RESUMO
Limosilactobacillus reuteri is an indigenous inhabitant of the animal gut known for its probiotic effects on the host. In our previous study, a large number of L. reuteri strains were isolated from the gastrointestinal tract of mice recovering from ulcerative colitis, from which we randomly selected L. reuteri RE225 for whole genome sequencing to explore its probiotic properties. The results of next-generation sequencing and third-generation single molecule sequencing showed that L. reuteri RE225 contained many genes encoding functional proteins associated with adhesion, anti-inflammatory and pathogen inhibition. And compared to other L. reuteri strains in NCBI, L. reuteri RE225 has unique gene families with probiotic functions. In order to further explore the probiotic effect of the L. reuteri RE225, the derived peptides were identified by LC-MS/MS, and the peptides with tumor necrosis factor-α binding ability were screened by reverse molecular docking and microscale thermophoresis. Finally, cell experiments demonstrated the anti-inflammatory ability of the peptides. Western blotting and qPCR analyses confirmed that the selected peptides might alleviate LPS-induced inflammation in NCM460 cells by inhibiting JAK2/STAT3 pathway activation.
Assuntos
Colite Ulcerativa , Limosilactobacillus reuteri , Animais , Camundongos , Limosilactobacillus reuteri/genética , Colite Ulcerativa/tratamento farmacológico , Cromatografia Líquida , Simulação de Acoplamento Molecular , Espectrometria de Massas em Tandem , Peptídeos/genética , Peptídeos/farmacologia , Sequenciamento Completo do GenomaRESUMO
A new strain of Bacillus velezensis NDB was isolated from Xiangshan Harbor and antibacterial test revealed antibacterial activity of this strain against 12 major pathogenic bacteria. The whole genome of the bacterium was sequenced and found to consist of a 4,214,838 bp circular chromosome and a 7410 bp circular plasmid. Furthermore, it was predicted by AntiSMASH and BAGEL4 to have 12 clusters of secondary metabolism genes for the synthesis of the inhibitors, fengycin, bacillomycin, macrolactin H, bacillaene, and difficidin, and there were also five clusters encoding potentially novel antimicrobial substances, as well as three bacteriocin biosynthesis gene clusters of amylocyclicin, ComX1, and LCI. qRT-PCR revealed significant up-regulation of antimicrobial secondary metabolite synthesis genes after 24 h of antagonism with pathogenic bacteria. Furthermore, MALDI-TOF mass spectrometry revealed that it can secrete surfactin non-ribosomal peptide synthase and polyketide synthase to exert antibacterial effects. GC-MS was used to analyze methanol extract of B. velezensis NDB, a total of 68 compounds were identified and these metabolites include 16 amino acids, 17 acids, 3 amines, 11 sugars, 11 alcohols, 1 ester, and 9 other compounds which can inhibit pathogenic bacteria by initiating the antibiotic secretion pathway. A comparative genomic analysis of gene families showed that the specificity of B. velezensis NDB was mainly reflected in environmental adaptability. Overall, this research on B. velezensis NDB provides the basis for elucidating its biocontrol effect and promotes its future application as a probiotic.
Assuntos
Bacillus , Bacillus/genética , Antibacterianos/farmacologia , Aminas , AminoácidosRESUMO
BACKGROUND: Gout poses a significant health threat. The use of Lactobacillus from the gut microbiota is one potential remedy. However, the intricate molecular mechanisms governing the impact of Lactobacillus on gout remain largely uncharted. In this study, a strain of Limosilactobacillus reuteri RE225 was separated from the gut of mice and colitis was treated with polypeptide intervention. RESULTS: Limosilactobacillus reuteri RE225 reduced foot tumefaction markedly in mice with gout and extended the pain threshold time in their feet. It also improved the health of gut microbiota. Intervention with L. reuteri RE225 also suppressed the TLR4/MyD88/NF-κB and nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) pathways in the mice, reduced the levels of pro-inflammatory cytokines - interleukin 1ß (IL-1ß), interleukin 6 (IL-6), and tumor necrosis factor-α (TNF-α) - and increased the level of the anti-inflammatory cytokine interleukin 10 (IL-10), thereby mitigating inflammation. CONCLUSION: This study provides a theoretical basis for the comprehensive development of Limosilactobacillus reuteri and new ideas for the non-pharmacological treatment of gout. © 2024 Society of Chemical Industry.
RESUMO
BACKGROUND: Previous studies have shown that anserine can alleviate hyperuricemia by changing the fecal microbiota of hyperuricemic mice. TOPIC: However, the fecal microbiota could not fully represent the distribution of the whole gut microbiota. Knowing the spatial distribution of the gastrointestinal tract microbiota is therefore important for understanding its action in the occurrence and remission of hyperuricemia. METHODS: This study provides a comprehensive map of the most common bacterial communities that colonize different parts of the mouse gastrointestinal tract (stomach, duodenum, ileum, cecum, and colon) using a modern methodological approach. RESULTS: The stomach, colon, and cecum showed the greatest richness and diversity in bacterial species. Three clusters of bacterial populations were observed along the digestive system: (1) in the stomach, (2) in the duodenum and ileum, and (3) in the colon and cecum. A high purine solution changed the composition and abundance of the digestive tract microbiota, and anserine relieved hyperuricemia by restoring the homeostasis of the digestive tract microbiota, especially improving the abundance of probiotics in the digestive tract. IMPLICATION: This could be the starting point for further research on the regulation of hyperuricemia by gut microbiota with the ultimate goal of promoting health and welfare. © 2022 Society of Chemical Industry.
Assuntos
Microbioma Gastrointestinal , Hiperuricemia , Animais , Camundongos , Anserina , Trato Gastrointestinal/microbiologia , Ceco/microbiologia , RNA Ribossômico 16SRESUMO
In recent decades, the prevalence of hyperuricemia has increased, and dietary fructose is an important risk factor for the development of this disease. This study investigated and compared the effects of Sphacelotheca reiliana polysaccharides and Phoenix dactylifera monosaccharides on a series of physiological and biochemical indicators and on the metagenomes and serum metabolites in mice with hyperuricemia caused by a high-fructose diet. S. reiliana polysaccharides inhibited uric acid biosynthesis and promoted uric acid excretion, thereby alleviating the hyperuricemia phenotype. In addition, hyperuricemia was closely related to the gut microbiota. After treatment with S. reiliana polysaccharides, the abundances of Bacteroidetes and Proteobacteria in the mouse intestines were decreased, the expression of genes involved in glycolysis/gluconeogenesis metabolic pathways and purine metabolism was downregulated, and the dysfunction of the gut microbiota was alleviated. With regard to serum metabolism, the abundance of hippuric acid, uridine, kynurenic acid, propionic acid and arachidonoyl decreased, and the abundances of serum metabolites in inflammatory pathways involved in kidney injury and gout, such as bile acid metabolism, purine metabolism and tryptophan metabolism pathways, decreased. P. dactylifera monosaccharides aggravated hyperuricemia. This research provides a valuable reference for the development of sugar applications.
Assuntos
Microbioma Gastrointestinal , Hiperuricemia , Phoeniceae , Animais , Frutose/efeitos adversos , Hiperuricemia/induzido quimicamente , Hiperuricemia/tratamento farmacológico , Camundongos , Monossacarídeos , Polissacarídeos , Ácido ÚricoRESUMO
BACKGROUND: The health benefits of tuna oil, which is different from the fish oil commonly studied, and its higher docosahexaenoic acid (DHA) content, have attracted much scientific attention in recent years. In this study, prepared tuna oil with higher DHA (HDTO) content was employed. It was the first to integrate microbiome and metabolome from a dose-effect perspective to investigate the influence of HDTO on gut dysbiosis and metabolic disorders in diet-induced obese mice. RESULTS: Higher DHA tuna oil was effective in reversing high-fat-diet-induced metabolic disorders and altering the composition and function of gut microbiota, but these effects were not uniformly dose dependent. The flora and metabolites that were targeted to be regulated by HDTO supplementation were Prevotella, Bifidobacterium, Olsenella, glycine, l-aspartate, l-serine, l-valine, l-isoleucine, l-threonine, l-tyrosine, glyceric acid, glycerol, butanedioic acid, and citrate, respectively. Functional pathway analysis revealed that alterations in these metabolic biomarkers were associated with six main metabolic pathways: glycine, serine, and threonine metabolism; glycerolipid metabolism; glyoxylate and dicarboxylate metabolism; alanine, aspartate, and glutamate metabolism; aminoacyl-tRNA biosynthesis, and the citrate cycle (TCA cycle). CONCLUSION: Various doses of HDTO could attenuate endogenous disorders to varying degrees by regulating multiple perturbed pathways to the normal state. This explicit dose research for novel fish oil with high-DHA will provide a valuable reference for those seeking to exploit its clinical therapeutic potential. © 2022 Society of Chemical Industry.
Assuntos
Ácidos Docosa-Hexaenoicos , Atum , Animais , Citratos , Dieta Hiperlipídica/efeitos adversos , Ácidos Docosa-Hexaenoicos/metabolismo , Disbiose/tratamento farmacológico , Óleos de Peixe/química , Glicina , Camundongos , Atum/metabolismoRESUMO
Recently, interest in using whole food-derived mixtures to alleviate chronic metabolic syndrome through potential synergistic interactions among different components is increasing. In this study, the effects and mechanisms of tuna meat oligopeptides (TMOP) on hyperuricemia and associated renal inflammation were investigated in mice. Dietary administration of TMOP alleviated hyperuricemia and renal inflammation phenotypes, reprogramed uric acid metabolism pathways, inhibited the activation of NLRP3 inflammasome and TLR4/MyD88/NF-κB signaling pathways, and suppressed the phosphorylation of p65-NF-κB. In addition, TMOP treatments repaired the intestinal epithelial barrier, reversed the gut microbiota dysbiosis and increased the production of short-chain fatty acids. Moreover, the antihyperuricemia effects of TMOP were transmissible by transplanting the fecal microbiota from TMOP-treated mice, indicating that the protective effects were at least partially mediated by the gut microbiota. Thus, for the first time, we clarify the potential effects of TMOP as a whole food derived ingredient on alleviating hyperuricemia and renal inflammation in mice, and additional efforts are needed to confirm the beneficial effects of TMOP on humans.
Assuntos
Anti-Inflamatórios/uso terapêutico , Proteínas de Peixes da Dieta/uso terapêutico , Microbioma Gastrointestinal , Hiperuricemia/tratamento farmacológico , Nefrite/tratamento farmacológico , Oligopeptídeos/uso terapêutico , Animais , Anti-Inflamatórios/administração & dosagem , Anti-Inflamatórios/química , Suplementos Nutricionais , Proteínas de Peixes da Dieta/administração & dosagem , Proteínas de Peixes da Dieta/química , Hiperuricemia/microbiologia , Mucosa Intestinal/metabolismo , Rim/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos ICR , Fator 88 de Diferenciação Mieloide/metabolismo , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Nefrite/microbiologia , Oligopeptídeos/administração & dosagem , Oligopeptídeos/química , Receptor 4 Toll-Like/metabolismo , Atum , Ácido Úrico/metabolismoRESUMO
Vibrio parahemolyticus is a halophilic bacterium which causes widespread seafood poisoning pathogenicity. Although the incidence of disease caused by V. parahemolyticus was stepwise increased, the pathogenic mechanism remained unclear. Herein, the difference of V. parahemolyticus's metabonomic which on blood agar and seawater beef extract peptone medium was detected via nuclear magnetic resonance and 55 metabolites were identified. Among them, 40 kinds of metabolites were upregulated in blood agar group, and 12 kinds were downregulated. Nine pathways were verified by enrichment analysis which were predicted involved in amino acids and protein synthesis, energy metabolism, DNA and RNA synthesis and DNA damage repair. We supposed that the metabolic pathway obtained from this study is related to V. parahemolyticus pathogenicity and our findings will aid in the identification of alternative targets or strategies to treat V. parahemolyticus-caused disease.
Assuntos
Meios de Cultura/metabolismo , Vibrio parahaemolyticus/metabolismo , Ágar/análise , Meios de Cultura/química , Humanos , Espectroscopia de Ressonância Magnética , Metabolômica , Vibrioses/microbiologia , Vibrio parahaemolyticus/química , Vibrio parahaemolyticus/genética , Vibrio parahaemolyticus/crescimento & desenvolvimentoRESUMO
Plants employ dynamic molecular networks to control development in response to environmental changes, yet the underlying mechanisms are largely unknown. Here we report the identification of two rice leucine-rich repeat receptor-like kinases, Thermo-Sensitive Genic Male Sterile 10 (TMS10) and its close homolog TMS10-Like (TMS10L), which redundantly function in the maintenance of the tapetal cell layer and microspore/pollen viability under normal temperature conditions with TMS10 playing an essential role in higher temperatures (namely, 28 °C). tms10 displays male sterility under high temperatures but male fertility under low temperatures, and the tms10 tms10l double mutant shows complete male sterility under both high and low temperatures. Biochemical and genetic assays indicate that the kinase activity conferred by the intracellular domain of TMS10 is essential for tapetal degeneration and male fertility under high temperatures. Furthermore, indica or japonica rice varieties that contain mutations in TMS10, created by genetic crosses or genome editing, also exhibit thermo-sensitive genic male sterility. These findings demonstrate that TMS10 and TMS10L act as a key switch in postmeiotic tapetal development and pollen development by buffering environmental temperature changes, providing insights into the molecular mechanisms by which plants develop phenotypic plasticity via genotype-environment temperature interaction. TMS10 may be used as a genetic resource for the development of hybrid seed production systems in crops.
Assuntos
Regulação da Expressão Gênica de Plantas , Oryza/genética , Infertilidade das Plantas/genética , Proteínas de Plantas/genética , Proteínas Quinases/genética , Sementes/genética , Adaptação Fisiológica/genética , Cruzamentos Genéticos , Interação Gene-Ambiente , Mutação , Oryza/classificação , Oryza/metabolismo , Filogenia , Proteínas de Plantas/metabolismo , Pólen , Polinização , Proteínas Quinases/metabolismo , Transdução de Sinais , TemperaturaRESUMO
Iodine is an important trace element involved in thyroid hormone biosynthesis, while diet-induced obesity is reported to disturb the trace element metabolic balance. Herein, we studied the host-specific responses involved in modulating thyroid function and gut microbiota in obese mice after the iodine treatment and analyzed the possible causes for these responses. Obesity in the mice was induced by a high-fat diet, and the obese and normal mice were treated with the same iodine dosage (18 µg/kg/day) continuously for 8 weeks. Iodine treatment in the obese mice showed a weight-reducing effect, increased the thyroid hormone concentrations, altered the transcriptions of genes involved in thyroid hormone biosynthesis, and modulated the gut microbiota with an increased abundance of pathogenic bacteria and decreased the proportion of beneficial bacteria. However, completely different or even opposite response profiles were observed in the normal hosts. Our work indicated that obesity may exacerbate the risk of thyroid disease with a relatively safe dose of iodine, and individual differences should be considered with trace element supplementation.
Assuntos
Suplementos Nutricionais , Microbioma Gastrointestinal/fisiologia , Iodo/administração & dosagem , Obesidade/microbiologia , Obesidade/fisiopatologia , Glândula Tireoide/fisiologia , Animais , Dieta Hiperlipídica/efeitos adversos , Fezes/química , Fezes/microbiologia , Feminino , Microbioma Gastrointestinal/efeitos dos fármacos , Iodo/farmacologia , Iodo/urina , Redes e Vias Metabólicas/efeitos dos fármacos , Redes e Vias Metabólicas/genética , Camundongos Endogâmicos ICR , Obesidade/etiologia , Obesidade/patologia , Glândula Tireoide/efeitos dos fármacos , Hormônios Tireóideos/sangue , Hormônios Tireóideos/metabolismoRESUMO
Conventional methods for the detection of Vibrio parahemolyticus (VP) usually need tedious, labor-intensive processes, and have low sensitivity, which further limits their practical applications. Herein, we developed a simple and efficient colorimetry and surface-enhanced Raman scattering (SERS) dual-mode immunosensor for sensitive detection of VP, by employing giant Au vesicles with anchored tiny gold nanowires (AuNW) as a smart probe. Due to the larger specific surface and special hollow structure of giant Au vesicles, silver staining would easily lead to vivid color change for colorimetric analysis and further amplify SERS signals. The t-test was further used to determine if two sets of data from colorimetry and SERS were significantly different from each other. The result shows that there was no significant difference between data from the two methods. Two sets of data can mutually validate each other and avoid false positive and negative detection. The designed colorimetry-SERS dual-mode sensor would be very promising in various applications such as food safety inspection, personal healthcare, and on-site environmental monitoring.
Assuntos
Colorimetria , Ouro/química , Imunoensaio , Nanofios/química , Vibrio parahaemolyticus/isolamento & purificação , Análise Espectral Raman , Propriedades de SuperfícieRESUMO
BACKGROUND: Lactobacillus plantarum, a versatile lactic acid-fermenting bacterium, isolated from the traditional pickles in Ningbo of China, was chosen for grass carp fermentation, which could also improve the flavor of grass carp. We here explored the central metabolic pathways of L. plantarum by using metabolomic approach, and further proved the potential for metabolomics combined with proteomics approaches for the basic research on the changes of metabolites and the corresponding fermentation mechanism of L. plantarum fermentation. RESULTS: This study provides a cellular material footprinting of more than 77 metabolites and 27 proteins in L. plantarum during the grass carp fermentation. Compared to control group, cells displayed higher levels of proteins associated with glycolysis and nucleotide synthesis, whereas increased levels of serine, ornithine, aspartic acid, 2-piperidinecarboxylic acid, and fumarate, along with decreased levels of alanine, glycine, threonine, tryptophan, and lysine. CONCLUSIONS: Our results may provide a deeper understanding of L. plantarum fermentation mechanism based on metabolomics and proteomic analysis and facilitate future investigations into the characterization of L. plantarum during the grass carp fermentation.
Assuntos
Carpas/microbiologia , Alimentos Fermentados/microbiologia , Lactobacillus plantarum/metabolismo , Animais , China , Fermentação , Produtos Pesqueiros/microbiologia , Glicólise , Lactobacillus plantarum/genética , Lactobacillus plantarum/isolamento & purificação , Metabolômica , ProteômicaRESUMO
Previous studies have shown that dietary supplementation with tuna oil and algae oil can alleviate the effects of ageing on learning and memory in mouse models, but the mechanism of this effect remains unknown. This study aimed to determine whether dietary oil supplementation alters the composition of the gut microbiota during the prevention of age-related effects on cognition. Ageing mice received dietary oil supplementation continuously for 12 weeks. The supplementation was found to improve the animals' learning and cognition, and this effect was most marked in the TO200AO400 group, which received a 1:2 mixture of tuna oil and algae oil at 600 mg kg-1 day-1. Next-generation sequencing of the 16S rRNA gene present in faecal samples showed that the gut microbiota varied in the groups that received different oil treatments; the TO200AO400 treatment most closely restored the composition of the D-galactose-altered gut microbiota to that of the control. Moreover, 83 altered operational taxonomic units (OTUs) responsive to dietary oil supplementation were identified; five of these differed in one or more parameters associated with host ageing. In conclusion, this study confirmed the effect of dietary oil supplementation on the alleviation of age-related decline in cognitive function and showed that oil supplementation results in alterations in the composition of the gut microbiota. Further research will be needed to elucidate the causal relationship between the reversal of age-related cognitive decline and gut microbiota modulation and to explore the potential of gut microbial communities as a diagnostic biomarker and a therapeutic target in ageing.
Assuntos
Envelhecimento/patologia , Suplementos Nutricionais , Galactose/administração & dosagem , Microbioma Gastrointestinal , Óleos/administração & dosagem , Animais , Análise por Conglomerados , Cognição , DNA Ribossômico/química , DNA Ribossômico/genética , Fezes/microbiologia , Camundongos , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNARESUMO
Lateral flow assay (LFA) has been applied in many fields due to its relative ease of use and cost-effectiveness. However, it has low sensitivity and its applications are limited. Probe materials play a significant role in improving the detection efficiency and sensitivity of LFA. In this study, by using concave palladium-platinum (Pd-Pt) nanoparticles as a nanozyme probe, we developed a sensitive LFA based on the sandwich format for qualitative and quantitative detection of Escherichia coli O157:H7. The sensitivity of the LFA was improved by applying the 3,3',5,5'-tetramethylbenzidine (TMB) substrate onto the test line where the nanozyme was accumulated in the presence of analytes. The nanozyme showed high catalytic performance toward TMB and greatly enhanced the signal intensity of the test line. The sensitivity of the nanozyme-based LFA was 9.0 × 102 cfu/mL in milk, which was 111-fold higher than that of traditional colloidal gold-based LFA. The proposed method has remarkable potential in the detection of various pathogens in real samples.
Assuntos
Escherichia coli O157/isolamento & purificação , Análise de Alimentos/métodos , Microbiologia de Alimentos , Leite/microbiologia , AnimaisRESUMO
Understanding the fluorescence resonance energy transfer (FRET) of metal nanoparticles at the atomic level has long been a challenge due to the lack of accurate systems with definite distance and orientation of molecules. Here we present the realization of achieving FRET between two atomically precise copper nanoclusters through cocrystallization-induced spatial confinement. In this study, we demonstrate the establishment of FRET in a cocrystallized Cu8(p-MBT)8(PPh3)4@Cu10(p-MBT)10(PPh3)4 system by exploiting the overlapping spectra between the excitation of the Cu10(p-MBT)10(PPh3)4 cluster and the emission of the Cu8(p-MBT)8(PPh3)4 cluster, combined with accurate control over the confined space between the two nanoclusters. Density functional theory is employed to provide deeper insights into the role of the distance and dipole orientations of molecules to illustrate the FRET procedure between two cluster molecules at the electronic structure level.
RESUMO
A Gram-positive, rod-shaped, aerobic, motile, and spore-forming bacterium, designated SCL10, was isolated from Acaudina molpadioides exposure to Co-60 radiation. In this study, whole-genome sequencing was performed to identify the strain as Bacillus cereus and functional characterization, with a focus on stress resistance. The genome of the B. cereus SCL10 strain was sequenced and assembled, revealing a size of 4,979,182 bp and 5167 coding genes. The genes involved in biological functions were annotated by using the GO, COG, KEGG, NR, and Swiss-Prot databases. The results showed that genes related to alkyl hydroperoxide reductase (ahpC, ahpF), DNA-binding proteins from starved cells (dps), spore and biofilm formation (spoVG, spo0A, gerP), cold shock-like protein (cspC, cspE), ATP-dependent chaperone (clpB), and photolyase, small, acid-soluble spore protein (SASP) and DNA repair protein (recA, radD) could explain the stress resistance. These findings suggest that antioxidant activity, sporulation, biofilm formation, and DNA protection may be considered as the main resistance mechanisms under exposure to radiation in the B. cereus SCL10 strain.
RESUMO
Pork is one of the most widely produced and consumed meats in the world, and it is also an important source of animal protein. The continuous rise in feed prices has forced the pig industry to consider adding cost-effective alternative feed to pig diets. In this study, we aimed to explore the beneficial effects of tuna dark muscle as a nutritional supplement on the growth performance, serum lipids and antioxidant levels of Holland mini-piglets, as well as on the odor and volatile substances of pork and the gut microbiota. Two-month-old male mini-piglets (n = 24) were fed a control diet or supplemented with either 2% (LD) or 4% (HD) tuna dark muscle for 8 weeks. The use of tuna dark muscle at low and high dosages significantly increased the average daily weight gain, but it showed no significant effect on organ indices or blood lipids. In addition, dark muscle treatment significantly increased the antioxidant capacity, characterized by increased SOD and GSH-Px activities, and it decreased the content of MDA in serum. Moreover, tuna dark muscle feeding shifted the odor of rib muscle and tendon meat away from that of the control group, while similar odor patterns were observed in the longissimus dorsi muscle. Among these volatile substances, hexanal, nonanal, and heptanal increased in response to dietary tuna dark muscle and were regarded as indispensable contributors to the feeding. Furthermore, dietary tuna dark muscle modulated the gut microbiota of the piglets, increasing the abundance of beneficial bacteria such as butyric acid-producing bacteria, and reduced the abundance of harmful bacteria. The feeding strategy reported in this study not only reduces the production costs of pork but also utilizes tuna processing by-products in an environmentally friendly way.
RESUMO
Gut microbiota provides an important insight into clarifying the mechanism of active substances with low bioavailability, but its specific action mechanism varied case by case and remained unclear. Dihydroquercetin (DHQ) is a bioactive flavonoid with low bioavailability, which showed beneficial effects on colitis alleviation and gut microbiota modulation. Herein, we aimed to explore the microbiota-dependent anticolitis mechanism of DHQ in sight of gut microbiota metabolites and their interactions with microRNAs (miRNAs). Dietary supplementation of DHQ alleviated dextran sulfate sodium-induced colitis phenotypes and improved gut microbiota dysbiosis. Fecal microbiota transplantation further revealed that the anticolitis activity of DHQ was mediated by gut microbiota. To clarify how the modulated gut microbiota alleviated colitis in mice, the tandem analyses of the microbiome and targeted metabolome were performed, and altered profiles of metabolite short-chain fatty acids (SCFAs) and bile acids and their producers were observed in DHQ-treated mice. In addition, SCFA treatment showed anticolitis activity compared to that of bile acids, along with the specific inhibition on the phosphoinositide-3-kinase (PI3K)-protein kinase B (Akt) pathway. Subsequently, the colonic miRNA profile of mice receiving SCFA treatment was sequenced, and a differentially expressed miR-10a-5p was identified. Both prediction analysis and dual-luciferase reporter assay indicated that miR-10a-5p directly bind to the 3'-untranslated regions of gene pik3ca, inhibit the PI3K-Akt pathway activation, and lead to colitis alleviation. Together, we proposed that gut microbiota mediated the anticolitis activity of DHQ through the SCFAs/miR-10a-5p/PI3K-Akt axis, and it provided a novel insight into clarifying the microbiota-dependent mechanism via the interaction between metabolites and miRNAs.
Assuntos
Colite , Ácidos Graxos Voláteis , Microbioma Gastrointestinal , Camundongos Endogâmicos C57BL , MicroRNAs , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Quercetina , Transdução de Sinais , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Quercetina/análogos & derivados , Quercetina/administração & dosagem , Quercetina/metabolismo , Quercetina/farmacologia , Colite/tratamento farmacológico , Colite/metabolismo , Colite/genética , Camundongos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Microbioma Gastrointestinal/efeitos dos fármacos , Ácidos Graxos Voláteis/metabolismo , Masculino , Transdução de Sinais/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/genética , Humanos , Bactérias/genética , Bactérias/classificação , Bactérias/isolamento & purificação , Bactérias/metabolismo , Bactérias/efeitos dos fármacosRESUMO
Molecular docking and activity evaluation screened the dipeptide module GP with low xanthine oxidase (XOD) inhibitory activity and modules KE and KN with high activity, and identified them as low- and high-contribution modules, respectively. We hypothesized the substitution of low-contribution modules in peptides with high contributions would boost their XOD inhibitory activity. In the XOD inhibitory peptide GPAGPR, substitution of GP with both KE and KN led to enhanced affinity between the peptides and XOD. They also increased XOD inhibitory activity (26.4% and 10.3%) and decreased cellular uric acid concentrations (28.0% and 10.4%). RNA sequencing indicated that these improvements were attributable to the inhibition of uric acid biosynthesis. In addition, module substitution increased the angiotensin-converting enzyme inhibitory activity of GILRP and GAAGGAF by 84.8% and 76.5%. This study revealed that module substitution is a feasible strategy to boost peptide activity, and provided information for the optimization of hydrolysate preparation conditions.
Assuntos
Peptidil Dipeptidase A , Xantina Oxidase , Simulação de Acoplamento Molecular , Ácido Úrico , Peptídeos/farmacologia , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/químicaRESUMO
Background: Generally, enterococci bacteria cause nosocomial infections and are major indicators of bacterial contamination in marine bathing beach. However, a method for the rapid and simultaneous detection of multiple pathogenic enterococci has not been developed on account of the wide variety of pathogenic enterococci and their existence in complex matrices. Methods: Immunoinformatics tools were used to design a multi-epitope antigen for the detection of various pathogenic enterococci by using the sequence of dltD gene on enterococci lipoteichoic acid (LTA) surface, which is associated with toxicological effects. The multi-epitopes included enterococci such as Enterococcus faecalis, E. gallinarum, E. raffinosus, E. durans, E. faecium, E. hirae, E. thailandicus, E. casseliflavus, E. avium, E. mundtii, E. lactis, E. solitarius, E. pseudoavium, and E. malodoratum. Microscale thermophoresis (MST) and western blot were carried out to detect the affinity between multi-epitope antigens and antibodies and between multi-epitope antibodies and bacteria. Furthermore, the detection of pathogenic enterococci was carried out by using immunomagnetic beads (IMBs) and immune chromatographic test strip (ICTS). Results: The multi-epitope antibody had a satisfactory affinity to the antigen and enterococci. IMBs and ICTS were detected with a minimum of 101 CFU/mL and showed incompatibility for Vibrio parahemolyticus, V. vulnifcus, V. harveyi, V. anguillarum, and Edwardsiella tarda. Implication: The present study demonstrated that the multi-epitope antigens exhibited excellent specificity and sensitivity, making them highly suitable for efficient on-site screening of enterococci bacteria in marine bathing beaches.