Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
RNA ; 17(12): 2222-34, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22020975

RESUMO

The p53 tumor suppressor is a DNA-damage-responsive sequence-specific transcriptional activator. The sustained activation of the p53 response is incompatible with cell growth and viability. To circumvent this issue, a variety of negative feedback loops exist to limit the duration of p53 activation. Despite our understanding of p53 regulation, very little is known about the effect of transient p53 activation on the long-term expression of p53 target genes. Here we used a temperature-sensitive variant of p53 and oligonucleotide microarrays to monitor gene expression during and following reversible p53 activation. The expression of most p53-induced transcripts was rapidly reversible, consistent with active mRNA decay. Representative 3' UTRs derived from short-lived transcripts (i.e., DDB2 and GDF15) conferred instability on a heterologous mRNA, while 3' UTRs derived from more stable transcripts (i.e., CRYAB and TP53I3) did not. The 3' UTRs derived from unstable p53-induced mRNAs were significantly longer than those derived from stable mRNAs. These 3' UTRs had high uridine and low cytosine content, leading to a higher density of U-, AU-, and GU-rich sequences. Remarkably, short-lived p53 targets were induced faster, reaching maximum transcript levels earlier than the stable p53 targets. Taken together, the evidence indicates that the p53 transcriptional response has evolved with primarily short-lived target mRNAs and that post-transcription processes play a prominent role in the p53 response.


Assuntos
Regulação da Expressão Gênica , Estabilidade de RNA/genética , RNA Mensageiro/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Regiões 3' não Traduzidas , Animais , Composição de Bases , Linhagem Celular Tumoral , Células HT29 , Humanos , Camundongos , Mutação/genética , Transcrição Gênica
2.
Gene ; 608: 86-94, 2017 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-28119089

RESUMO

The p53 tumour suppressor is a transcription factor that can increase the expression of mRNAs and microRNAs (miRNAs). HT29-tsp53 cells expressing a temperature sensitive variant of p53 have provided a useful model to rapidly and reversibly control p53 activity. In this model, the majority of p53-responsive mRNAs were upregulated rapidly but they were short-lived leading to rapid decay of the p53 response at the restrictive temperature. Here we used oligonucleotide microarrays and reverse transcriptase PCR to show that p53-induced miRNAs exhibited a distinct temporal pattern of expression. Whereas p53-induced miRNAs like miR-143-3p, miR-145-5p, miR-34a-5p and miR-139-5p increased as fast as mRNAs, they were extremely stable persisting long after p53 induced mRNAs and even their corresponding primary miRNAs had decayed to baseline levels. Three p53-induced mRNAs (MDM2, BTG2 and CDKN1A) are experimentally verified targets of one or more of these specific miRNAs so we hypothesized that the sustained expression of p53-induced miRNAs could be explained by a post-transcriptional feedback loop. Activation of consecutive p53 responses separated by a period of recovery led to the selective attenuation of a subset of p53 regulated mRNAs corresponding to those targeted by one or more of the p53-responsive miRNAs. Our results indicate that the long term expression of p53 responsive miRNAs leads to an excess of miRNAs during the second response and this likely prevents the induction of MDM2, BTG2 and CDKN1A mRNA and/or protein. These observations are likely to have important implications for daily cancer therapies that activate p53 in normal tissues and/or tumour cells.


Assuntos
MicroRNAs/genética , Estabilidade de RNA , RNA Mensageiro/genética , Proteína Supressora de Tumor p53/fisiologia , Linhagem Celular Tumoral , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Células HT29 , Humanos , MicroRNAs/fisiologia , Análise em Microsséries , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , RNA Mensageiro/metabolismo , Ativação Transcricional/genética , Proteína Supressora de Tumor p53/metabolismo
3.
PLoS One ; 11(2): e0148529, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26840126

RESUMO

The p53 tumour suppressor is a transcription factor that can regulate the expression of numerous genes including many encoding proteins and microRNAs (miRNAs). The predominant outcomes of a typical p53 response are the initiation of apoptotic cascades and the activation of cell cycle checkpoints. HT29-tsp53 cells express a temperature sensitive variant of p53 and in the absence of exogenous DNA damage, these cells preferentially undergo G1 phase cell cycle arrest at the permissive temperature that correlates with increased expression of the cyclin-dependent kinase inhibitor p21WAF1. Recent evidence also suggests that a variety of miRNAs can induce G1 arrest by inhibiting the expression of proteins like CDK4 and CDK6. Here we used oligonucleotide microarrays to identify p53-regulated miRNAs that are induced in these cells undergoing G1 arrest. At the permissive temperature, the expression of several miRNAs was increased through a combination of either transcriptional or post-transcriptional regulation. In particular, miR-34a-5p, miR-143-3p and miR-145-5p were strongly induced and they reached levels comparable to that of reference miRNAs (miR-191 and miR-103). Importantly, miR-34a-5p and miR-145-5p are known to silence the Cdk4 and/or Cdk6 G1 cyclin-dependent kinases (cdks). Surprisingly, there was no p53-dependent decrease in the expression of either of these G1 cdks. To search for other potential targets of p53-regulated miRNAs, p53-downregulated mRNAs were identified through parallel microarray analysis of mRNA expression. Once again, there was no clear effect of p53 on the repression of mRNAs under these conditions despite a remarkable increase in p53-induced mRNA expression. Therefore, despite a strong p53 transcriptional response, there was no clear evidence that p53-responsive miRNA contributed to gene silencing. Taken together, the changes in cell cycle distribution in this cell line at the permissive temperature is likely attributable to transcriptional upregulation of the CDKN1A mRNA and p21WAF1 protein and not to the down regulation of CDK4 or CDK6 by p53-regulated miRNAs.


Assuntos
Pontos de Checagem da Fase G1 do Ciclo Celular , Regulação Neoplásica da Expressão Gênica , Inativação Gênica , MicroRNAs/biossíntese , RNA Neoplásico/biossíntese , Proteína Supressora de Tumor p53/metabolismo , Linhagem Celular Tumoral , Quinase 4 Dependente de Ciclina/genética , Quinase 4 Dependente de Ciclina/metabolismo , Quinase 6 Dependente de Ciclina/genética , Quinase 6 Dependente de Ciclina/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Humanos , MicroRNAs/genética , RNA Neoplásico/genética , Proteína Supressora de Tumor p53/genética
4.
Nat Commun ; 6: 6410, 2015 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-25817275

RESUMO

In this study, we show that several microtubule-destabilizing agents used for decades for treatment of cancer and other diseases also sensitize cancer cells to oncolytic rhabdoviruses and improve therapeutic outcomes in resistant murine cancer models. Drug-induced microtubule destabilization leads to superior viral spread in cancer cells by disrupting type I IFN mRNA translation, leading to decreased IFN protein expression and secretion. Furthermore, microtubule-destabilizing agents specifically promote cancer cell death following stimulation by a subset of infection-induced cytokines, thereby increasing viral bystander effects. This study reveals a previously unappreciated role for microtubule structures in the regulation of the innate cellular antiviral response and demonstrates that unexpected combinations of approved chemotherapeutics and biological agents can lead to improved therapeutic outcomes.


Assuntos
Efeito Espectador/efeitos dos fármacos , Citocinas/efeitos dos fármacos , Interferon Tipo I/efeitos dos fármacos , Microtúbulos/efeitos dos fármacos , Terapia Viral Oncolítica , Vírus Oncolíticos , RNA Mensageiro/efeitos dos fármacos , Infecções por Rhabdoviridae/imunologia , Moduladores de Tubulina/farmacologia , Albendazol/farmacologia , Animais , Benzimidazóis/farmacologia , Efeito Espectador/imunologia , Linhagem Celular , Linhagem Celular Tumoral , Chlorocebus aethiops , Colchicina/farmacologia , Citocinas/imunologia , Células HT29 , Humanos , Interferon Tipo I/genética , Interferon Tipo I/metabolismo , Camundongos , Nocodazol/farmacologia , Biossíntese de Proteínas/efeitos dos fármacos , RNA Mensageiro/metabolismo , Rhabdoviridae , Células Vero , Vimblastina/análogos & derivados , Vimblastina/farmacologia , Vinorelbina
5.
Cell Cycle ; 8(18): 2995-3002, 2009 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-19713765

RESUMO

Cell cycle progression is regulated through changes in the activity of cyclin-dependent kinases that are, in turn, regulated by the expression of their respective cyclin partners. In primary cells, cyclin E expression increases through the G(1) phase of the cell cycle and peaks near the G(1)/S boundary. The unscheduled expression of cyclin E in primary human fibroblasts leads to chromosomal instability that is greatly increased by loss of the p53 tumour suppressor. Intriguingly, ultraviolet light (UV), the most prevalent environmental carcinogen, is similarly known to induce chromosomal instability more dramatically in the absence of p53. Here we report that UV light transiently increased the expression of cyclin E in normal human fibroblasts. Strikingly, cyclin E levels remained elevated for an extended period of time in the absence of functional p53. UV-induced cyclin E expression was not restricted to the G(1)/S boundary but remained elevated throughout S phase and this correlated with a massive accumulation of p53-deficient fibroblasts in this phase of the cell cycle. Forced expression of cyclin E alone was insufficient to cause a similar S phase arrest but forced expression of cyclin E led to an increase in the proportion of UV-irradiated cells in S phase. The present work suggests that p53 affects S phase progression following UV exposure by preventing the sustained unscheduled expression of cyclin E and that this may limit the clastogenic and carcinogenic effects of UV light.


Assuntos
Ciclina E/efeitos da radiação , Regulação da Expressão Gênica/efeitos da radiação , Proteína Supressora de Tumor p53/fisiologia , Raios Ultravioleta , Ciclo Celular , Células Cultivadas , Ciclina E/biossíntese , Fibroblastos/citologia , Fibroblastos/metabolismo , Humanos , Fase S , Regulação para Cima/efeitos da radiação
6.
Cell Cycle ; 6(14): 1730-40, 2007 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-17630510

RESUMO

Ultraviolet light (UV light) induces helix distorting DNA lesions that pose a block to replicative DNA polymerases. Recovery from this replication arrest is reportedly impaired in nucleotide excision repair (NER)-deficient xeroderma pigmentosum (XP) fibroblasts and primary fibroblasts lacking functional p53. These independent observations suggested that the involvement of p53 in the recovery from UV-induced replication arrest was related to its role in regulating the global genomic subpathway of NER (GG-NER). Using primary human fibroblasts, we confirm that the recovery from UV-induced replication arrest is impaired in cells lacking functional p53 and in primary XP fibroblasts derived from complementation groups A or C (XP-A and XP-C) that are defective in GG-NER. Surprisingly, DNA synthesis recovered normally in GG-NER-deficient XP complementation group E (XP-E) cells that carry mutations in the p53 regulated DNA repair gene DDB2 and are specifically defective in the repair of cyclobutane pyrimidine dimers (CPD) but not pyrimidine (6-4) pyrimidone photoproducts. Disruption of p53 in these XP-E fibroblasts prevented the recovery from UV-induced replication arrest. Therefore, the roles of p53 and GG-NER in the recovery from UV-induced replication are separable and DDB2-independent. These results further indicate that primary human fibroblasts expressing functional p53 efficiently replicate DNA containing CPD whereas p53-deficient cells do not, consistent with a role for p53 in permitting translesion synthesis of these DNA lesions.


Assuntos
Replicação do DNA/efeitos da radiação , Proteínas de Ligação a DNA/metabolismo , DNA , Proteína Supressora de Tumor p53/metabolismo , Animais , Ciclo Celular/fisiologia , Células Cultivadas , DNA/biossíntese , DNA/efeitos da radiação , Dano ao DNA , Reparo do DNA , Proteínas de Ligação a DNA/genética , Fibroblastos/citologia , Fibroblastos/fisiologia , Humanos , Dímeros de Pirimidina , Interferência de RNA , Proteína Supressora de Tumor p53/genética , Raios Ultravioleta , Xeroderma Pigmentoso
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA