Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros

País/Região como assunto
País de afiliação
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 26(15): 11618-11630, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38546226

RESUMO

In this work, CuM/CeO2 (M = Mn, Fe, Co, Ni, and Zr) catalysts with a low Cu content of 1 wt% were purposely designed and prepared using the co-impregnation method. The samples were characterized using various techniques (TG-DTA, XRD, N2-adsorption/desorption measurements, H2-TPR, XPS and Raman spectroscopy) and CO preferential oxidation (CO-Prox) under H2/CO2-rich conditions was performed. The results have shown that enhanced catalytic performance was achieved upon the introduction of Mn, Co and Ni, and little impact was observed with Zr doping, but Fe showed a negative effect, as compared with the Cu/CeO2 catalyst. Characterization data revealed that the M doping strongly changed the surface composition, revealing the decreased Cu/Ce ratios on the surface, which could be accounted for by the formation of more M/Cu-O-Ce solid solution, or strong Cu-M interactions. When Mn was used, the obtained CuMn/CeO2 catalyst revealed the highest concentration of the oxygen vacancies and Ce3+ ions, which could be correlated well with its superior catalytic performance. Compared with the Cu/CeO2 catalyst, the CO conversion rate increased by 24.7% at a low temperature of 90 °C over the CuMn/CeO2 catalyst. At 130 °C, the maximum CO conversion was 94.7% and the CO2 selectivity was 78.9%. Conversely, the Fe doped Cu/CeO2 catalyst demonstrated the poorest catalytic activity, which was due to the blockage effect of Fe species on Cu showing a high Fe/Cu ratio of 1.9 on the surface.

2.
Cell Mol Neurobiol ; 43(2): 827-840, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35435537

RESUMO

Abnormal amino acid metabolism in neural cells is involved in the occurrence and development of major depressive disorder. Taurine is an important amino acid required for brain development. Here, microdialysis combined with metabonomic analysis revealed that the level of taurine in the extracellular fluid of the cerebral medial prefrontal cortex (mPFC) was significantly reduced in mice with chronic social defeat stress (CSDS)-induced depression. Therefore, taurine supplementation may be usable an intervention for depression. We found that taurine supplementation effectively rescued immobility time during a tail suspension assay and improved social avoidance behaviors in CSDS mice. Moreover, taurine treatment protected CSDS mice from impairments in dendritic complexity, spine density, and the proportions of different types of spines. The expression of N-methyl D-aspartate receptor subunit 2A, an important synaptic receptor, was largely restored in the mPFC of these mice after taurine supplementation. These results demonstrated that taurine exerted an antidepressive effect by protecting cortical neurons from dendritic spine loss and synaptic protein deficits.


Assuntos
Depressão , Transtorno Depressivo Maior , Camundongos , Animais , Espinhas Dendríticas/metabolismo , Derrota Social , Transtorno Depressivo Maior/metabolismo , Taurina/metabolismo , Taurina/farmacologia , Neurônios , Aminoácidos/metabolismo , Aminoácidos/farmacologia , Estresse Psicológico/metabolismo , Córtex Pré-Frontal/metabolismo , Camundongos Endogâmicos C57BL
3.
Phys Chem Chem Phys ; 25(47): 32557-32568, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37999632

RESUMO

The adsorption of O2 on Cu/CeO2(111) and the CO oxidation reactivity of the formed oxygen species were studied using the DFT method. The results showed that superoxide species (O2δ-), which directly interacted with Cu, formed when O2 adsorbed on the surface oxygen vacancies, while O2 adsorbed on the subsurface oxygen vacancies gave rise to ozone-like O3δ- species by combining with the nearest surface lattice oxygen (O1). PDOS showed that hybridization of the 2p orbitals between O2 and O1 formed a delocalized π bond, confirming the formation of O3δ-. For O2δ-, electrons on Cu and O1 transferred to O2 while the charge of Ce remained unchanged. However, for O3δ-, the transferred electrons were mainly from O1, and partially from O2, Ce1 and Ce2. It was very interesting that Cu also received a few electrons in the latter case. Compared with CO directly adsorbed on lattice oxygen, the two oxygen species were active for CO oxidation, forming CO2 or carbonates, and higher absolute adsorption energy was obtained with the interaction between CO and O3δ-. The findings of this study provide new insight on the CO oxidation reaction mechanism, facilitating an in-depth understanding of Cu-doped CeO2 catalysts.

4.
Biopolymers ; 113(12): e23528, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36444749

RESUMO

G-quadruplexes (G4s), the noncanonical nucleic acid secondary structure, form within guanine-rich DNA or RNA sequences. G4s formation can affect chromatin architecture and gene regulation and has been associated with various cellular functions, including DNA replication, transcription, and genome maintenance. Visualizing and detecting G4s precisely in such processes is essential to increasing our understanding of G4s biology. Considerable attention has focused on the G4s targeting molecular imaging studies. Besides, fluorescent light-up aptamers (FLAPs, also referred to as fluorogenic aptamers) have gained momentum, which commonly have a G4 scaffolding for imaging intracellular RNAs and metabolites. In this review, we first introduce several representative fluorescent imaging approaches for tracking G4s in cells and in vivo. We also discuss the potential of G4-containing FLAPs in bioimaging and summarize current developments in this field from the standpoint of fluorescent molecules. Finally, we discuss the present challenges and future potential of G4 imaging and G4-containing FLAPs development.


Assuntos
Quadruplex G , DNA/química , RNA/química , Oligonucleotídeos , Regulação da Expressão Gênica
5.
J Headache Pain ; 22(1): 147, 2021 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-34895135

RESUMO

BACKGROUND: Accumulating studies have indicated a wide range of brain alterations with respect to the structure and function of classic trigeminal neuralgia (CTN). Given the dynamic nature of pain experience, the exploration of temporal fluctuations in interregional activity covariance may enhance the understanding of pain processes in the brain. The present study aimed to characterize the temporal features of functional connectivity (FC) states as well as topological alteration in CTN. METHODS: Resting-state functional magnetic resonance imaging and three-dimensional T1-weighted images were obtained from 41 CTN patients and 43 matched healthy controls (HCs). After group independent component analysis, sliding window based dynamic functional network connectivity (dFNC) analysis was applied to investigate specific FC states and related temporal properties. Then, the dynamics of the whole brain topological organization were estimated by calculating the coefficient of variation of graph-theoretical properties. Further correlation analyses were performed between all these measurements and clinical data. RESULTS: Two distinct states were identified. Of these, the state 2, characterized by complicated coupling between default mode network (DMN) and cognitive control network (CC) and tight connections within DMN, was expressed more in CTN patients and presented as increased fractional windows and dwell time. Moreover, patients switched less frequently between states than HCs. Regarding the dynamic topological analysis, disruptions in global graph-theoretical properties (including network efficiency and small-worldness) were observed in patients, coupled with decreased variability in nodal efficiency of anterior cingulate cortex (ACC) in the salience network (SN) and the thalamus and caudate nucleus in the subcortical network (SC). The variation of topological properties showed negative correlation with disease duration and attack frequency. CONCLUSIONS: The present study indicated disrupted flexibility of brain topological organization under persistent noxious stimulation and further highlighted the important role of "dynamic pain connectome" regions (including DMN/CC/SN) in the pathophysiology of CTN from the temporal fluctuation aspect. Additionally, the findings provided supplementary evidence for current knowledge about the aberrant cortical-subcortical interaction in pain development.


Assuntos
Conectoma , Neuralgia do Trigêmeo , Encéfalo/diagnóstico por imagem , Giro do Cíngulo , Humanos , Imageamento por Ressonância Magnética , Neuralgia do Trigêmeo/diagnóstico por imagem
6.
Org Biomol Chem ; 17(48): 10167-10171, 2019 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-31782473

RESUMO

A strategy for the synthesis of isoxazolidine/1,2-oxazinane-fused isoquinolin-1(2H)-ones from alkyne-tethered N-alkoxyamides is described, in which cheap Mn(acac)2 is used as a catalyst to facilitate a radical cascade annulation. The method features mild conditions, additive-free reaction and broad substrate scope. It is the first example via manganese/air catalytic systems to construct isoquinolin-1(2H)-one heterocycles.

7.
Int J Mol Sci ; 19(8)2018 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-30061546

RESUMO

Aquaporins play important regulatory roles in the transport of water and small molecules in plants. In this study, a ThellungiellasalsugineaTsPIP1;1 aquaporin was transformed into Kitaake rice, and three transgenic lines were evaluated by profiling the changes of the physiological metabolism, osmotic potential, and differentially expressed genes under salt stress. The TsPIP1;1 protein contains six transmembrane domains and is localized in the cytoplasm membrane. Overexpression of the TsPIP1;1 gene not only increased the accumulation of prolines, soluble sugars and chlorophyll, but also lowered the osmotic potential and malondialdehyde content in rice under salt stress, and alleviated the amount of salt damage done to rice organs by regulating the distribution of Na/K ions, thereby promoting photosynthetic rates. Transcriptome sequencing confirmed that the differentially expressed genes that are up-regulated in rice positively respond to salt stimulus, the photosynthetic metabolic process, and the accumulation profiles of small molecules and Na/K ions. The co-expressed Rubisco and LHCA4 genes in rice were remarkably up-regulated under salt stress. This data suggests that overexpression of the TsPIP1;1 gene is involved in the regulation of water transport, the accumulation of Na/K ions, and the translocation of photosynthetic metabolites, thus conferring enhanced salt tolerance to rice.


Assuntos
Aquaporinas/genética , Expressão Ectópica do Gene , Oryza/genética , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Tolerância ao Sal , Aquaporinas/metabolismo , Brassicaceae/genética , Brassicaceae/fisiologia , Regulação da Expressão Gênica de Plantas , Oryza/fisiologia , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/fisiologia , Transformação Genética , Regulação para Cima
8.
Beilstein J Org Chem ; 14: 2090-2097, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30202462

RESUMO

A cobalt-catalyzed C(sp2)-H alkoxylation of 1-naphthylamine derivatives has been disclosed, which represents an efficient approach to synthesize aryl ethers with broad functional group tolerance. It is noteworthy that secondary alcohols, such as hexafluoroisopropanol, isopropanol, isobutanol, and isopentanol, were well tolerated under the current catalytic system. Moreover, a series of biologically relevant fluorine-aryl ethers were easily obtained under mild reaction conditions after the removal of the directing group.

9.
Plant Cell Rep ; 36(12): 1929-1942, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29030650

RESUMO

KEY MESSAGE: An inorganic pyrophosphorylase gene, ThPP1 , modulated the accumulations of phosphate and osmolytes by up-regulating the differentially expression genes, thus enhancing the tolerance of the transgenic rice to alkali stress (AS). Inorganic pyrophosphorylase is essential in catalyzing the hydrolysis of pyrophosphate to inorganic phosphate during plant growth. Here, we report the changes of physiological osmolytes and differentially expression genes in the transgenic rice overexpressing a soluble inorganic pyrophosphatase gene ThPP1 of Thellungiella halophila in response to AS. Analyses showed that the ThPP1 gene was a PPase family I member which is located to the cytoplasm. Data showed that the transgenic lines revealed an enhanced tolerance to AS compared to the wild type, and effectively increased the accumulations of inorganic phosphate and organic small molecules starch, sucrose, proline and chlorophyll, and maintained the balance of osmotic potential by modulating the ratio of Na+/K+ in plant cells. Under AS, total 379 of differentially expression genes were up-regulated in the leaves of the transgenic line compared with control, and the enhanced tolerance of the transgenic rice to the AS seemed to be associated with the up-regulations of the osmotic stress-related genes such as the L-type lectin-domain containing receptor kinase (L-type LecRK), the cation/H+ antiporter gene and the vacuolar cation/proton exchanger 1 gene (CAX1), which conferred the involvements in the biosynthesis and metabolic pathways. Protein interaction showed that the ThPP1 protein specifically interacted with a 16# target partner of the photosystem II light-harvesting-Chl-binding protein. This study suggested that the ThPP1 gene plays an important regulatory role in conferring the tolerance of the transgenic rice to AS, and is an effective candidate in molecular breeding for crop cultivation of the alkali tolerance.


Assuntos
Brassicaceae/enzimologia , Pirofosfatase Inorgânica/metabolismo , Oryza/enzimologia , Plantas Geneticamente Modificadas/enzimologia , Álcalis , Brassicaceae/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/genética , Pirofosfatase Inorgânica/genética , Oryza/genética , Pressão Osmótica/efeitos dos fármacos , Plantas Geneticamente Modificadas/genética , Potássio/metabolismo , Sódio/metabolismo
10.
Nucleic Acids Res ; 41(4): 2370-81, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23275532

RESUMO

DNA gyrase plays a vital role in resolving DNA topological problems and is the target of antibiotics such as fluoroquinolones. Mycobacterium fluoroquinolone resistance protein A (MfpA) from Mycobacterium smegmatis is a newly identified DNA gyrase inhibitor that is believed to confer intrinsic resistance to fluoroquinolones. However, MfpA does not prevent drug-induced inhibition of DNA gyrase in vitro, implying the involvement of other as yet unknown factors. Here, we have identified a new factor, named Mycobacterium fluoroquinolone resistance protein B (MfpB), which is involved in the protection of DNA gyrase against drugs both in vivo and in vitro. Genetic results suggest that MfpB is necessary for MfpA protection of DNA gyrase against drugs in vivo; an mfpB knockout mutant showed greater susceptibility to ciprofloxacin than the wild-type, whereas a strain overexpressing MfpA and MfpB showed higher loss of susceptibility. Further biochemical characterization indicated that MfpB is a small GTPase and its GTP bound form interacts directly with MfpA and influences its interaction with DNA gyrase. Mutations in MfpB that decrease its GTPase activity disrupt its protective efficacy. Our studies suggest that MfpB, a small GTPase, is required for MfpA-conferred protection of DNA gyrase.


Assuntos
Proteínas de Bactérias/metabolismo , DNA Girase/metabolismo , Fluoroquinolonas/farmacologia , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Mycobacterium smegmatis/efeitos dos fármacos , Mycobacterium smegmatis/enzimologia , Proteínas de Bactérias/fisiologia , Ciprofloxacina/farmacologia , Farmacorresistência Bacteriana , Proteínas Monoméricas de Ligação ao GTP/fisiologia
11.
Mar Drugs ; 12(4): 1876-90, 2014 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-24686560

RESUMO

Soft corals are common marine organisms that inhabit tropical and subtropical oceans. They are shown to be rich source of secondary metabolites with biological activities. In this work, soft corals from two geographical locations were investigated using ¹H-NMR spectroscopy coupled with multivariate statistical analysis at the metabolic level. A partial least-squares discriminant analysis showed clear separation among extracts of soft corals grown in Sanya Bay and Weizhou Island. The specific markers that contributed to discrimination between soft corals in two origins belonged to terpenes, sterols and N-containing compounds. The satisfied precision of classification obtained indicates this approach using combined ¹H-NMR and chemometrics is effective to discriminate soft corals collected in different geographical locations. The results revealed that metabolites of soft corals evidently depended on living environmental condition, which would provide valuable information for further relevant coastal marine environment evaluation.


Assuntos
Antozoários/metabolismo , Espectroscopia de Ressonância Magnética/métodos , Metabolômica/métodos , Animais , Análise Discriminante , Análise dos Mínimos Quadrados , Análise Multivariada , Compostos de Nitrogênio/isolamento & purificação , Metabolismo Secundário , Esteróis/isolamento & purificação , Terpenos/isolamento & purificação
12.
Molecules ; 19(9): 13225-34, 2014 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-25165861

RESUMO

A new compound and seven known compounds were isolated from Murraya tetramera Huang for the first time, and they were identified with NMR and MS spectral analysis. It was confirmed that the new compound was 10-methoxy-7-methyl-2H-benzo[g]chromen-2-one (3) and the others were ß-eudesmol (1), trans-3ß-(1-hydroxy-1-methylethyl)-8aß-methyl-5-methylenedecalin-2-one (2), 5,7-dimethoxy-8-[(Z)-3'-methyl-butan-1',3'-dienyl]coumarin (4), 7-geranyloxy-6-methoxycoumarin (5), 5,7-dimethoxy-8-(3-methyl-2-oxo-butyl)coumarin (6), murrangatin acetate (7) and toddalenone (8). Furthermore, the cytotoxic activity against human lung adenocarcinoma (A549), human hepatocellular carcinoma cells (SMMC-7721), human bladder tumor cells (EJ), human cervical carcinoma cells (HeLa), and human B-lineage acute lymphoblastic leukemia 1 cells (BALL-1) was evaluated for all compounds. It was found that five of them displayed various degrees of cytotoxicity against different testing targets. Compound 1 showed significant cytotoxic activity against the five cell lines (A549, SMMC-7721, EJ, Hela and BALL-1). Compounds 2 and 5 showed significant cytotoxicity against three cell lines (A549, SMMC-7721 and BALL-1). Compound 4 showed significant cytotoxicity against three cell lines (A549, EJ and BALL-1). However, compound 3 only showed fair cytotoxicity against the BALL-1 cell line. The structure-active relationships were investigated as well. These active compounds might be potential lead compounds for the treatment of cancer.


Assuntos
Ensaios de Seleção de Medicamentos Antitumorais , Murraya/química , Neoplasias/tratamento farmacológico , Extratos Vegetais/administração & dosagem , Linhagem Celular Tumoral , Humanos , Neoplasias/patologia , Extratos Vegetais/química , Extratos Vegetais/classificação
13.
PeerJ ; 12: e17999, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39221283

RESUMO

Background: Sucrose invertase is an important catalytic enzyme that is widely distributed in plants and can irreversibly hydrolyze sucrose into fructose and glucose. Daylily is an important perennial flower worldwide and a traditional vegetable in East Asia. Previous studies have suggested that sucrose invertase is involved in the aging of daylily flowers. However, knowledge about the number, physicochemical properties, and expression patterns of daylily sucrose invertases is still lacking. Identifying the daylily sucrose invertase family genes in the genome is highly important for understanding phylogenetic evolution and determining the genetic function of sucrose invertase. Methods: To obtain basic knowledge about the number, classification, sequence composition, and physicochemical properties of sucrose invertases in daylily, bioinformatics software was used to analyze the genome of Hemerocallis citrina (H. citrina), and the basic properties of sucrose invertase genes and proteins were obtained. Then, combined with transcriptome data from flower organs at different developmental stages, the expression patterns of each gene were clarified. Finally, the reliability of the transcriptome data was verified by quantitative real-time polymerase chain reaction (PCR). Results: Through software analysis, 35 sucrose invertases were identified from the H. citrina genome and named HcINV1-HcINV35; these enzymes belong to three subfamilies: cell wall invertases, vacuolar invertases, and chloroplast invertases. The amino acid composition, motif types, promoter composition, gene structure, protein physicochemical properties, gene chromosomal localization, and evolutionary adaptability of daylily invertases were determined; these results provided a comprehensive understanding of daylily invertases. The transcriptome expression profile combined with fluorescence quantitative reverse transcription-polymerase chain reaction (RT‒PCR) analysis suggested that almost all daylily invertase genes were expressed in flower organs, but even genes belonging to the same subfamily did not exhibit the same expression pattern at different developmental stages, suggesting that there may be redundancy or dissimilation in the function of daylily sucrose invertases.


Assuntos
Regulação da Expressão Gênica de Plantas , Filogenia , beta-Frutofuranosidase , beta-Frutofuranosidase/genética , beta-Frutofuranosidase/metabolismo , beta-Frutofuranosidase/química , Flores/genética , Flores/enzimologia , Genoma de Planta/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Família Multigênica
14.
J Chem Phys ; 139(3): 034313, 2013 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-23883033

RESUMO

Delocalized excitons in elementary linear J aggregates of two-level molecules absorb a photon into the low-energy edge of an exciton band. Absorption of a second photon is blue-shifted as the lowest energy state is occupied. This setup of states leads to a double-peak feature in a set of two dimensional photon echo spectra for excitonic bands. The delocalization properties of excitons, thus, strongly affect the peak lineshapes and their relative amplitudes. Simulations of various two dimensional spectra of a linear J aggregate are presented and possible schemes to quantitatively characterize the peak profiles are suggested. This allows to relate observable peak lineshapes to the exciton delocalization.

15.
Chem Sci ; 14(17): 4538-4548, 2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37152256

RESUMO

G-quadruplexes (G4s) are significant nucleic acid secondary structures formed by guanine-rich sequences. Many single-emission G4 fluorescent probes that are lit up by inhibiting intramolecular rotation have been reported. However, they are non-fluorescent unless structurally rigidified, making them sensitive to other intracellular crowding and confinement environments in the cell, like viscosity. Ratiometric measurements provide built-in self-calibration for signal correction, enabling more sensitive and reliable detection. Herein, we structurally modulate green fluorescent protein (GFP)-like chromophores by integrating the imidazolidinone scaffold of the GFP chromophore and coumarin 6H, obtaining a G4 responsive dual-emission chromophore, called NHCouI. The red emission signal of NHCouI can specifically respond to parallel G4s, while its green emission signal is inert and acts as an internal reference signal. NHCouI-G4 complexes feature high fluorescence quantum yield and excellent anti-photobleaching properties. NHCouI can self-calibrate the signal and avoid viscosity disturbances within the range of major subcellular organelles during G4 imaging in living cells. It is also applied to reflect the difference between apoptosis and ferroptosis via tracking G4s. To the best of our knowledge, NHCouI is the first small molecule G4 probe enabled by internal reference correction capability, opening up new avenues for dual-emission chromophore development and high-fidelity and reliable analysis in G4 imaging research.

16.
Org Lett ; 25(11): 1918-1923, 2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-36926928

RESUMO

We described herein a neoteric enantioselective cascade Michael/acyl transfer reaction of enynones and α-hydroxy aryl ketones catalyzed by dinuclear zinc cooperative catalysis. A series of structurally diverse chiral 1,5-dicarbonyl compounds were synthesized in good yields with excellent stereoselectivities. This strategy features broad substrate scope, high atom economy, as well as enynones as efficient electrophilic acyl transfer reagents in asymmetric cascade reactions for the first time.

17.
Chem Sci ; 13(41): 12187-12197, 2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36349109

RESUMO

Multicolor conditional labeling is a powerful tool that can simultaneously and selectively visualize multiple targets for bioimaging analysis of complex biological processes and cellular features. We herein report a multifunctional stimuli-responsive Fluorescence-Activating and absorption-Shifting Tag (srFAST) chemogenetic platform for multicolor cell-selective labeling. This platform comprises stimuli-responsive fluorogenic ligands and the organelle-localizable FAST. The physicochemical properties of the srFAST ligands can be tailored by modifying the optical-tunable hydroxyl group with diverse reactive groups, and their chemical decaging process caused by cell-specific stimuli induces a conditionally activatable fluorescent labeling upon binding with the FAST. Thus, the resulting switch-on srFASTs were designed for on-demand labeling of cells of interest by spatiotemporally precise photo-stimulation or unique cellular feature-dependent activation, including specific endogenous metabolites or enzyme profiles. Furthermore, diverse enzyme-activatable srFAST ligands with distinct colors were constructed and simultaneously exploited for multicolor cell-selective labeling, which allow discriminating and orthogonal labeling of three different cell types with the same protein tag. Our method provides a promising strategy for designing a stimuli-responsive chemogenetic labeling platform via facile molecular engineering of the synthetic ligands, which has great potential for conditional multicolor cell-selective labeling and cellular heterogeneity evaluation.

18.
Gut Microbes ; 14(1): 2125747, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36128620

RESUMO

Attention-deficit/hyperactivity disorder (ADHD) is a highly heterogeneous psychiatric disorder that can have three phenotypical presentations: inattentive (I-ADHD), hyperactive-impulsive (HI-ADHD), and combined (C-ADHD). Environmental factors correlated with the gut microbiota community have been implicated in the development of ADHD. However, whether different ADHD symptomatic presentations are associated with distinct microbiota compositions and whether patients could benefit from the correction of aberrant bacterial colonization are still largely unclear. We carried out metagenomic shotgun analysis with 207 human fecal samples to characterize the gut microbial profiles of patients with ADHD grouped according to their phenotypical presentation. Then, we transplanted the candidate low-abundance bacteria identified in patient subgroups into ADHD rats and evaluated ADHD-associated behaviors and neuronal activation in these rats. Patients with C-ADHD had a different gut microbial composition from that of healthy controls (HCs) (p = .02), but not from that of I-ADHD patients. Eight species became progressively attenuated or enriched when comparing the compositions of HCs to those of I-ADHD and C-ADHD; in particular, the abundance of Bacteroides ovatus was depleted in patients with C-ADHD. In turn, Bacteroides ovatus supplementation ameliorated spatial working memory deficits and reversed θ electroencephalogram rhythm alterations in ADHD rats. In addition, Bacteroides ovatus induced enhanced neuronal activation in the hippocampal CA1 subregion. These findings indicate that gut microbial characteristics that are unique to patients with C-ADHD may be masked when considering a more heterogeneous group of patients. We link the gut microbiota to brain function in an ADHD animal model, suggesting the relevance of testing a potential bacteria-based intervention for some aspects of ADHD.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Disfunção Cognitiva , Microbioma Gastrointestinal , Animais , Transtorno do Deficit de Atenção com Hiperatividade/microbiologia , Bacteroides , Cognição , Microbioma Gastrointestinal/fisiologia , Humanos , Ratos
19.
Brain Res Bull ; 174: 1-10, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34058285

RESUMO

N-methyl-d-aspartic acid receptor (NMDAR)-dependent synaptic plasticity at the thalamus-lateral amygdala (T-LA) synapses is related to acquisition and extinction of auditory fear memory. However, the roles of the NMDAR GluN2A subunit in acquisition and extinction of auditory fear memory as well as synaptic plasticity at T-LA synapses remain unclear. Here, using electrophysiologic, molecular biological techniques and behavioral methods, we found that the forebrain specific GluN2A overexpression transgenic (TG) mice exhibited normal acquisition but impaired extinction of auditory fear memory. In addition, in vitro electrophysiological data showed normal basal synaptic transmission and NMDAR-dependent long-term potentiation (LTP) at T-LA synapses, but deficit in NMDAR-dependent long-term depression (LTD) at T-LA synapses in GluN2A TG mice. Consistent with the reduced NMDAR-dependent LTD, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) internalization was also weakened during NMDAR-dependent LTD in GluN2A TG mice. Taken together, our findings for the first time indicate that GluN2A overexpression impairs extinction of auditory fear memory and NMDAR-dependent LTD at T-LA synapses, which further confirms the close relationship between NMDAR-dependent LTD and fear extinction.


Assuntos
Tonsila do Cerebelo/fisiologia , Extinção Psicológica/fisiologia , Medo/psicologia , Depressão Sináptica de Longo Prazo/genética , Depressão Sináptica de Longo Prazo/fisiologia , Prosencéfalo/metabolismo , Receptores de N-Metil-D-Aspartato/fisiologia , Estimulação Acústica , Animais , Comportamento Animal , Fenômenos Eletrofisiológicos , Expressão Gênica , Potenciação de Longa Duração/genética , Potenciação de Longa Duração/fisiologia , Camundongos , Plasticidade Neuronal , Receptores de AMPA/genética , Receptores de AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/biossíntese , Receptores de N-Metil-D-Aspartato/genética
20.
Chem Commun (Camb) ; 57(77): 9854-9857, 2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34490871

RESUMO

An enantioselective Friedel-Crafts alkylation/cyclization tandem reaction of 3-aminophenols with α,α-dicyanoolefins has been performed successfully using a chiral dinuclear zinc catalyst, leading to a range of chiral 2-amino-4H-chromenes (up to 98% yield and >99% ee). To the best of our knowledge, this is the first asymmetric example of the dinuclear zinc-catalysed functionalization of aromatic C(sp2)-H bonds.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA