Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Plant Cell ; 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38819305

RESUMO

Potassium (K+) plays crucial roles in both plant development and immunity. However, the function of K+ in plant-virus interactions remains largely unknown. Here, we utilized Barley yellow striate mosaic virus (BYSMV), an insect-transmitted plant cytorhabdovirus, to investigate the interplay between viral infection and plant K+ homeostasis. The BYSMV accessory P9 protein exhibits viroporin activity by enhancing membrane permeability in Escherichia coli. Additionally, P9 increases K+ uptake in yeast (Saccharomyces cerevisiae) cells, which is disrupted by a point mutation of Glycine 14 to Threonine (P9G14T). Furthermore, BYSMV P9 forms oligomers and targets to both the viral envelope and the plant membrane. Based on the recombinant BYSMV-green fluorescent protein (BYGFP) virus, a P9-deleted mutant (BYGFPΔP9) was rescued and demonstrated infectivity within individual plant cells of Nicotiana benthamiana and insect vectors. However, BYGFPΔP9 failed to infect barley plants after transmission by insect vectors. Furthermore, infection of barley plants was severely impaired for BYGFP-P9G14T lacking P9 K+ channel activity. In vitro assays demonstrate that K+ facilitates virion disassembly and the release of genome RNA for viral mRNA transcription. Altogether, our results show that the K+ channel activity of viroporins is conserved in plant cytorhabdoviruses and plays crucial roles in insect-mediated virus transmission.

2.
Plant Physiol ; 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38917205

RESUMO

Plant virus-derived vectors are rapid and cost-effective for protein expression and gene functional studies in plants, particularly for species that are difficult to genetically transform. However, few efficient viral vectors are available for functional studies in Asteraceae plants. Here, we identified a potyvirus named zinnia mild mottle virus (ZiMMV) from common zinnia (Zinnia elegans Jacq.) through next-generation sequencing. Using a yeast homologous recombination strategy, we established a full-length infectious cDNA clone of ZiMMV under the control of the cauliflower mosaic virus 35S promoter. Furthermore, we developed an efficient expression vector based on ZiMMV for the persistent and abundant expression of foreign proteins in the leaf, stem, root, and flower tissues with mild symptoms during viral infection in common zinnia. We showed that the ZiMMV-based vector can express ZeMYB9, which encodes a transcript factor inducing dark red speckles in leaves and flowers. Additionally, the expression of a gibberellic acid (GA) biosynthesis gene from the ZiMMV vector substantially accelerated plant height growth, offering a rapid and cost-effective method. In summary, our work provides a powerful tool for gene expression, functional studies, and genetic improvement of horticultural traits in Asteraceae plant hosts.

3.
Plant Cell Environ ; 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39016637

RESUMO

Wheat yellow mosaic virus (WYMV) causes severe viral wheat disease in Asia. The WYMV P1 protein encoded by RNA2 has viral suppressor of RNA silencing (VSR) activity to facilitate virus infection, however, VSR activity has not been identified for P2 protein encoded by RNA2. In this study, P2 protein exhibited strong VSR activity in Nicotiana benthamiana at the four-leaf stage, and point mutants P70A and G230A lost VSR activity. Protein P2 interacted with calmodulin (CaM) protein, a gene-silencing associated protein, while point mutants P70A and G230A did not interact with it. Competitive bimolecular fluorescence complementation and competitive co-immunoprecipitation experiments showed that P2 interfered with the interaction between CaM and calmodulin-binding transcription activator 3 (CAMTA3), but the point mutants P70A and G230A could not. Mechanical inoculation of wheat with in vitro transcripts of WYMV infectious cDNA clone further confirmed that VSR-deficient mutants P70A and G230A decreased WYMV infection in wheat plants compared with the wild type. In addition, RNA silencing, temperature, ubiquitination and autophagy had significant effects on accumulation of P2 protein in N. benthamiana leaves. In conclusion, WYMV P2 plays a VSR role in N. benthamiana and promotes virus infection by interfering with calmodulin-related antiviral RNAi defense.

4.
Virology ; 593: 110013, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38373359

RESUMO

Tobacco streak virus induces severe diseases on a wide range of plants and becomes an emerging threat to crop yields. However, the infectious clones of TSV remain to be developed for reverse genetics studies. Here, we obtained the full genome sequence of a TSV-CNB isolate and analyzed the phylogenetic characteristics. Subsequently, we developed the full-length infectious cDNA clones of TSV-CNB driven by 35 S promoter using yeast homologous recombination. Furthermore, the host range of TSV-CNB isolate was determined by Agrobacterium infiltration and mechanical inoculation. The results reveal that TSV-CNB can infect 10 plant species in 5 families including Glycine max, Vigna radiate, Lactuca sativa var. Ramosa, Dahlia pinnate, E. purpurea, Calendula officinalis, Helianthus annuus, Nicotiana. Benthamiana, Nicotiana tabacum and Chenopodium quinoa. Taken together, the TSV infectious clones will be a useful tool for future studies on viral pathogenesis and host-virus interactions.


Assuntos
Echinacea , Ilarvirus , Humanos , DNA Complementar/genética , Ilarvirus/genética , Echinacea/genética , Filogenia , Doenças das Plantas , Nicotiana , Saccharomyces cerevisiae/genética , Células Clonais , Especificidade de Hospedeiro
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA