating community members in the development of communication materials and following their suggestions for engagement allowed us to generate culturally sensitive recruitment materials and to better understand the social relationships and power dynamics within these communities. We were able to effectively reach a larger portion of the community and decrease the dropout rate of participants. Progress gained with building trust in the communities allowed us to convey participant risks and benefits of collaborating with our research projects. Community engagement should be viewed as a key component of any local vector control program as well as for any scientific research project related to vector control. Even in the face of budgetary constraints, small efforts in community engagement go a long way.


Assuntos
Hispânico ou Latino , Controle de Mosquitos , Animais , Humanos , México , Texas/epidemiologia
5.
Parasitol Res ; 120(7): 2343-2350, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34110501

RESUMO

Arthropod vectors are frequently exposed to a diverse assemblage of parasites, but the consequence of these infections on their biology and behavior are poorly understood. We experimentally evaluated whether the ingestion of a common protozoan parasite of avian hosts (Haemoproteus spp.; Haemosporida: Haemoproteidae) impacted the survivorship of Culex quinquefasciatus (Say) (Diptera: Culicidae). Blood was collected from wild northern cardinals (Cardinalis cardinalis) in College Station, Texas, and screened for the presence of Haemoproteus spp. parasites using microscopic and molecular methods. Experimental groups of Cx. quinquefasciatus mosquitoes were offered Haemoproteus-positive cardinal blood through an artificial feeding apparatus, while control groups received Haemoproteus-negative cardinal blood or domestic canary (Serinus canaria domestica) blood. Culex quinquefasciatus mosquitoes exposed to Haemoproteus infected cardinal blood survived significantly fewer days than mosquitoes that ingested Haemoproteus-negative cardinal blood. The survival of mosquitoes fed on positive cardinal blood had a median survival time of 18 days post-exposure and the survival of mosquitoes fed on negative cardinal blood exceeded 50% across the 30 day observation period. Additionally, mosquitoes that fed on canary controls survived significantly fewer days than cardinal negative controls, with canary control mosquitoes having a median survival time of 17 days. This study further supports prior observations that Haemoproteus parasites can be pathogenic to bird-biting mosquitoes, and suggests that Haemoproteus parasites may indirectly suppress the transmission of co-circulating vector-borne pathogens by modulating vector survivorship. Our results also suggest that even in the absence of parasite infection, bloodmeals from different bird species can influence mosquito survivorship.


Assuntos
Culex/fisiologia , Culex/parasitologia , Haemosporida/fisiologia , Mosquitos Vetores/fisiologia , Mosquitos Vetores/parasitologia , Passeriformes/parasitologia , Animais , Doenças das Aves/parasitologia , Doenças das Aves/transmissão , Canários/sangue , Canários/parasitologia , DNA de Protozoário/sangue , Passeriformes/sangue , Reação em Cadeia da Polimerase/veterinária , Probabilidade , Modelos de Riscos Proporcionais , Infecções Protozoárias em Animais/parasitologia , Infecções Protozoárias em Animais/transmissão , Texas
6.
Arch Virol ; 165(8): 1769-1776, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32440701

RESUMO

South Texas has experienced local transmission of Zika virus and of other mosquito-borne viruses such as chikungunya virus and dengue virus in the last decades. Using a mosquito surveillance program in the Lower Rio Grande Valley (LRGV) and San Antonio, TX, from 2016 to 2018, we detected the presence of an insect-specific virus, cell fusing agent virus (CFAV), in the Aedes aegypti mosquito population. We tested 6,326 females and 1,249 males from the LRGV and 659 females from San Antonio for CFAV by RT-PCR using specific primers. Infection rates varied from 0 to 261 per 1,000 mosquitoes in the LRGV and 115 to 208 per 1,000 in San Antonio depending on the month of collection. Infection rates per 1,000 individuals appeared higher in females collected from BG Sentinel 2 traps compared to Autocidal Gravid Ovitraps, but the ratio of the percentage of infected pools did not differ by trap type. The natural viral load in individual males ranged from 1.25 x 102 to 5.50 x 106 RNA copies and in unfed females from 5.42 x 103 to 8.70 x 106 RNA copies. Gravid females were found to harbor fewer viral particles than males and unfed females.


Assuntos
Aedes/virologia , Flavivirus/genética , Animais , Feminino , Vírus de Insetos/genética , Masculino , Mosquitos Vetores/genética , RNA Viral/genética , Texas , Carga Viral/genética
7.
Appl Environ Microbiol ; 85(19)2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31350319

RESUMO

Several mosquito-borne diseases affecting humans are emerging or reemerging in the United States. The early detection of pathogens in mosquito populations is essential to prevent and control the spread of these diseases. In this study, we tested the potential applicability of the Lawrence Livermore Microbial Detection Array (LLMDA) to enhance biosurveillance by detecting microbes present in Aedes aegypti, Aedes albopictus, and Culex mosquitoes, which are major vector species globally, including in Texas. The sensitivity and reproducibility of the LLMDA were tested in mosquito samples spiked with different concentrations of dengue virus (DENV), revealing a detection limit of >100 but <1,000 PFU/ml. Additionally, field-collected mosquitoes from Chicago, IL, and College Station, TX, of known infection status (West Nile virus [WNV] and Culex flavivirus [CxFLAV] positive) were tested on the LLMDA to confirm its efficiency. Mosquito field samples of unknown infection status, collected in San Antonio, TX, and the Lower Rio Grande Valley (LRGV), TX, were run on the LLMDA and further confirmed by PCR or quantitative PCR (qPCR). The analysis of the field samples with the LLMDA revealed the presence of cell-fusing agent virus (CFAV) in A. aegypti populations. Wolbachia was also detected in several of the field samples (A. albopictus and Culex spp.) by the LLMDA. Our findings demonstrated that the LLMDA can be used to detect multiple arboviruses of public health importance, including viruses that belong to the Flavivirus, Alphavirus, and Orthobunyavirus genera. Additionally, insect-specific viruses and bacteria were also detected in field-collected mosquitoes. Another strength of this array is its ability to detect multiple viruses in the same mosquito pool, allowing for the detection of cocirculating pathogens in an area and the identification of potential ecological associations between different viruses. This array can aid in the biosurveillance of mosquito-borne viruses circulating in specific geographical areas.IMPORTANCE Viruses associated with mosquitoes have made a large impact on public and veterinary health. In the United States, several viruses, including WNV, DENV, and chikungunya virus (CHIKV), are responsible for human disease. From 2015 to 2018, imported Zika cases were reported in the United States, and in 2016 to 2017, local Zika transmission occurred in the states of Texas and Florida. With globalization and a changing climate, the frequency of outbreaks linked to arboviruses will increase, revealing a need to better detect viruses in vector populations. With the capacity of the LLMDA to detect viruses, bacteria, and fungi, this study highlights its ability to broadly screen field-collected mosquitoes and contribute to the surveillance and management of arboviral diseases.


Assuntos
Arbovírus/genética , Vírus de Insetos/genética , Vírus de Insetos/isolamento & purificação , Mosquitos Vetores/virologia , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Aedes/virologia , Animais , Infecções por Arbovirus/prevenção & controle , Arbovírus/isolamento & purificação , Culex/virologia , Vírus da Dengue/genética , Vírus da Dengue/isolamento & purificação , Feminino , Flavivirus/genética , Flavivirus/isolamento & purificação , Limite de Detecção , Análise de Sequência com Séries de Oligonucleotídeos/instrumentação , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Texas , Wolbachia/virologia
8.
Exp Appl Acarol ; 79(1): 87-97, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31552562

RESUMO

Few studies have documented the indirect effects of predators on tick behavior. We conducted behavioral assays in the laboratory to quantify the effects of a highly abundant predator, the red imported fire ant (Solenopsis invicta), on three species of ticks endemic to the southern USA: the lone star tick (Amblyomma americanum), the Gulf Coast tick (A. maculatum), and the Cayenne tick (A. mixtum). We documented ant aggression toward ticks (biting, carrying, and stinging) and determined the effects of ants on tick activity. Ticks were significantly less active in the presence of fire ants, and tick activity was negatively associated with ant aggression, but in many cases the effects of fire ants on ticks varied by tick species, stage, and engorgement status. For example, fire ants took half as long (~ 62 s) to become aggressive toward unfed A. americanum adults compared with unfed A. maculatum, and only ~ 8 s to become aggressive toward engorged A. maculatum nymphs. Correspondingly, the activity of unfed A. americanum adults and engorged A. maculatum nymphs was reduced by 67 and 93%, respectively, in the presence of fire ants. This reduction in tick activity translated to less questing by unfed ticks and less time spent walking by engorged nymphs. Our results suggest that fire ants may have important non-consumptive effects on ticks and demonstrate the importance of measuring the indirect effects of predators on tick behavior.


Assuntos
Formigas/fisiologia , Ixodidae/fisiologia , Agressão , Animais , Ixodidae/crescimento & desenvolvimento , Atividade Motora , Ninfa/crescimento & desenvolvimento , Ninfa/fisiologia , Especificidade da Espécie
9.
J Insect Sci ; 18(2)2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29718496

RESUMO

Arthropod-related morbidity and mortality represent a major threat to human and animal health. An important component of reducing vector-borne diseases and injuries is training the next generation of medical entomologists and educating the public in proper identification of arthropods of medical importance. One challenge of student training and public outreach is achieving a safe mounting technique that allows observation of morphological characteristics, while minimizing damage to specimens that are often difficult to replace. Although resin-embedded specimens are available from commercial retailers, there is a need for a published protocol that allows entomologists to economically create high-quality resin-embedded arthropods for use in teaching and outreach activities. We developed a detailed protocol using readily obtained equipment and supplies for creating resin-embedded arthropods of many species for use in teaching and outreach activities.


Assuntos
Vetores Artrópodes , Inclusão em Plástico/métodos , Animais
10.
Mol Phylogenet Evol ; 109: 73-79, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28012954

RESUMO

The unicellular blood parasites in the order Haemosporida are highly diverse, infect many vertebrates, are responsible for a large disease burden among humans and animals, and have reemerged as an important model system to understand the evolutionary and ecological dynamics of host-parasite interactions. The phylogenetics and systematics of Haemosporida are limited by poor sampling of different vertebrate host taxa. We surveyed the Haemosporida of wild whooping cranes (Grus americana) and sandhill cranes (Grus canadensis) (Aves: Gruiformes) using a combination of morphological and molecular approaches. We identified Haemoproteus antigonis in blood smears based on published morphological descriptions. Phylogenetic analysis based on partial cytochrome b (cytb) and cytochrome oxidase (coI) sequences placed H. antigonis parasites in a novel clade, distinct from all avian Haemosporida genera for which cytb and/or coI sequences are available. Molecular clock and divergence estimates suggest this crane clade may represent a new genus. This is the first molecular description of H. antigonis and the first report of H. antigonis in wild whooping cranes, an endangered bird in North America. Further sampling of Haemosporida, especially from hosts of the Gruiformes and other poorly sampled orders, will help to resolve the relationship of the H. antigonis clade to other avian Haemosporida genera. Our study highlights the potential of sampling neglected host species to discover novel lineages of diverse parasite groups.


Assuntos
Doenças das Aves/parasitologia , Haemosporida/classificação , Infecções Protozoárias em Animais/parasitologia , Animais , Evolução Biológica , Aves/parasitologia , Citocromos b/genética , Eritrócitos/parasitologia , Feminino , Especiação Genética , Haemosporida/genética , Masculino , América do Norte , Filogenia
11.
Parasitology ; 144(5): 629-640, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27938437

RESUMO

The population growth of endangered whooping cranes (Grus americana) is not consistent with species recovery goals, and the impact of parasite infection on whooping crane populations is largely unknown. Disease ecology and epidemiology research of endangered species is often hindered by limited ability to conduct invasive sampling on the target taxa. Accordingly, we hypothesized that sandhill cranes (Grus canadensis) would be a useful surrogate species to investigate the health impacts of Haemosporida infection in whooping cranes. Our goal was to compare the prevalence and diversity of Haemosporida infection between whooping cranes and sandhill cranes. We detected an overall infection prevalence of 83·6% (n = 61) in whooping cranes and 59·6% (n = 47) and 63·6 (n = 22) in two sympatric sandhill crane populations captured in Texas. Prevalence was significantly lower in allopatric sandhill cranes captured in New Mexico (12·1%, n = 33). Haemoproteus antigonis was the most abundant haemoparasite in cranes, present in 57·4% of whooping cranes and 39·2% of sandhill cranes; Plasmodium and Leucocytozoon were present at significantly lower levels. The high prevalence of Haemosporida in whooping cranes and sympatric sandhill cranes, with shared parasite lineages between the two species, supports sandhill cranes as a surrogate species for understanding health threats to endangered whooping cranes.


Assuntos
Doenças das Aves/epidemiologia , Haemosporida/isolamento & purificação , Infecções Protozoárias em Animais/epidemiologia , Animais , Doenças das Aves/parasitologia , Aves , Espécies em Perigo de Extinção , Feminino , Geografia , Haemosporida/genética , Masculino , New Mexico/epidemiologia , Filogenia , Prevalência , Infecções Protozoárias em Animais/parasitologia , Simpatria , Texas/epidemiologia
12.
Biol Lett ; 12(9)2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27651533

RESUMO

Invasive species may impact pathogen transmission by altering the distributions and interactions among native vertebrate reservoir hosts and arthropod vectors. Here, we examined the direct and indirect effects of the red imported fire ant (Solenopsis invicta) on the native tick, small mammal and pathogen community in southeast Texas. Using a replicated large-scale field manipulation study, we show that small mammals were more abundant on treatment plots where S. invicta populations were experimentally reduced. Our analysis of ticks on small mammal hosts demonstrated a threefold increase in the ticks caught per unit effort on treatment relative to control plots, and elevated tick loads (a 27-fold increase) on one common rodent species. We detected only one known human pathogen (Rickettsia parkeri), present in 1.4% of larvae and 6.7% of nymph on-host Amblyomma maculatum samples but with no significant difference between treatment and control plots. Given that host and vector population dynamics are key drivers of pathogen transmission, the reduced small mammal and tick abundance associated with S. invicta may alter pathogen transmission dynamics over broader spatial scales.


Assuntos
Formigas , Mamíferos/parasitologia , Rickettsia/isolamento & purificação , Carrapatos/microbiologia , Animais , Vetores Artrópodes , Ecossistema , Inseticidas , Espécies Introduzidas , Larva/microbiologia , Ninfa/microbiologia , Dinâmica Populacional , Texas , Carrapatos/crescimento & desenvolvimento
13.
Oecologia ; 182(4): 947-959, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27670413

RESUMO

Birds play a central role in the ecology of tick-borne pathogens. They expand tick populations and pathogens across vast distances and serve as reservoirs that maintain and amplify transmission locally. Research into the role of birds for supporting ticks and tick-borne pathogens has largely been descriptive and focused in small areas. To expand inference beyond these studies, we conducted a quantitative review at the scale of North America to identify avian life history correlates of tick infestation and pathogen prevalence, calculate species-level indices of importance for carrying ticks, and identify research gaps limiting understanding of tick-borne pathogen transmission. Across studies, 78 of 162 bird species harbored ticks, yielding an infestation prevalence of 1981 of 38,929 birds (5.1 %). Avian foraging and migratory strategies interacted to influence infestation. Ground-foraging species, especially non-migratory ground foragers, were disproportionately likely to have high prevalence and intensity of tick infestation. Studies largely focused on Borrelia burgdorferi, the agent of Lyme disease, and non-migratory ground foragers were especially likely to carry B. burgdorferi-infected ticks, a finding that highlights the potential importance of resident birds in local pathogen transmission. Based on infestation indices, all "super-carrier" bird species were passerines. Vast interior areas of North America, many bird and tick species, and most tick-borne pathogens, remain understudied, and research is needed to address these gaps. More studies are needed that quantify tick host preferences, host competence, and spatiotemporal variation in pathogen prevalence and vector and host abundance. This information is crucial for predicting pathogen transmission dynamics under future global change.


Assuntos
Borrelia burgdorferi , Carrapatos , Animais , Aves , Doença de Lyme , Infestações por Carrapato
14.
Parasitology ; 142(13): 1612-20, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26394656

RESUMO

The prevalence of vector-borne parasites varies greatly across host species, and this heterogeneity has been used to relate infectious disease susceptibility to host species traits. However, a few empirical studies have directly associated vector-borne parasite prevalence with exposure to vectors across hosts. Here, we use DNA sequencing of blood meals to estimate utilization of different avian host species by Culex mosquitoes, and relate utilization by these malaria vectors to avian Plasmodium prevalence. We found that avian host species that are highly utilized as hosts by avian malaria vectors are significantly more likely to have Plasmodium infections. However, the effect was not consistent among individual Plasmodium taxa. Exposure to vector bites may therefore influence the relative number of all avian Plasmodium infections among host species, while other processes, such as parasite competition and host-parasite coevolution, delimit the host distributions of individual Plasmodium species. We demonstrate that links between avian malaria susceptibility and host traits can be conditioned by patterns of exposure to vectors. Linking vector utilization rates to host traits may be a key area of future research to understand mechanisms that produce variation in the prevalence of vector-borne pathogens among host species.


Assuntos
Culex/parasitologia , Insetos Vetores/parasitologia , Malária Aviária/epidemiologia , Passeriformes/parasitologia , Animais , Aves , Columbidae/parasitologia , Modelos Lineares , Malária Aviária/transmissão , Plasmodium/classificação , Plasmodium/isolamento & purificação , Prevalência , Especificidade da Espécie
15.
J Med Entomol ; 52(5): 1043-9, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26336205

RESUMO

Identification of the vertebrate hosts upon which hematophagous arthropods feed provides key information for understanding the ecology and transmission of vector-borne diseases. Bloodmeal analysis of ticks presents unique challenges relative to other vectors, given the long interval between bloodmeal acquisition and host-seeking, during which DNA degradation occurs. This study evaluates DNA-based and stable isotope-based bloodmeal analysis methodologies for the lone star tick, Amblyomma americanum (Linneaus, 1758), in an experimental study with chicken as the known host. We subjected ticks of different ages and environmental rearing conditions to three DNA-based approaches and a stable isotopic analysis, which relies on the natural variation of nitrogen ((15)N/(14)N) and carbon ((13)C/(12)C) isotopes. While all three DNA-based approaches were successful in identifying the bloodmeal host of the engorged nymphs, only the probe-based RT-PCR was able to detect host DNA in aged ticks, the success of which was low and inconsistent across age and rearing treatments. In contrast, the stable isotope analysis showed utility in determining the host across all ages of ticks when isotopic values of ticks were compared with a panel of candidate vertebrate species. There was a positive shift in both δ(13)C and δ(15)N in adult A. americanum until 34 wk postnymphal bloodmeal. Through analyzing the isotopic signatures of eight potential vertebrate host species, we determined that the magnitude of this isotopic shift that occurred with tick age was minor compared with the heterogeneity in the δ(15)N and δ(13)C signatures among species. These results suggest that stable isotopes are a useful tool for understanding tick-host interactions.


Assuntos
Galinhas/parasitologia , Interações Hospedeiro-Parasita , Ixodidae/fisiologia , Parasitologia/métodos , Doenças Transmitidas por Carrapatos/transmissão , Animais , Isótopos de Carbono/análise , DNA/análise , Feminino , Ixodidae/crescimento & desenvolvimento , Masculino , Isótopos de Nitrogênio/análise , Ninfa/crescimento & desenvolvimento , Ninfa/fisiologia , Reação em Cadeia da Polimerase em Tempo Real , Doenças Transmitidas por Carrapatos/parasitologia
16.
J Med Entomol ; 52(3): 461-8, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-26334822

RESUMO

Multiple mosquito-borne parasites cocirculate in nature and potentially interact. To understand the community of parasites cocirculating with West Nile virus (WNV), we screened the bloodmeal content of Culex pipiens L. mosquitoes for three common types of hemoparasites. Blood-fed Cx. pipiens were collected from a WNV-epidemic area in suburban Chicago, IL, from May to September 2005 through 2010. DNA was extracted from dissected abdomens and subject to PCR and direct sequencing to identify the vertebrate host. RNA was extracted from the head or thorax and screened for WNV using quantitative reverse transcriptase PCR. Seventy-nine engorged females with avian host origin were screened using PCR and amplicon sequencing for filarioid nematodes, Haemosporida, and trypanosomatids. Filarioid nematodes were identified in 3.8% of the blooded abdomens, Plasmodium sp. in 8.9%, Haemoproteus in 31.6%, and Trypanosoma sp. in 6.3%. The sequences from these hemoparasite lineages were highly similar to sequences from birds in prior studies in suburban Chicago. Overall, 50.6% of blood-fed Culex pipiens contained hemoparasite DNA in their abdomen, presumably from current or prior bloodmeals. Additionally, we detected hemoparasite DNA in the blooded abdomen of three of 10 Cx. pipiens infected with WNV.


Assuntos
Culex/parasitologia , Filarioidea/isolamento & purificação , Haemosporida/isolamento & purificação , Trypanosomatina/isolamento & purificação , Animais , Columbidae/parasitologia , DNA/isolamento & purificação , DNA de Helmintos/isolamento & purificação , DNA de Protozoário/isolamento & purificação , Filarioidea/classificação , Filarioidea/genética , Haemosporida/classificação , Haemosporida/genética , Illinois , Dados de Sequência Molecular , Filogenia , Análise de Sequência de DNA/veterinária , Aves Canoras/parasitologia , Trypanosomatina/classificação , Trypanosomatina/genética , Febre do Nilo Ocidental/epidemiologia , Febre do Nilo Ocidental/etiologia , Febre do Nilo Ocidental/veterinária
17.
Proc Biol Sci ; 281(1796): 20141586, 2014 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-25339722

RESUMO

Animals can decrease their individual risk of predation by forming groups. The encounter-dilution hypothesis extends the potential benefits of gregariousness to biting insects and vector-borne disease by predicting that the per capita number of insect bites should decrease within larger host groups. Although vector-borne diseases are common and can exert strong selective pressures on hosts, there have been few tests of the encounter-dilution effect in natural systems. We conducted an experimental test of the encounter-dilution hypothesis using the American robin (Turdus migratorius), a common host species for the West Nile virus (WNV), a mosquito-borne pathogen. By using sentinel hosts (house sparrows, Passer domesticus) caged in naturally occurring communal roosts in the suburbs of Chicago, we assessed sentinel host risk of WNV exposure inside and outside of roosts. We also estimated per capita host exposure to infected vectors inside roosts and outside of roosts. Sentinel birds caged inside roosts seroconverted to WNV more slowly than those outside of roosts, suggesting that social groups decrease per capita exposure to infected mosquitoes. These results therefore support the encounter-dilution hypothesis in a vector-borne disease system. Our results suggest that disease-related selective pressures on sociality may depend on the mode of disease transmission.


Assuntos
Culex/virologia , Interações Hospedeiro-Patógeno , Insetos Vetores/virologia , Aves Canoras/fisiologia , Febre do Nilo Ocidental/transmissão , Animais , Comportamento Animal , Culicidae/virologia , Densidade Demográfica , Medição de Risco , Aves Canoras/virologia
18.
J Med Entomol ; 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38564417

RESUMO

Chagas disease is an infectious disease of human and animal health concern, with 6-8 million chronic human infections and over 50,000 deaths throughout the Americas annually. Hematophagous insects of the subfamily Triatominae, also called kissing bugs, vector the protozoan parasite, Trypanosoma cruzi Chagas (Trypanosomatida: Trypanosomatidae), that causes Chagas disease. Despite the large human health burden, Chagas disease is a neglected tropical disease with inadequate funding for research and preventive practices. Given the resource-poor environment of most agencies trying to protect public health, it is critical to consider all control options for reducing vector populations and the risk of human exposure to T. cruzi to identify the most appropriate tools for each context. While numerous triatomine control methods exist, the literature lacks a compilation of the strategies used, a critical examination of their efficiency, and a particular focus on triatomine control in the United States compared to elsewhere in the Americas. Here, we present a review of the literature to assess historical intervention strategies of existing and developing triatomine control methods. For each method, we discuss progress in the field, future research to further advance the method, and limitations. While we found that pyrethroid insecticide is still the most commonly used method of triatomine and Chagas disease control, we suggest that complementing these techniques with alternative control methods in development will help to achieve Chagas disease reduction goals.

19.
Artigo em Inglês | MEDLINE | ID: mdl-38717063

RESUMO

Background: Madariaga virus (MADV), a member of the eastern equine encephalitis virus (EEEV) complex, circulates in Latin America and exhibits distinct evolutionary and ecological features compared to the North American EEEV. While published data have shed light on MADV ecology, several key aspects remain unknown. Methods: In this study, we compiled data on virus isolation, vector competence, and animal serology collected over six decades in Latin America to identify critical knowledge gaps on MADV transmission and ecology. Results: Specific vertebrate animals serving as amplifying hosts and the mosquito species acting as enzootic and epizootic vectors have not yet been identified. Other aspects that remain unclear are the virus current geographic distribution, the role of equines as hosts in epizootic cycles, and the full impact of MADV on human health in endemic regions. Conclusions: The numerous knowledge gaps surrounding MADV, its widespread distribution in Latin America, and its potential to cause severe disease in animals and humans emphasize the urgent need for increased research efforts, heightened awareness, and intensified surveillance towards this potential emerging threat.

20.
Ecol Evol ; 14(6): e11625, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38911494

RESUMO

Moose (Alces alces) in the boreal forest habitats of Alaska are unlike other northern ungulates because they tolerate high densities of flies (Diptera) even though flies cause wounds and infections during the warm summer months. Moose move to find food and to find relief from overheating (hyperthermia) but do they avoid flies? We used GPS collars to measure the rate of movement (m⋅h-1) and the time spent (min⋅day-1) by enclosed moose in four habitats: wetlands, black spruce, early seral boreal forest, and late seral boreal forest. Fly traps were used in each habitat to quantify spatio-temporal abundance. Average daily air temperatures increased into July when peak biomass of forage for moose was greatest in early seral boreal forest habitats (424.46 vs. 25.15 kg⋅ha-1 on average in the other habitats). Average daily air temperatures were 1.7°C cooler in black spruce than other habitats, but fly abundance was greatest in black spruce (approximately 4-fold greater on average than the other habitats). Moose increased their movement rate with counts of biting flies (mosquitoes, black flies, horse and deer flies), but not non-biting flies (coprophagous flies). However, as air temperature increased (above 14.7°C) moose spent more time in fly-abundant black spruce, than early seral boreal forest, showing great tolerance for mosquitoes. Warm summer temperatures appear to cause moose to trade-off foraging in fly-sparse habitats for resting and dissipating heat in shady, wet habitats with abundant flies that adversely affect the fitness of moose.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA