Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 237
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Brief Bioinform ; 25(2)2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38517697

RESUMO

Non-coding variants associated with complex traits can alter the motifs of transcription factor (TF)-deoxyribonucleic acid binding. Although many computational models have been developed to predict the effects of non-coding variants on TF binding, their predictive power lacks systematic evaluation. Here we have evaluated 14 different models built on position weight matrices (PWMs), support vector machines, ordinary least squares and deep neural networks (DNNs), using large-scale in vitro (i.e. SNP-SELEX) and in vivo (i.e. allele-specific binding, ASB) TF binding data. Our results show that the accuracy of each model in predicting SNP effects in vitro significantly exceeds that achieved in vivo. For in vitro variant impact prediction, kmer/gkm-based machine learning methods (deltaSVM_HT-SELEX, QBiC-Pred) trained on in vitro datasets exhibit the best performance. For in vivo ASB variant prediction, DNN-based multitask models (DeepSEA, Sei, Enformer) trained on the ChIP-seq dataset exhibit relatively superior performance. Among the PWM-based methods, tRap demonstrates better performance in both in vitro and in vivo evaluations. In addition, we find that TF classes such as basic leucine zipper factors could be predicted more accurately, whereas those such as C2H2 zinc finger factors are predicted less accurately, aligning with the evolutionary conservation of these TF classes. We also underscore the significance of non-sequence factors such as cis-regulatory element type, TF expression, interactions and post-translational modifications in influencing the in vivo predictive performance of TFs. Our research provides valuable insights into selecting prioritization methods for non-coding variants and further optimizing such models.


Assuntos
Polimorfismo de Nucleotídeo Único , Fatores de Transcrição , Sítios de Ligação/genética , Ligação Proteica/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , DNA/genética
2.
Small ; : e2309656, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38686693

RESUMO

Bi/CeO2 (BC-x) photocatalysts are successfully prepared by solvothermal loading Bi nanoparticles and Bi-doped CeO2 derived by Ce-MOF (Ce-BTC). Formaldehyde gas (HCHO) and tetracycline hydrochloride (HTC) are used to evaluate the photocatalytic activity of the synthesized Bi/CeO2. For BC-1000 photocatalyst, the degradation of HTC by 420 nm < λ < 780 nm light reaches 91.89% for 90 min, and HCHO by 350 nm < λ < 780 nm light reaches 94.66% for 120 min. The photocatalytic cycle experiments prove that BC-1000 has good cyclic stability and repeatability. The results of photoluminescence spectra, fluorescence lifetime, photocurrent response, and electrochemical impedance spectroscopy showed that the SPR (Surface Plasmon Resonance) effect of Bi nanoparticles acted as a bridge and promoted electron transfer and enhanced the response-ability of Bi/CeO2 to visible light. Bi-doping produced more oxygen vacancies to provide adsorption sites for adsorbing oxygen and generated more ·O2 - thus promoting photocatalytic reactions. The mechanism of photocatalytic degradation is analyzed in detail utilizing active free radical capture experiments and electron paramagnetic resonance (EPR) characterization. The experimental results indicate that ·O2 - and h+ active free radicals significantly promote the degradation of pollutants.

3.
Small ; 20(27): e2309541, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38279629

RESUMO

The Z-scheme MIL-88B/BiOBr (referred to as MxBy, whereas x and y are the mass of MIL-88B(Fe) and BiOBr) heterojunction photocatalysts are successfully prepared by a facile ball milling method. By adding low concentration H2O2 under visible light irradiation, the Z-scheme heterojunction and photocatalytic-Fenton-like reaction synergistically enhance the degradation and mineralization of ciprofloxacin (CIP). Among them, M50B150 showed efficient photodegradation efficiency and excellent cycling stability, with 94.6% removal of CIP (10 mg L-1) by M50B150 (0.2 g L-1) under 90 min of visible light. In the MxBy heterojunctions, the rapid transfer of photo-generated electrons not only directly decomposed H2O2 to generate ·OH, but also improved the cycle of Fe3+/Fe2+ pairs, which facilitated the reaction with H2O2 to generate ·OH and ·O2 - radicals. In addition, the effects of photocatalyst dosages, pH of CIP solution, and coexisting substances on CIP removal are systematically investigated. It is found that the photocatalytic- Fenton-like reaction can be carried out at a pH close to neutral conditions. Finally, the charge transfer mechanism of the Z-scheme is verified by electron spin resonance (ESR) signals. The ecotoxicity of CIP degradation products is estimated by the T.E.S.T tool, indicating that the constructed photocatalysis-Fenton-like system is a green wastewater treatment technology.


Assuntos
Bismuto , Ciprofloxacina , Peróxido de Hidrogênio , Ferro , Ciprofloxacina/química , Catálise , Bismuto/química , Peróxido de Hidrogênio/química , Ferro/química , Luz , Fotólise , Estruturas Metalorgânicas/química , Poluentes Químicos da Água/química , Compostos Férricos/química
4.
J Craniofac Surg ; 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38830023

RESUMO

BACKGROUND: Scalp replantation is the best treatment for scalp avulsion due to its functional and esthetic benefits. Regular scalp replantation requires only unilateral or bilateral superficial temporal vascular anastomosis. However, shear force always damages vessels in severe scalp avulsions. Short, superficial temporal vessels (STVs) make tension-free anastomosis challenging. PURPOSE: The objective of this article is to improve the regular scalp replantation technique. When the STVs are short, tension-free anastomosis, and cosmetic symmetry can be achieved without vein grafts or vascular replacement. METHOD: This study retrospectively reviewed 18 patients with scalp avulsion, of which 10 underwent scalp-shifting replantation, and 8 underwent regular scalp replantation with direct anastomosis of the STVs. Postoperatively, the authors, assessed whether there was a significant difference in the percentage of scalp survival and in the facial symmetry of patients between the 2 methods. RESULT: The percentages of scalp survival and facial symmetry were good after surgeries using both methods, and no significant differences were observed. CONCLUSION: The authors use scalp-shifting replantation to create tension-free anastomoses in cases where scalp avulsion injuries have left the superficial temporal arteries too short. This technique ensures facial symmetry, scalp reimplantation survival, and equally excellent results in function and esthetics.

5.
Molecules ; 29(8)2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38675579

RESUMO

High ionic conductivity, outstanding mechanical stability, and a wide electrochemical window are the keys to the application of solid-state lithium metal batteries (LMBs). Due to their regular channels for ion transport and tailored functional groups, covalent organic frameworks (COFs) have been applied to solid electrolytes to improve their performance. Herein, we report a flexible polyethylene oxide-COF-LZU1 (abbreviated as PEO-COF) electrolyte membrane with a high lithium ion transference number and satisfactory mechanical strength, allowing for dendrite-free and long-time cycling for LMBs. Benefiting from the interaction between bis(triflfluoromethanesulonyl)imide anions (TFSI-) and aldehyde groups in COF-LZU1, the Li+ transference number of the PEO-5% COF-LZU1 electrolyte reached up to 0.43, much higher than that of neat PEO electrolyte (0.18). Orderly channels are conducive to the homogenous Li-+ deposition, thereby inhibiting the lithium dendrites. The assembled LiFePO4|PEO-5% COF-LZU1/Li cells delivered a discharge specific capacity of 146 mAh g-1 and displayed a capacity retention of 80% after 200 cycles at 0.1 C (60 °C). The Li/Li symmetrical cells of the PEO-5% COF-LZU1 electrolyte presented a longer working stability at different current densities compared to that of the PEO electrolyte. Therefore, the enhanced comprehensive performance of the solid electrolyte shows potential application prospects for use in LMBs.

6.
BMC Plant Biol ; 23(1): 448, 2023 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-37741992

RESUMO

R2R3-MYB is an important transcription factor family that regulates plant growth and development. Root development directly affects the absorption of water and nutrients by plants. Therefore, to understand the regulatory role of R2R3-MYB transcription factor family in root development of longan, this study identified the R2R3-MYB gene family members at the genome-wide level, and analyzed their phylogenetic characteristics, physical and chemical properties, gene structure, chromosome location and tissue expression. The analysis identified 124 R2R3-MYB family members in the longan genome. Phylogenetic analysis divided these members into 22 subfamilies, and the members of the unified subfamily had similar motifs and gene structures. The result of qRT-PCR showed that expression levels of DlMYB33, DlMYB34, DlMYB59, and DlMYB77 were significantly higher in main roots than in lateral as opposed to those of DlMYB35, DlMYB69, DlMYB70, and DlMYB83, which were significantly lower. SapBase database prediction and miRNAs sequencing results showed that 34 longan miRNAs could cleave R2R3-MYB, including 17 novel miRNAs unique to longan. The qRT-PCR and subcellular localization experiments of DlMYB92 and DlMYB98 showed that DlMYB92 is a key factor that regulates transcription in the nucleus and participates in the regulation of longan lateral root development. Longan also has a conserved miRNA-MYB-lateral root development regulation mechanism. This study provides a reference for further research on the transcriptional regulation of the miRNA-R2R3-MYB module in the root development of longan.


Assuntos
Genes myb , MicroRNAs , Filogenia , MicroRNAs/genética , Fatores de Transcrição/genética
7.
Brain Behav Immun ; 111: 412-423, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37169132

RESUMO

Immune cells and the brain have a privileged interaction. Here, we report changes in the hippocampal immune microenvironment at the single cell level after stress, uncovering the tight orchestration of immune cell infiltration into the hippocampus after stress to maintain homeostasis. We show the distribution of several immune cell types in the hippocampus associated with their susceptibility or resilience to the learned helplessness paradigm in a sex- and microbiota-dependent manner using single-cell RNA sequencing and bioinformatic tools, flow cytometry, and immunofluorescence. We uncovered the presence of tissue-resident memory T cells that accumulate over time in the hippocampus of learned helpless mice, and the presence of CD74-expressing myeloid cells. These cells were found by a knockdown approach to be critical to induce resilience to learned helplessness. Altogether, these findings provide a novel overview of the neuro-immune repertoire and its impact on the landscape of the hippocampus after learned helplessness.


Assuntos
Encéfalo , Hipocampo , Camundongos , Animais , Hipocampo/metabolismo , Desamparo Aprendido , Estresse Psicológico/metabolismo
8.
Int J Mol Sci ; 24(14)2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37511208

RESUMO

The high-pathogenicity island (HPI) was initially identified in Yersinia and can be horizontally transferred to Escherichia coli to produce yersiniabactin (Ybt), which enhances the pathogenicity of E. coli by competing with the host for Fe3+. Pyroptosis is gasdermin-induced necrotic cell death. It involves the permeabilization of the cell membrane and is accompanied by an inflammatory response. It is still unclear whether Ybt HPI can cause intestinal epithelial cells to undergo pyroptosis and contribute to gut inflammation during E. coli infection. In this study, we infected intestinal epithelial cells of mice with E. coli ZB-1 and the Ybt-deficient strain ZB-1Δirp2. Our findings demonstrate that Ybt-producing E. coli is more toxic and exacerbates gut inflammation during systemic infection. Mechanistically, our results suggest the involvement of the NLRP3/caspase-1/GSDMD pathway in E. coli infection. Ybt promotes the assembly and activation of the NLRP3 inflammasome, leading to GSDMD cleavage into GSDMD-N and promoting the pyroptosis of intestinal epithelial cells, ultimately aggravating gut inflammation. Notably, NLRP3 knockdown alleviated these phenomena, and the binding of free Ybt to NLRP3 may be the trigger. Overall, our results show that Ybt HPI enhances the pathogenicity of E. coli and induces pyroptosis via the NLRP3 pathway, which is a new mechanism through which E. coli promotes gut inflammation. Furthermore, we screened drugs targeting NLRP3 from an existing drug library, providing a list of potential drug candidates for the treatment of gut injury caused by E. coli.


Assuntos
Células Epiteliais , Infecções por Escherichia coli , Escherichia coli , Mucosa Intestinal , Proteína 3 que Contém Domínio de Pirina da Família NLR , Piroptose , Animais , Camundongos , Enterócitos/metabolismo , Enterócitos/microbiologia , Células Epiteliais/metabolismo , Células Epiteliais/microbiologia , Escherichia coli/metabolismo , Escherichia coli/patogenicidade , Infecções por Escherichia coli/metabolismo , Inflamassomos/metabolismo , Inflamação/metabolismo , Mucosa Intestinal/citologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Piroptose/fisiologia
9.
Opt Lett ; 47(13): 3295-3298, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35776609

RESUMO

Remote state preparation enables one to create and manipulate a quantum state based on the shared entanglement between distant nodes. Here, we experimentally demonstrate remote preparation and manipulation of squeezed light. By performing a homodyne projective measurement on one mode of the continuous variable entangled state at Alice's station, a squeezed state is created at Bob's station. Moreover, rotation and displacement operations are applied on the prepared squeezed state by changing the projective parameters on Alice's state. We also show that the remotely prepared squeezed state is robust against loss and N - 1 squeezed states can be remotely prepared based on an N-mode continuous variable Greenberger-Horne-Zeilinger-like state. Our results verify the entanglement-based model used in security analysis of quantum key distribution with continuous variables and have potential application in remote quantum information processing.

10.
Cytotherapy ; 24(2): 205-212, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34799271

RESUMO

BACKGROUND AIMS: Despite the great advances in immunosuppressive therapy for severe aplastic anemia (SAA), most patients are not completely cured. Haploidentical hematopoietic stem cell transplantation (haplo-HSCT) has been recommended as an alternative treatment in adult SAA patients. However, haplo-HSCT presents a higher incidence of graft failure and graft-versus-host disease (GVHD). The authors designed a combination of haplo-HSCT and umbilical cord-derived mesenchymal stem cells (UC-MSCs) for treatment of SAA in adult patients and evaluated its effects. METHODS: Adult patients (≥18 years) with SAA (N = 25) were given HLA-haploidentical hematopoietic stem cells (HSCs) combined with UC-MSCs after a conditioning regimen consisting of busulfan, cyclophosphamide, fludarabine and anti-thymocyte globulin and intensive GVHD prophylaxis, including cyclosporine, basiliximab, mycophenolate mofetil and short-term methotrexate. Additionally, the effects of the protocol in adult SSA patients were compared with those observed in juvenile SAA patients (N = 75). RESULTS: All patients achieved myeloid engraftment after haplo-HSCT at a median of 16.12 days (range, 11-26). The median time of platelet engraftment was 28.30 days (range, 13-143). The cumulative incidence of grade II acute GVHD (aGVHD) at day +100 was 32.00 ± 0.91%. No one had grade III-IV aGVHD at day +100. The cumulative incidence of total chronic GVHD was 28.00 ± 0.85%. The overall survival was 71.78 ± 9.05% at a median follow-up of 42.08 months (range, 2.67-104). Promisingly, the protocol yielded a similar curative effect in both young and adult SAA patients. CONCLUSIONS: The authors' data suggest that co-transplantation of HLA-haploidentical HSCs and UC-MSCs may provide an effective and safe treatment for adult SAA.


Assuntos
Anemia Aplástica , Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Mesenquimais , Anemia Aplástica/terapia , Células-Tronco Hematopoéticas , Humanos , Condicionamento Pré-Transplante
11.
Phys Rev Lett ; 128(20): 200401, 2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35657859

RESUMO

Non-Gaussian states with Wigner negativity are of particular interest in quantum technology due to their potential applications in quantum computing and quantum metrology. However, how to create such states at a remote location remains a challenge, which is important for efficiently distributing quantum resource between distant nodes in a network. Here, we experimentally prepare an optical non-Gaussian state with negative Wigner function at a remote node via local non-Gaussian operation and shared Gaussian entangled state existing quantum steering. By performing photon subtraction on one mode, Wigner negativity is created in the remote target mode. We show that the Wigner negativity is sensitive to loss on the target mode, but robust to loss on the mode performing photon subtraction. This experiment confirms the connection between the remotely created Wigner negativity and quantum steering. As an application, we present that the generated non-Gaussian state exhibits metrological power in quantum phase estimation.

12.
Ann Hematol ; 101(8): 1777-1783, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35726105

RESUMO

Donor-specific anti-human leukocyte antigen (HLA) antibody (DSA) is associated with a higher incidence of graft failure and mortality in HLA-mismatched allograft settings. However, the optimal protocol of desensitization for patients with positive DSA remains uncertain. We investigated the effectiveness of a desensitization protocol, including rituximab, high-dose intravenous immunoglobulin (IVIG), and a single session of plasma exchange (PE), for haploidentical allograft recipients with a high mean fluorescence intensity (MFI) level of DSA (≥ 5,000). Eleven patients with hematological disease who had positive DSA (median, 11,676, range 5387-20,435) were desensitized by the protocol. All of the patients achieved hematopoietic recovery. The median times for neutrophil and platelet engraftment were 13 (range, 11-26) days and 19 (range, 11-90) days, respectively. Grade II-IV acute graft-versus-host disease (GVHD) was seen in one patient and was controlled completely. Chronic cutaneous GVHD was seen in eight patients. Nine patients are alive with good performance so far. One patient suffered extramedullary relapse, and one patient died of transplantation-associated thrombotic microangiopathy. The 1-year probability of overall survival was 81.8%. These results suggest that successful desensitization could be obtained by a combination of rituximab, high-dose IVIG, and PE for haploidentical allograft recipients with high MFI levels of DSA.


Assuntos
Doença Enxerto-Hospedeiro , Doenças Hematológicas , Aloenxertos , Rejeição de Enxerto/prevenção & controle , Sobrevivência de Enxerto , Doença Enxerto-Hospedeiro/tratamento farmacológico , Doença Enxerto-Hospedeiro/etiologia , Doença Enxerto-Hospedeiro/prevenção & controle , Antígenos HLA , Doenças Hematológicas/tratamento farmacológico , Humanos , Imunoglobulinas Intravenosas/uso terapêutico , Rituximab/uso terapêutico
13.
Curr Microbiol ; 79(6): 182, 2022 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-35508821

RESUMO

Escherichia coli (E. coli) is an important pathogen that causes diarrhea and death in piglets. In this work, whole genome sequencing of two E. coli strains (ZB-1, ZWW-1) isolated from Saba pigs. And focus on the relationship between drug resistance, pathogenic phenotype and genotype of the two strains. This study analyzed the drug susceptibility of the two strains. The LD50 values, tissue bacterial load and intestinal pathological changes in mice infected with the two strains. The differences in gene functions such as drug resistance, virulence, and unique genes between the two strains, as well as the genetic evolutionary relationship of housekeeping genes were analyzed. The results showed that the two strains had the same resistance phenotype to most drugs. The LD50 value, tissue load, and pathological changes in mice infected with strain ZB-1 revealed that this strain was more virulent and pathogenic than strain ZWW-1. In addition, the housekeeping genes contained in the two strains are in the same large branch as E. coli of different species, and the genetic evolution is stable. All of them carry EPEC-type strain-specific virulence genes escV and ent, indicating that they are all new members of EPEC-type strains. This study laid the foundation for understanding the genetic background and biological characteristics of E. coli from Saba pigs.


Assuntos
Infecções por Escherichia coli , Proteínas de Escherichia coli , Animais , Diarreia/microbiologia , Escherichia coli/genética , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/veterinária , Proteínas de Escherichia coli/genética , Camundongos , Filogenia , Suínos , Virulência/genética , Sequenciamento Completo do Genoma
14.
Molecules ; 27(5)2022 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-35268658

RESUMO

Porous organic polymers have an open architecture, excellent stability, and tunable structural components, revealing great application potential in the field of fluorescence imaging, but this part of the research is still in its infancy. In this study, we aimed to tailor the physical and chemical characteristics of indocyanine green using sulfonic acid groups and conjugated fragments, and prepared amino-grafted porous polymers. The resulting material had excellent solvent and thermal stability, and possessed a relatively large pore structure with a size of 3.4 nm. Based on the synergistic effect of electrostatic bonding and π-π interactions, the fluorescent chromogenic agent, indocyanine green, was tightly incorporated into the pore cavity of POP solids through a one-step immersion method. Accordingly, the fluorescent chromogenic POP demonstrated excellent imaging capabilities in biological experiments. This preparation of fluorescent chromogenic porous organic polymer illustrates a promising application of POP-based solids in both fluorescence imaging and biomedicine applications.

15.
Angew Chem Int Ed Engl ; 61(18): e202201540, 2022 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-35199428

RESUMO

Direct conversion of methane into value-added chemicals, such as methanol under mild conditions, is a promising route for industrial applications. In this work, atomically dispersed Rh on TiO2 suspended in an aqueous solution was used for the oxidation of methane to methanol. Promoted by copper cations (as co-catalyst) in solution, the catalysts exhibited high activity and selectivity for the production of methanol using molecular oxygen with the presence of carbon monoxide at 150 °C with a reaction pressure of 31 bar. Millimole level yields of methanol were reached with the selectivity higher than 99 % using the Rh/TiO2 catalysts with the promotion of the copper cation. CO was the reductive agent to generate H2 from H2 O, which led to the formation of H2 O2 through the reaction of H2 and O2 . Atomically dispersed Rh activated the C-H bond in CH4 and catalyzed the oxidation using H2 O2 . Copper cations maintained the low-valence state of Rh. Moreover, copper acted as a scavenger for suppressing the overoxidation, thus leading to the high selectivity of methanol.

16.
Am J Transplant ; 21(11): 3524-3537, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34008325

RESUMO

Mesenchymal stem cells (MSC) have been shown to be immunomodulatory, tissue regenerative, and graft promoting; however, several questions remain with regard to ideal MSC source and timing of administration. In this study, we utilized a rigorous preclinical model of allogeneic islet cell transplantation, incorporating reduced immune suppression and near to complete mismatch of major histocompatibility antigens between the diabetic cynomolgus monkey recipient and the islet donor, to evaluate both the graft promoting impact of MSC source, that is, derived from the islet recipient, the islet donor or an unrelated third party as well as the impact of timing. Co-transplant of MSC and islets on post-operative day 0, followed by additional IV MSC infusions in the first posttransplant month, resulted in prolongation of rejection free and overall islet survival and superior metabolic control for animals treated with recipient as compared to donor or third-party MSC. Immunological analyses demonstrated that infusion of MSC from either source did not prevent alloantibody formation to the islet or MSC donor; however, treatment with recipient MSC resulted in significant downregulation of memory T cells, decreased anti-donor T cell proliferation, and a trend toward increased Tregulatory:Tconventional ratios.


Assuntos
Transplante das Ilhotas Pancreáticas , Células-Tronco Mesenquimais , Aloenxertos , Animais , Macaca fascicularis , Transplante Homólogo
17.
Small ; 17(29): e2101496, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34142443

RESUMO

Uniform deposition and distribution of lithium ion (Li+ ) on the surface of lithium metal anode is crucial for long-life and high-safety lithium metal batteries. However, the preparation of stable solid-electrolyte interphase (SEI) is mostly based on trial and error in the absence of guideline. Herein, covalent organic framework (COF) with high Young's modulus and low surface work function is in situ synthesized on Li anode to stabilize Li|electrolyte interface. Notably, Young's modulus, mechanical index for Li dendrite resistance, and surface work function, electrical index for Li+ distribution, can be regarded as macroscopically detectable indicators to evaluate the artificial SEI before battery assembly. The COFTpPa modified Li metal anodes delivered stable cycling over 1000 (2000) h at high current density of 5 (2) mA cm-2 in the ether-based electrolyte, and the full cells with commercial LiFePO4 electrode (mass loading of 16.5 mg cm-2 ) demonstrate remarkably enhanced cycling performance with a high reversible capacity of 152.3 mAh g-1 (retention of 96.8%) after 300 cycles.

18.
Small ; 17(41): e2102454, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34514698

RESUMO

Lithium (Li) metal has been generally noticed as the most prospective anode for next-generation batteries attributed to its outstanding theoretical capacity and low electrochemical potential. Nevertheless, the unstable solid-electrolyte interphase (SEI) and uncontrollable dendrite growth cause poor reversibility and fetter the practical application of Li metal anodes. Herein, a new organic-inorganic hybrid polymer artificial SEI (POSS-LiBMAB) layer with uniform lithium-ion paths at a molecular level is designed to stabilize Li metal anodes. The SEI layer is constructed by the thiol-ene "click chemistry" reaction between inorganic polyhedral oligomeric silsesquioxane containing eight-mercaptopropyl (POSS-SH) with lithium bis (allylmalonato) borate (LiBMAB) on Li foil. What is more, the POSS-LiBMAB film can be cross-linked and self-reinforced via intermolecular SC bonds. Benefiting from its flexible polymeric covalent structure and noble inorganic Si8 O16 -type cubes, the organic-inorganic hybrid polymer layer is flexible and effectively tolerates the volume change of Li metal anodes during plating/stripping cycles. In addition, this layer shows loose and uniformly distributed electrostatic interaction between Li+ and charge delocalized sp3 boron-oxygen anions, which aids to form a uniform intermolecular Li+ path regulating the homogeneous distribution of Li+ flux on Li anodes. Finally, the designed POSS-LiBMAB layer has high ionic conductivity and lithium-ion transference number, which can effectively promote Li+ diffusion and guide Li deposition beneath the SEI layer. Therefore, with the protection of the POSS-LiBMAB layer, the Li metal anode exhibits stable cycling at 5 mA cm-2 for more than 1000 h, and the LFP//Li full cells also present outstanding cycling stability.

19.
Opt Lett ; 46(16): 3817-3820, 2021 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-34388749

RESUMO

Quantum coherence plays an important role in quantum information processing. In this Letter, we experimentally demonstrate the conversion of local and correlated Gaussian quantum coherence in the process of converting two squeezed states into an entangled state. We also investigate the relationship among total, local, and correlated coherence and show that the total coherence of a two-mode Gaussian state is the sum of local quantum coherence of each mode and the correlated quantum coherence between two modes. Our results highlight the connection of different quantum coherence in a two-mode Gaussian system and provide references for potential application.

20.
J Environ Manage ; 297: 113376, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34325374

RESUMO

Harmful algal bloom is prevalent in the reclaimed-water-source (RWS) river caused by the excessive nutrient's inputs. Rainfall water may be the sole nutrient-diluted water source for the RWS river. However, the effects of storm events on the algal bloom in the RWS river are poorly understood. This study presents chlorophyll-a (Chl-a) variations before, during, and after the initial storm events (Pre-storm, In-storm, and Post-storm) at four representative sites with distinct hydraulic conditions in a dam-regulated RWS river system, Beijing. The response of Chl-a to the initial storm events mostly depends on the ecosystem status that caused by the river hydraulic properties. The upstream is more river-like and downstream is more lake-like. In the river-like system, elevated water temperature (WT, increased by 2 %) could support the dominating algae (diatom) growth (Chl-a increased by 130 %) from Pre-storm to In-storm period. In the lake-like system, the dominant algae (blue algae) declined (Chl-a sharply decreased by 96%-99 %) due to the lower WT (decreased by 3%-7%) and increased flow velocities from Pre-storm to In-storm period. During the Post-storm period, the dominant algae break out (Chl-a surged by 20%-319 %) in the lake-like system caused by the recovered WT (increased by 3%-6%) and flow velocity. The occurrence of algal bloom can be predicted by the Random Forest (RF) model based on water quality parameters such as total nitrogen (TN). The thresholds of algal bloom for the Pre-storm, In-storm, and Post-storm periods were identified as 30 µg/L, 10 µg/L, and 10 µg/L, respectively. The two driven factors were WT and nitrate (NO3-N) for the Pre-storm period and were WT and TN for the In- & Post-storm periods. A higher risk of algal bloom is highlighted during the initial storm events in the RWS river. We propose recommendations for improving water quality in the RWS river systems under the climatic change.


Assuntos
Ecossistema , Água , China , Clorofila , Clorofila A , Monitoramento Ambiental , Eutrofização , Nitrogênio/análise , Fósforo/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA