Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 19(12): e2206253, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36642806

RESUMO

Sonodynamic therapy (SDT) has considerably revolutionized the healthcare sector as a viable noninvasive therapeutic procedure. It employs a combination of low-intensity ultrasound and chemical entities, known as a sonosensitizer, to produce cytotoxic reactive oxygen species (ROS) for cancer and antimicrobial therapies. With nanotechnology, several unique nanoplatforms are introduced as a sonosensitizers, including, titanium-based nanomaterials, thanks to their high biocompatibility, catalytic efficiency, and customizable physicochemical features. Additionally, developing titanium-based sonosensitizers facilitates the integration of SDT with other treatment modalities (for example, chemotherapy, chemodynamic therapy, photodynamic therapy, photothermal therapy, and immunotherapy), hence increasing overall therapeutic results. This review summarizes the most recent developments in cancer therapy and tissue engineering using titanium nanoplatforms mediated SDT. The synthesis strategies and biosafety aspects of Titanium-based nanoplatforms for SDT are also discussed. Finally, various challenges and prospects for its further development and potential clinical translation are highlighted.


Assuntos
Antineoplásicos , Neoplasias , Terapia por Ultrassom , Humanos , Titânio , Terapia por Ultrassom/métodos , Neoplasias/tratamento farmacológico , Antineoplásicos/uso terapêutico , Terapia Combinada , Espécies Reativas de Oxigênio , Linhagem Celular Tumoral
2.
Mol Pharm ; 20(3): 1531-1548, 2023 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-36763486

RESUMO

The blood-brain barrier (BBB) acts as a physical/biochemical barrier that protects brain parenchyma from potential hazards exerted by different xenobiotics found in the systemic circulation. This barrier is created by "a lipophilic gate" as well as a series of highly organized influx/efflux mechanisms. The BBB bottleneck adversely affects the efficacy of chemotherapeutic agents in treating different CNS malignancies such as glioblastoma, an aggressive type of cancer affecting the brain. In the present study, mesoporous silica nanoparticles (MSNs) were conjugated with the transactivator of transcription (TAT) peptide, a cell-penetrating peptide, to produce MSN-NH-TAT with the aim of improving methotrexate (MTX) penetration into the brain. The TAT-modified nanosystem was characterized by Fourier transform infrared spectrometry (FTIR), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), atomic force microscopy (AFM), dynamic light scattering (DLS), and N2 adsorption-desorption analysis. In vitro hemolysis and cell viability studies confirmed the biocompatibility of the MSN-based nanocarriers. In addition, in vivo studies showed that the MTX-loaded MSN-NH-TAT improved brain-to-plasma concentration ratio, brain uptake clearance, and the drug's blood terminal half-life, compared with the use of free MTX. Taken together, the results of the present study indicate that MSN functionalization with TAT is crucial for delivery of MTX into the brain. The present nanosystem represents a promising alternative drug carrier to deliver MTX into the brain via overcoming the BBB.


Assuntos
Peptídeos Penetradores de Células , Glioblastoma , Nanopartículas , Humanos , Metotrexato , Dióxido de Silício/química , Portadores de Fármacos/química , Nanopartículas/química , Encéfalo , Sistemas de Liberação de Medicamentos/métodos , Porosidade
3.
Drug Dev Ind Pharm ; 46(1): 159-171, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31894713

RESUMO

Objective: The main scope of present investigation was preparation and physicochemical characterization of solid lipid nanoparticles (SLNs) loaded by α-tocopherol acetate (ATA).Methods: ATA-loaded nanoparticles were prepared by solvent injection-homogenization technique using stearic acid as the solid lipid, phosphatidylcholine as the stabilizer and finally coated by chitosan with the aim of increasing z-potential and also having a more stable nano-formulation. Then, characterization of SLNs has been conducted using dynamic light scattering (DLS), zeta potential measurement, Fourier transform infrared spectroscopy (FTIR), and differential scanning calorimetry (DSC).Results: Nanoparticles with average sizes of 175 ± 15 nm and zeta potential of +35 ± 2.5 mV were obtained. An excellent drug entrapment efficiency of 90.58 ± 1.38% was obtained with a no-burst slow release up to about 10 days tested. The final plateau of release of ATA from nanoparticulate system within 216 h was 61.13 ± 0.13% which was approached in about 150 h. Physical stability studies showed that the ATA nano-formulation remained stable with slight increase in mean particle size and polydispersity index over a 3-month period in refrigerated temperature. Considering both FTIR and DSC analysis, it can be concluded that there is no new band formation between materials and ATA in our nano-formulation. Particle sizes obtained using AFM images are in a good agreement to those established from the DLS analysis.Conclusion: These data showed a promising delivery system for vitamin E based on SLN platform.


Assuntos
Portadores de Fármacos/química , Lipídeos/química , Nanopartículas , alfa-Tocoferol/administração & dosagem , Química Farmacêutica , Quitosana/química , Preparações de Ação Retardada , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Estabilidade de Medicamentos , Armazenamento de Medicamentos , Tamanho da Partícula , Fosfatidilcolinas/química , Refrigeração , Ácidos Esteáricos/química , alfa-Tocoferol/química
4.
Small ; 15(24): e1900669, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31033214

RESUMO

Bacterial infections are the main cause of chronic infections and even mortality. In fact, due to extensive use of antibiotics and, then, emergence of antibiotic resistance, treatment of such infections by conventional antibiotics has become a major concern worldwide. One of the promising strategies to treat infection diseases is the use of nanomaterials. Among them, mesoporous silica materials (MSMs) have attracted burgeoning attention due to high surface area, tunable pore/particle size, and easy surface functionalization. This review discusses how one can exploit capacities of MSMs to design and fabricate multifunctional/controllable drug delivery systems (DDSs) to combat bacterial infections. At first, the emergency of bacterial and biofilm resistance toward conventional antimicrobials is described and then how nanoparticles exert their toxic effects upon pathogenic cells is discussed. Next, the main aspects of MSMs (e.g., physicochemical properties, multifunctionality, and biosafety) which one should consider in the design of MSM-based DDSs against bacterial infections are introduced. Finally, a comprehensive analysis of all the papers published dealing with the use of MSMs for delivery of antibacterial chemicals (antimicrobial agents functionalized/adsorbed on mesoporous silica (MS), MS-loaded with antimicrobial agents, gated MS-loaded with antimicrobial agents, MS with metal-based nanoparticles, and MS-loaded with metal ions) is provided.


Assuntos
Antibacterianos/farmacologia , Materiais Biocompatíveis/farmacologia , Nanoestruturas/química , Dióxido de Silício/química , Antibacterianos/química , Bactérias/efeitos dos fármacos , Bactérias/crescimento & desenvolvimento , Fenômenos Fisiológicos Bacterianos/efeitos dos fármacos , Materiais Biocompatíveis/química , Biofilmes/efeitos dos fármacos , Portadores de Fármacos/química , Portadores de Fármacos/farmacologia , Sistemas de Liberação de Medicamentos , Humanos , Testes de Sensibilidade Microbiana , Nanoestruturas/uso terapêutico , Porosidade , Dióxido de Silício/farmacologia
5.
Drug Dev Ind Pharm ; 45(5): 736-744, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30640551

RESUMO

OBJECTIVE: Indinavir (IDV), an antiretroviral protease inhibitor used in treatment of HIV infection, has limited entry into brain due to efflux by the P-glycoprotein presented in blood-brain barrier. The aim of present study was to develop lactoferrin-treated nanoemulsion containing indinavir (Lf-IDV-NEs) for delivery to brain. METHODS: Indinavir-loaded nanoemulsions (IDV-NEs) were prepared by high-speed homogenization method, and then lactoferrin was coupled to IDV-NEs by water soluble EDC method. RESULTS: The hydrodynamic diameters, polydispersity index, and zeta potential of IDV-NEs were 112 ± 3.5 nm, 0.20 ± 0.02, and -33.2 ± 2.6 mV, respectively. From in vivo studies in animal model of rats, the AUC0-4 h of brain concentration-time profile of IDV-NEs and Lf-IDV-NEs were 1.6 and 4.1 times higher than free drug, respectively. The brain uptake clearance of IDV-NEs and Lf-IDV-NEs were, interestingly, 393- and 420-times higher than the free drug. CONCLUSIONS: It can be concluded that applying both lactoferrin-treated and non-treated nanoemulsions clearly leads to significant brain penetration enhancement of indinavir, an effect which is more pronounced in the case of Lf-IDV-NEs with the higher drug residence time in brain.


Assuntos
Barreira Hematoencefálica/metabolismo , Portadores de Fármacos/química , Inibidores da Protease de HIV/farmacocinética , Indinavir/farmacocinética , Lactoferrina/química , Animais , Área Sob a Curva , Liberação Controlada de Fármacos , Emulsões , Infecções por HIV/tratamento farmacológico , Inibidores da Protease de HIV/administração & dosagem , Indinavir/administração & dosagem , Injeções Intravenosas , Masculino , Nanopartículas/química , Permeabilidade , Polissorbatos/química , Ratos , Ratos Sprague-Dawley
6.
Drug Dev Ind Pharm ; 43(11): 1908-1918, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28737462

RESUMO

Co-delivery strategy has been proposed to minimize the amount of each drug and to achieve the synergistic effect for cancer therapies. A conjugate of the antitumor drug, doxorubicin, with diblock methoxy poly (ethylene glycol)-poly caprolactone (mPEG-PCL) copolymer was synthesized by the reaction of mPEG-PCL copolymer with doxorubicin in the presence of p-nitrophenylchloroformate. The conjugated copolymer was characterized in vitro by 1H-NMR, FTIR, DSC and GPC techniques. Then, the doxorubicin conjugated mPEG-PCL(DOX-mPEG-PCL) was self-assembled into micelles in the presence of curcumin in aqueous solution. The resulting micelles were characterized further by various techniques such as dynamic light scattering (DLS) and atomic force microscopy (AFM).The encapsulation efficiency of doxorubicin and curcumin were 82.31 ± 3.32 and 78.15 ± 3.14%, respectively. The results revealed that the micelles formed by the DOX-mPEG-PCL with and without curcumin have spherical structure with average size of 116 and 134 nm respectively. The release behavior of curcumin and doxorubicin loaded to micelles were investigated in a different media. The release rate of micelles consisted of the conjugated copolymer was pH dependent as it was higher at lower pH than in neutral condition. Another feature of the conjugated micelles was a sustained release profile. The cytotoxicity of micelles were evaluated by MTT (3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide, atetrazole) assay on lung cancer A549 cell lines. In vitro cytotoxicity assay showed that the mPEG-PCL copolymer did not affect the growth of A549 cells. The cytotoxic activity of the micelles against A549 cells was greater than free doxorubicin and free curcumin.


Assuntos
Antineoplásicos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Curcumina/farmacologia , Doxorrubicina/farmacologia , Sistemas de Liberação de Medicamentos/métodos , Nanopartículas/química , Poliésteres/química , Polietilenoglicóis/química , Antineoplásicos/química , Curcumina/química , Doxorrubicina/química , Humanos , Interações Hidrofóbicas e Hidrofílicas , Micelas
7.
Int J Biol Macromol ; 265(Pt 2): 130654, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38553395

RESUMO

AIM AND BACKGROUND: Trinitroglycerin (TNG) is a remarkable NO-releasing agent. Here, we synthesized TNG based on chitosan Nanogels (Ngs) for ameliorating complications associated with high-dose TNG administration. METHOD: TNG-Ngs fabricated through ionic-gelation technique. Fourier-transformed infrared (FT-IR), zeta-potential, dynamic light scattering (DLS), and electron microscopy techniques evaluated the physicochemical properties of TNG-Ngs. MTT was used to assess the biocompatibility of TNG-Ngs, as the antioxidative properties were determined via lactate dehydrogenase (LDH), reactive oxygen species (ROS), and lipid peroxide (LPO) assays. The antibacterial activity was evaluated against Staphylococcus aureus (S. aureus), Escherichia coli (E. coli), Methicillin-resistant Staphylococcus aureus (MRSA), and vancomycin-resistant Enterococci (VRE). RESULTS: Physicochemical characterization reveals that TNG-Ngs with size diameter (96.2 ± 29 nm), polydispersity index (PDI, 0.732), and negative zeta potential (-1.1 mv) were fabricated. The encapsulation efficacy (EE) and loading capacity (LC) were obtained at 71.1 % and 2.3 %, respectively, with no considerable effect on particle size and morphology. The cytotoxicity assay demonstrated that HepG2 cells exposed to TNG-Ngs showed relative cell viability (RCV) of >80 % for 70 µg/ml compared to the TNG-free drug at the same concentration (P < 0.05). TNG-Ngs showed significant differences with the TNG-free drug for LDH, LPO, and ROS formation at the same concentration (P < 0.001). The antibacterial activity of the TNG-Ngs against S. aureus, E. coli, VRE, and MRSA was higher than the TNG-free drug and Ngs (P < 0.05). CONCLUSION: TNG-Ngs with enhanced antibacterial and antioxidative activity and no obvious cytotoxicity might be afforded as novel nanoformulation for promoting NO-dependent diseases.


Assuntos
Quitosana , Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Humanos , Nanogéis , Quitosana/farmacologia , Quitosana/química , Staphylococcus aureus , Escherichia coli , Espectroscopia de Infravermelho com Transformada de Fourier , Espécies Reativas de Oxigênio/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química
8.
Drug Dev Ind Pharm ; 39(11): 1774-82, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23136990

RESUMO

Today, developing an optimized nanoparticle (NP) preparation procedure is of paramount importance in all nanoparticulate drug delivery researches, leading to expanding more operative and clinically validated nanomedicines. In this study, a one-at-a-time experimental approach was used for evaluating the effect of various preparation factors on size, loading, and drug release of hydrogel NPs prepared with ionotropic gelation between heparin and chitosan. The size, loading efficiency (LE) and drug release profile of the NPs were evaluated when the chitosan molecular weight, chitosan concentration, heparin addition time to chitosan solution, heparin concentration, pH value of chitosan solution, temperature, and mixing rate were changed separately while other factors were in optimum condition. The results displayed that size and LE are highly influenced by chitosan concentration, getting an optimum of 63 ± 0.57 and 75.19 ± 2.65, respectively, when chitosan concentration was 0.75 mg/ml. Besides, heparin addition time of 3 min leaded to 74.1 ± 0.79 % LE with no sensible effect on size and release profile. In addition, pH 5.5 showed a minimum size of 63 ± 1.87, maximum LE of 73.81 ± 3.13 and the slowest drug release with 63.71 ± 3.84 % during one week. Although LE was not affected by temperature, size and release reduced to 63 ± 0 and 74.21 ± 1.99% when temperature increased from 25°C to 55°C. Also, continuous increase of mixer rate from 500 to 3500 rpm resulted in constant enhancement of LE from 58.3 ± 3.6 to 74.4 ± 2.59 as well as remarkable decrease in size from 148 ± 4.88 to 63 ± 2.64.


Assuntos
Anticoagulantes/química , Quitosana/química , Portadores de Fármacos/química , Heparina/química , Nanopartículas/química , Fenômenos Químicos , Composição de Medicamentos , Sistemas de Liberação de Medicamentos , Estabilidade de Medicamentos , Temperatura Alta/efeitos adversos , Hidrogéis , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Cinética , Fenômenos Mecânicos , Peso Molecular , Tamanho da Partícula , Controle de Qualidade , Solubilidade , Propriedades de Superfície
9.
Int J Pharm ; 645: 123418, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37716484

RESUMO

Multifunctional nanocarriers are increasingly promising for disease treatment aimed at finding effective therapy and overcoming barriers in drug delivery. Herein, valine conjugated chitosan (VLCS) was used for surface modification of nanocarriers (NCs) based on Poly (ε-caprolactone)-Poly (ethylene glycol)-Poly (ε-caprolactone) (PCL-PEG-PCL) triblock copolymers (NCs@VLCS). The nanocarriers were co-loaded with rivastigmine (RV) and quercetin (QT) to yield the final RV/QT-NCs@VLCS as a multifunctional nanocarrier for Alzheimer's disease (AD) treatment. The large amino acid transporter 1 (LAT-1) was selected for the direction of the NCs to the brain. The biocompatibility of the nanocarrier was studied in HEK-293 and SH-SY5Y cells and rats. The Morris water maze test demonstrated a faster regain of memory loss with RV/QT-NCs@VLCS compared to the other groups. Furthermore, RV/QT-NCs@VLCS and RV/QT-NCs improved GSH depletion induced by scopolamine (SCO), with RV/QT-NCs@VLCS having a superior effect. The real-time PCR analysis revealed that co-delivery of RV and QT by NCs@VLCS showed significantly higher efficacy than sole delivery of RV. RV/QT-NCs@VLCS treatment also modulated the expression of BDNF, ACHE, and TNF-α. The findings revealed that NCs@VLCS co-loaded with RV and QT, significantly increased efficacy relative to the single use of RV and could be considered a potent multifunctional drug delivery system for Alzheimer's treatment.


Assuntos
Doença de Alzheimer , Neuroblastoma , Humanos , Ratos , Animais , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Rivastigmina/uso terapêutico , Quercetina/uso terapêutico , Células HEK293 , Neuroblastoma/tratamento farmacológico , Polímeros/uso terapêutico , Polietilenoglicóis/química , Poliésteres/química , Portadores de Fármacos/química
10.
J Biomed Mater Res B Appl Biomater ; 111(9): 1687-1696, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37246876

RESUMO

Wide availability and easy accessibility of acetaminophen oral dosage forms increase the risk of intentional poisoning or unintentional organ toxicity, leading to a wide range of liver failure, nephrotoxicity, and neurotoxicity. In this study, an attempt was made to improve oral bioavailability and reduce the toxicity of acetaminophen using nanosuspension technology. The acetaminophen nanosuspensions (APAP-NSs) were prepared by a nano-precipitation method using polyvinyl alcohol and hydroxypropylmethylcellulose as stabilizers. The mean diameter of APAP-NSs was 124 ± 3.8 nm. The dissolution profile of APAP-NSs was significantly point-to-point higher than the coarse drug in simulated gastrointestinal fluids. The in vivo study revealed 1.6- and 2.8-fold increases in the AUC0-inf and Cmax of the drug, respectively, in APAP-NSs-receiving animals compared to the control group. Moreover, no deaths and no abnormalities in clinical signs, body weights, and necropsy findings were detected in the dose groups up to 100 mg/kg of the 28-day repeated oral dose toxicity study in mice.


Assuntos
Acetaminofen , Camundongos , Animais , Acetaminofen/toxicidade , Administração Oral , Disponibilidade Biológica
11.
J Pharm Pharm Sci ; 15(5): 606-15, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23331900

RESUMO

PURPOSE: Tramadol Hydrochloride is a widely-used centrally acting analgesic drug, which has some features of being a P-gp substrate. The present study evaluates the functional involvement of P-gp in CNS distribution of tramadol. METHODS: The possible involvement of P-glycoprotein in brain distribution of tramadol was evaluated using a pharmacokinetic approach in two groups of Pgp-inhibited and control rats. Six male Sprague-Dawley rats were used in each group to collect plasma and brain at 1, 5, 10, and 30 min following two tramadol doses of 1 and 10 mg/kg. RESULTS: The brain uptake clearances of tramadol in Pgp-inhibited and control rats were 2.47±0.56 and 2.34±0.56 ml min(-1)g(-1), respectively, for 1 mg/kg and 3.50±0.60 and 3.14±1.02 mlmin(-1)g(-1), respectively, for 10 mg/kg dose. The brain-to-plasma concentration ratio (Kp,app) of more than 1 in all the time points following both the high and low dose cases (sometimes more than 3) indicated the brain accumulation of the drug. Linear correlation was found between tramadol dose and both corresponding plasma and brain concentrations, but the presence of a dose-dependency was not confirmed by the data obtained for brain-to-plasma concentration ratio. CONCLUSION: Considering the results of the previous studies and the present research, it seems that the brain accumulation of tramadol is not affected by P-gp inhibition which implies that there may be some other transport mechanisms involved in BBB transport of tramadol.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Analgésicos Opioides/farmacocinética , Encéfalo/metabolismo , Tramadol/farmacocinética , Analgésicos Opioides/administração & dosagem , Animais , Transporte Biológico , Relação Dose-Resposta a Droga , Masculino , Ratos , Ratos Sprague-Dawley , Fatores de Tempo , Tramadol/administração & dosagem
12.
Brain Res ; 1781: 147786, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35041841

RESUMO

Targeted delivery of neurological therapeutic to the brain has been attracting more and more attention to the treatment of central nervous system (CNS) diseases. Nonetheless, the main obstacle in this road map is the existence of a blood-brain barrier (BBB) which limits the penetration efficiency of most CNS drugs into the brain parenchyma. This present investigation describes a facile synthetic strategy to prepare a highly biocompatible calcium-doped mesoporous silica nanoparticles (MSNs) functionalized by polysorbate-80 (PS) as targeting ligand to deliver rivastigmine (RV) into the brain via crossing the BBB. The developed nanosystem was characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM), Zeta potential, and N2-adsorption-desorption analysis. In vitro hemolysis studies were carried out to confirm the biocompatibility of the nanocarriers. Our in vivo studies in an animal model of rats showed that the RV-loaded nanosystem was able to enhance the brain-to-plasma concentration ratio, brain uptake clearance, and plasma elimination half-life of the drug compared to the free one drug following intravenous (IV) administration. The results revealed that functionalization of MSNs by PS is crucial to deliver RV into the brain, suggesting PS-functionalized MSNs could be an effective carrier to deliver RV to the brain while overcoming BBB.


Assuntos
Nanopartículas , Dióxido de Silício , Animais , Encéfalo , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos/métodos , Nanopartículas/química , Polissorbatos , Porosidade , Ratos , Rivastigmina , Dióxido de Silício/química , Espectroscopia de Infravermelho com Transformada de Fourier
13.
J Pharm Pharm Sci ; 14(1): 46-59, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21501552

RESUMO

The aim of the present study was to use a novel protein co-encapsulation method to prepare phenytoin-loaded human erythrocytes with improved loading parameters and release profiles. Carrier erythrocytes were prepared using the hypotonic pre-swelling method. A series of in vitro characterization tests were carried out on the carrier cells, including loading parameters, drug and hemoglobin release, hematological indices, particle size analysis, osmotic fragility, turbulence fragility, and scanning electron microscopy (SEM). Co-encapsulation with bovine serum albumin (BSA) resulted in about 8-times higher drug loading in erythrocytes, with biphasic release trend instead of triphasic in the case of drug alone loading. In comparison to the normal unloaded cells, MCH and MCHC indices were decreased in the case of both drug and drug/protein loading, apparent cell sizes were unchanged, cell shapes were changed to spherical rather than biconcave discoid, and the osmotic as well as turbulence fragilities were higher in the case of drug/protein but were unchanged in the case of drug alone loading. The most profound finding of this study was the possibility of achieving remarkably higher drug loading and more controllable drug release profile in the case of drug/protein loading, with no unwanted in vitro characteristics change.


Assuntos
Portadores de Fármacos/química , Eritrócitos/metabolismo , Fenitoína/administração & dosagem , Soroalbumina Bovina/administração & dosagem , Adulto , Sistemas de Liberação de Medicamentos , Hemoglobinas/metabolismo , Humanos , Masculino , Microscopia Eletrônica de Varredura , Fragilidade Osmótica , Tamanho da Partícula , Adulto Jovem
14.
Regul Toxicol Pharmacol ; 59(1): 149-56, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21193005

RESUMO

In this study, an open, double-blind, randomized, two-period, two-group crossover design was conducted in 14 healthy volunteers to study the bioequivalence of a fixed-dose generic product. After administration of test or reference products to each volunteer, both active ingredients were determined simultaneously in plasma samples using a developed and validated HPLC-UV method, and pharmacokinetic parameters, including C(max), T(max), AUC(0-t) , AUC(0∞), terminal elimination rate constant (λz), volume of distribution in steady state (Vd(ss)), mean residence time (MRT), clearance (Cl), terminal elimination rate constant (Kel) were determined in each subject using the standard non-compartmental approach. Statistical comparison showed that the test and reference products were bioequivalent in terms of both the rate and extent of bioavailability of both active ingredients. Finally, a new parameter named range overlap index (ROI) was introduced for the first time in this study in order to judge about the overall bioequivalence of the combination products. This parameter indicates the extent in which the two CI90% ranges of each parameter for two active ingredients overlap with each other. The ROI is suggested to be equal or more than 50% for two combination products in order to be known as bioequivalent. The ROI values of the bioequivalence-indicating parameters were 61.90%, 84.6%, and 76.0% for C(max), AUC(0--->12), and AUC(0--->∞), respectively, which are indicative for bioequivalence in all the cases.


Assuntos
Medicamentos Genéricos , Hidroclorotiazida/farmacocinética , Triantereno/farmacocinética , Administração Oral , Adulto , Anti-Hipertensivos/farmacocinética , Área Sob a Curva , Disponibilidade Biológica , Cromatografia Líquida de Alta Pressão/métodos , Intervalos de Confiança , Estudos Cross-Over , Método Duplo-Cego , Combinação de Medicamentos , Humanos , Hidroclorotiazida/administração & dosagem , Hidroclorotiazida/sangue , Hidroclorotiazida/química , Irã (Geográfico) , Masculino , Valores de Referência , Sensibilidade e Especificidade , Equivalência Terapêutica , Triantereno/administração & dosagem , Triantereno/sangue , Triantereno/química
15.
Int J Pharm ; 597: 120313, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33540002

RESUMO

Silica plays an effective role in collagen creation; hence, the degradation products of silica-based materials accelerate wound healing. In this regard, chitosan/polyethylene oxide/silica hybrid nanofibers were prepared by the combining the sol-gel method with electrospinning technique to accelerate the wound healing process. Ciprofloxacin, as an antibacterial drug, was then added to the electrospinning mixture. The nanofibers were characterized by SEM, EDX, X-ray mapping, TEM, TGA, FTIR, and XRD analysis. The degradation, swelling ratio, and release of ciprofloxacin were investigated in PBS. The prepared nanofiber could absorb water, maintain its morphological integrity during the degradation process, and gradually release ciprofloxacin. The nanofibers revealed an efficient antibacterial activity against Escherichia coli and Staphylococcus aureus. Cell viability assays showed that the nanofibers had no cytotoxicity against L929 mouse fibroblast and HFFF2 human foreskin fibroblast cell lines. The potential of the chitosan/polyethylene oxide/silica/ciprofloxacin nanofiber for healing full-thickness wound was assessed by applying the scaffold in the dorsal cutaneous wounds of the Balb/C mice. The white blood cell counts of the animals indicated the nanofiber-treated mice compared with the untreated ones had less infection and inflammation. According to the histopathologic data, the prepared nanofiber accelerated and enhanced tissue regeneration by increasing fibroblast cells and angiogenesis as well as decreasing the inflammation phase. The findings suggest that the prepared antibacterial scaffold with drug delivery properties could be an appropriate candidate for many medical and hygienic applications, especially as a bio-compatible and bio-degradable wound dressing.


Assuntos
Quitosana , Nanofibras , Animais , Antibacterianos/uso terapêutico , Bandagens , Ciprofloxacina , Camundongos , Polietilenoglicóis , Dióxido de Silício
16.
Int J Pharm ; 600: 120479, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33722757

RESUMO

In the present study, with the aim of improving the permeability of methotrexate (MTX) to the brain, the lipophilic MTX prodrugs containing the ester functional moiety were synthesized. The chemical structure of synthesized prodrugs was characterized and confirmed by FT-IR, NMR and mass spectral studies. Based on the results of in vitro cytotoxic studies, all of the synthesized prodrugs led to decrease in the IC50 in 72 h on U87 cancer cell line and the best result was observed for dihexyl methotrexate (MTX-DH) in comparison with free MTX, which led to decrease the IC50 amount up to 6 folds. In addition, in vivo toxicity on Artemia salina (A. salina) showed that the lipophilic MTX prodrugs have been able to partially mask the toxic profile of free MTX, at the same concentrations. These findings were also in compliance with hemolysis assay results, which confirm that the conjugates has not made the drug more toxic. Furthermore, in vivo study in rat model, was employed to determine the simultaneous drug concentration in brain and plasma. According to the obtained results, the brain-to-plasma concentration ratios (Kp values) of MTX-DH and dioctyl methotrexate (MTX-DO) groups were significantly higher compared with free MTX. Moreover, the uptake clearance of MTX by brain parenchyma increased significantly (3.85 and 9.08-time increased for MTX-DH and MTX-DO prodrugs, respectively). These findings indicate that the synthesized lipophilic MTX prodrugs are non-toxic and able to enhance brain penetration of MTX.


Assuntos
Metotrexato , Pró-Fármacos , Animais , Encéfalo , Ésteres , Ratos , Espectroscopia de Infravermelho com Transformada de Fourier
17.
J Biomed Mater Res A ; 109(11): 2237-2254, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34132482

RESUMO

This study prepared a novel three-dimensional nanocomposite scaffold by the surface modification of PCL/chitosan nanofiber/net with alginate hydrogel microlayer, hoping to have the privilege of both nanofibers and hydrogels simultaneously. Bead free randomly oriented nanofiber/net (NFN) structure composed of chitosan and polycaprolactone (PCL) was fabricated by electrospinning method. The low surface roughness, good hydrophilicity, and high porosity were obtained from the NFN structure. Then, the PCL/chitosan nanofiber/net was coated with a microlayer of alginate containing neurotrophin-3 (NT-3) and conjunctiva mesenchymal stem cells (CJMSCs) as a new stem cell source. According to the cross-sectional FESEM, the scaffold shows a two-layer structure with interconnected pores in the range of 20 µm diameter. The finding revealed that the surface modification of nanofiber/net by alginate hydrogel microlayer caused lower inflammatory response and higher proliferation of CJMSCs than the unmodified scaffold. The initial burst release of NT-3 was 69% in 3 days which followed by a sustained release up to 21 days. The RT-PCR analysis showed that the expression of Nestin, MAP-2, and ß-tubulin III genes were increased 6, 5.4, and 8.8-fold, respectively. The results revealed that the surface-modified biomimetic scaffold possesses enhanced biocompatibility and could successfully differentiate CJMSCs to the neuron-like cells.


Assuntos
Alginatos , Quitosana , Hidrogéis , Teste de Materiais , Nanofibras/química , Tecido Nervoso/metabolismo , Neurotrofina 3 , Engenharia Tecidual , Alginatos/química , Alginatos/farmacologia , Animais , Quitosana/química , Quitosana/farmacologia , Hidrogéis/química , Hidrogéis/farmacologia , Masculino , Neurotrofina 3/química , Neurotrofina 3/farmacologia , Ratos , Ratos Wistar
18.
Drug Dev Ind Pharm ; 36(3): 355-61, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19722914

RESUMO

BACKGROUND: Compartmental as well as noncompartmental analyses are used routinely in pharmacokinetic analysis. MATERIALS AND METHODS: Pharmacokinetic parameters of the anti-HIV agent, indinavir, have been determined in six male rats applying both the compartmental and the noncompartmental analysis. RESULTS AND DISCUSSION: A very slow declining phase was found in the indinavir plasma concentration profile using an extended sampling time period and applying a sensitive high-performance liquid chromatography assay method. This apparent terminal elimination phase can cause some significant errors when applying noncompartmental kinetic analysis to the data, with mean residence time (MRT) (544.2 +/- 123.2 minutes), total systemic clearance (12.0 +/- 2.1 mL/min/kg), and steady-state volume of distribution (V(d) (ss)) (6.4 +/- 1.0 L/kg) being highly different from the results of compartmental kinetic analysis (MRT, Cl(total), and V(d) (ss) values of 23.7 +/- 5.9 minutes, 35.18 +/- 5.1 mL/min/kg, and 0.84 +/- 0.28 L/kg, respectively). The parameters estimated by our noncompartmental approach were also significantly different from the results of the same type of data analysis reported in the literature. CONCLUSION: The differences in parameter estimations, while being a result of the extended plasma sampling period, which is recommended in noncompartmental analysis, support the priority of applying the compartmental analysis approach in the similar cases with some pre-assumptions, mainly ignoring the final apparent terminal elimination phase(s), very deep tissue, which involves very low drug concentrations.


Assuntos
Compartimentos de Líquidos Corporais/fisiologia , Inibidores da Protease de HIV/farmacocinética , Indinavir/farmacocinética , Modelos Biológicos , Animais , Inibidores da Protease de HIV/sangue , Meia-Vida , Indinavir/sangue , Masculino , Taxa de Depuração Metabólica , Ratos , Ratos Sprague-Dawley
19.
ACS Chem Neurosci ; 11(17): 2549-2565, 2020 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-32631043

RESUMO

Alzheimer's disease (AD) is one of the most common types of neurodegenerative diseases which is accompanied by irreversible neuronal damage, learning difficulties, memory impairments, and cognitive disorders. The cholinergic system is destroyed during AD pathogenesis, leading to the major symptoms of the disease. Although in severe stages AD is life threatening, to date no absolute treatment has been found for this illness and some palliative options are available. The aim of this study was to investigate the effect of fullerene (C60) aqueous suspension (FAS) on improving spatial memory in amnesic male Wistar rats (weighing 200 ± 20 g) and to further compare the results with that of donepezil (DNPZL) as a standard drug. FAS was prepared via a solvent exchange method. The particle size was in the 119.14 ± 3.38 nm range with polydispersity index of 0.15 ± 0.02 and zeta potential of -12.22 ± 5.98 mV. A simple and high sensitive reversed phase high performance liquid chromatography (HPLC) method was developed to identify the C60 concentration in FAS (21 µg/mL). Efficiencies of drugs were examined in both pretreatment and post-treatment groups of animals to better understand how they participate in affecting AD symptoms. Seeing that previous studies have presented antithetical declarations about whether C60 is a P-glycoprotein (P-gp) substrate, we studied FAS effects in both conditions of the presence and absence of a P-gp inhibitor (verapamil HCl, 25 mg/kg). In order to clarify the molecular mechanisms of action of two drugs, their effects on the expression of three principal genes involved in AD, including Sirtuin6, SELADIN1, and AQP1, and as well as their total antioxidant capacities (TACs) were studied. In order to induce memory impairment, scopolamine HBr (SCOP) was administered for 10 days (2 mg/kg/i.p.). FAS and DNPZL administration regimens were 21 µg/mL, BID (i.p.) and 10 mg/kg (p.o.) for 10 days, respectively. Our results introduce FAS as a promising nanoformulation for improving AD symptoms, especially memory impairment, and further assert that more studies are needed to elucidate C60 and P-gp interaction type.


Assuntos
Doença de Alzheimer , Fulerenos , Subfamília B de Transportador de Cassetes de Ligação de ATP , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Animais , Aquaporina 1 , Modelos Animais de Doenças , Fulerenos/farmacologia , Hipocampo , Masculino , Aprendizagem em Labirinto , Transtornos da Memória/tratamento farmacológico , Ratos , Ratos Wistar , Memória Espacial , Verapamil
20.
J Biomed Mater Res B Appl Biomater ; 108(3): 717-728, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31187938

RESUMO

The aim of the present study was to develop modified nanoemulsions to improve the oral bioavailability and pharmacokinetics of a poor water-soluble drug, repaglinide (RPG). The repaglinide-loaded nanoemulsions (RPG-NEs) were prepared from olive oil as internal phase, span 80, tween 80, and poloxamer 188 as emulsifiers, using homogenization technique. The mean droplet size, zeta potential, and entrapment efficiency of RPG-NEs were 86.5 ± 3.4 nm, -33.8 ± 2.1 mV, and 96.3 ± 2.3%, respectively. The chitosan-coated RPG-NEs (Cs-RPG-NEs) showed an average droplet size of 149.3 ± 3.9 nm and a positive zeta-potential of +31.5 ± 2.8 mV. Drug release profile of RPG-NEs was significantly higher than free drug in the simulated gastrointestinal fluids (p < .005). The in vivo study revealed 3.51- and 1.78-fold increase in the AUC0-12h and Cmax of the drug, respectively, in RPG-NEs-receiving animals in comparison to the free drug. The pharmacokinetic analysis confirmed that Cs-RPG-NEs were more efficient than uncoated ones for the oral delivery of RPG. Cs-RPG-NEs showed a longer t1/2 and higher AUC0-∞ compared to control group. The relative bioavailability of Cs-RPG-NEs was higher than that of uncoated RPG-NEs and free drug. Collectively, these findings suggest that chitosan-coated nanoemulsions are promising carrier for improving the oral bioavailability of RPG.


Assuntos
Carbamatos/química , Quitosana/química , Emulsões/química , Hipoglicemiantes/química , Nanocápsulas/química , Piperidinas/química , Administração Oral , Animais , Disponibilidade Biológica , Carbamatos/administração & dosagem , Carbamatos/farmacocinética , Composição de Medicamentos , Liberação Controlada de Fármacos , Absorção Gastrointestinal/efeitos dos fármacos , Humanos , Hipoglicemiantes/administração & dosagem , Hipoglicemiantes/farmacocinética , Líquido Intracelular/metabolismo , Masculino , Piperidinas/administração & dosagem , Piperidinas/farmacocinética , Poloxâmero , Polissorbatos , Ratos Sprague-Dawley , Solubilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA