Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.081
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
EMBO J ; 43(20): 4656-4667, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39251884

RESUMO

The Cas3 nuclease is utilized by canonical type I CRISPR-Cas systems for processive target DNA degradation, while a newly identified type I-F CRISPR variant employs an HNH nuclease domain from the natural fusion Cas8-HNH protein for precise target cleavage both in vitro and in human cells. Here, we report multiple cryo-electron microscopy structures of the type I-F Cas8-HNH system at different functional states. The Cas8-HNH Cascade complex adopts an overall G-shaped architecture, with the HNH domain occupying the C-terminal helical bundle domain (HB) of the Cas8 protein in canonical type I systems. The Linker region connecting Cas8-NTD and HNH domains adopts a rigid conformation and interacts with the Cas7.6 subunit, enabling the HNH domain to be in a functional position. The full R-loop formation displaces the HNH domain away from the Cas6 subunit, thus activating the target DNA cleavage. Importantly, our results demonstrate that precise target cleavage is dictated by a C-terminal helix of the HNH domain. Together, our work not only delineates the structural basis for target recognition and activation of the type I-F Cas8-HNH system, but also guides further developments leveraging this system for precise DNA editing.


Assuntos
Sistemas CRISPR-Cas , Microscopia Crioeletrônica , Proteínas Associadas a CRISPR/química , Proteínas Associadas a CRISPR/metabolismo , Proteínas Associadas a CRISPR/genética , Domínios Proteicos , Modelos Moleculares , Humanos , Conformação Proteica
2.
Proc Natl Acad Sci U S A ; 121(13): e2320386121, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38513101

RESUMO

Stimuli-responsive soft robots offer new capabilities for the fields of medical and rehabilitation robotics, artificial intelligence, and soft electronics. Precisely programming the shape morphing and decoupling the multiresponsiveness of such robots is crucial to enable them with ample degrees of freedom and multifunctionality, while ensuring high fabrication accuracy. However, current designs featuring coupled multiresponsiveness or intricate assembly processes face limitations in executing complex transformations and suffer from a lack of precision. Therefore, we propose a one-stepped strategy to program multistep shape-morphing soft millirobots (MSSMs) in response to decoupled environmental stimuli. Our approach involves employing a multilayered elastomer and laser scanning technology to selectively process the structure of MSSMs, achieving a minimum machining precision of 30 µm. The resulting MSSMs are capable of imitating the shape morphing of plants and hand gestures and resemble kirigami, pop-up, and bistable structures. The decoupled multistimuli responsiveness of the MSSMs allows them to conduct shape morphing during locomotion, perform logic circuit control, and remotely repair circuits in response to humidity, temperature, and magnetic field. This strategy presents a paradigm for the effective design and fabrication of untethered soft miniature robots with physical intelligence, advancing the decoupled multiresponsive materials through modular tailoring of robotic body structures and properties to suit specific applications.

3.
Proc Natl Acad Sci U S A ; 120(42): e2308301120, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37792517

RESUMO

Artificial cilia integrating both actuation and sensing functions allow simultaneously sensing environmental properties and manipulating fluids in situ, which are promising for environment monitoring and fluidic applications. However, existing artificial cilia have limited ability to sense environmental cues in fluid flows that have versatile information encoded. This limits their potential to work in complex and dynamic fluid-filled environments. Here, we propose a generic actuation-enhanced sensing mechanism to sense complex environmental cues through the active interaction between artificial cilia and the surrounding fluidic environments. The proposed mechanism is based on fluid-cilia interaction by integrating soft robotic artificial cilia with flexible sensors. With a machine learning-based approach, complex environmental cues such as liquid viscosity, environment boundaries, and distributed fluid flows of a wide range of velocities can be sensed, which is beyond the capability of existing artificial cilia. As a proof of concept, we implement this mechanism on magnetically actuated cilia with integrated laser-induced graphene-based sensors and demonstrate sensing fluid apparent viscosity, environment boundaries, and fluid flow speed with a reconfigurable sensitivity and range. The same principle could be potentially applied to other soft robotic systems integrating other actuation and sensing modalities for diverse environmental and fluidic applications.


Assuntos
Cílios , Magnetismo , Fenômenos Físicos , Hidrodinâmica , Fenômenos Magnéticos
4.
Acc Chem Res ; 57(20): 2985-3006, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39356824

RESUMO

ConspectusAlkenes and alkynes are fundamental building blocks in organic synthesis due to their commercial availability, bench-stability, and easy preparation. Selective functionalization of alkenes and alkynes is a crucial step for the synthesis of value-added compounds. Precise control over these reactions allows efficient construction of complex molecules with new functionalities. In recent decades, second- and third-row precious transition metal catalysts (palladium, platinum, rhodium, ruthenium) have been pivotal in the development of metal-catalyzed synthetic methodology. These metals exhibit excellent catalytic activity and selectivity, enabling efficient synthesis of functionalized organic molecules. However, recovery and reuse of precious metals have long been a challenge in this field. In recent years, exploration of earth-abundant metal-catalyzed organic reactions has interested both academic and industrial researchers. The development of such catalytic systems offers a promising approach to overcome the limitations of precious metal catalysts. For example, manganese is the third most naturally abundant transition metal with minimal toxicity and excellent biocompatibility. It exhibits good catalytic activity in several organic reactions, including C-H bond functionalization, selective reduction, and radical reactions. This Account outlines our recent progress in dinuclear manganese catalysis for selective functionalization of alkenes and alkynes. We have established the elementary manganese(I)-catalysis in transmetalation with R-B(OH)2. This finding has enabled us to apply the catalyst for the selective 1,2-difunctionalization of structurally diverse alkenes and alkynes. Mechanistic studies suggest a double manganese center synergistic activation model, as superior to Mn(CO)5Br in some cases. In addition, we have developed a ligand-tuned metalloradical strategy of dinuclear manganese catalysts (Mn2(CO)10), bridging the gap between the organometallics and radical chemistry, highlighting the unique radical functionalization of alkenes. Interestingly, using the same starting materials, different ligands can deliver completely different products. Meanwhile, a cooperative catalysis strategy involving manganese and other catalysts (e.g., cobalt, iminium) has also been developed and is briefly discussed. For manganese/iminium synergistic catalysis, a new mechanism for migratory insertion and demetalization-isomerization in synergistic HOMO-LUMO activation was disclosed. This strategy expands the application of low-valent manganese catalysts for enantioselective C-C bond-forming reactions. New reaction discovery is outpacing mechanism studies for dinuclear manganese catalysis, and future studies with time-resolved spectroscopy will improve understanding of the mechanism. Based on these intriguing findings, the precise functionalization of alkenes and alkynes by dinuclear manganese catalysts will expedite a novel activation model to enable late-stage functionalization of complex molecules.

5.
Eur Heart J ; 45(4): 287-305, 2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-37992083

RESUMO

BACKGROUND AND AIMS: Stanford type A aortic dissection (AD) is a degenerative aortic remodelling disease marked by an exceedingly high mortality without effective pharmacologic therapies. Smooth muscle cells (SMCs) lining tunica media adopt a range of states, and their transformation from contractile to synthetic phenotypes fundamentally triggers AD. However, the underlying pathomechanisms governing this population shift and subsequent AD, particularly at distinct disease temporal stages, remain elusive. METHODS: Ascending aortas from nine patients undergoing ascending aorta replacement and five individuals undergoing heart transplantation were subjected to single-cell RNA sequencing. The pathogenic targets governing the phenotypic switch of SMCs were identified by trajectory inference, functional scoring, single-cell regulatory network inference and clustering, regulon, and interactome analyses and confirmed using human ascending aortas, primary SMCs, and a ß-aminopropionitrile monofumarate-induced AD model. RESULTS: The transcriptional profiles of 93 397 cells revealed a dynamic temporal-specific phenotypic transition and marked elevation of the activator protein-1 (AP-1) complex, actively enabling synthetic SMC expansion. Mechanistically, tumour necrosis factor signalling enhanced AP-1 transcriptional activity by dampening mitochondrial oxidative phosphorylation (OXPHOS). Targeting this axis with the OXPHOS enhancer coenzyme Q10 or AP-1-specific inhibitor T-5224 impedes phenotypic transition and aortic degeneration while improving survival by 42.88% (58.3%-83.3% for coenzyme Q10 treatment), 150.15% (33.3%-83.3% for 2-week T-5224), and 175.38% (33.3%-91.7% for 3-week T-5224) in the ß-aminopropionitrile monofumarate-induced AD model. CONCLUSIONS: This cross-sectional compendium of cellular atlas of human ascending aortas during AD progression provides previously unappreciated insights into a transcriptional programme permitting aortic degeneration, highlighting a translational proof of concept for an anti-remodelling intervention as an attractive strategy to manage temporal-specific AD by modulating the tumour necrosis factor-OXPHOS-AP-1 axis.


Assuntos
Doenças da Aorta , Dissecção Aórtica , Benzofenonas , Isoxazóis , Doenças Vasculares , Humanos , Fator de Transcrição AP-1 , Aminopropionitrilo , Estudos Transversais , Dissecção Aórtica/genética , Doenças da Aorta/patologia , Doenças Vasculares/patologia , Miócitos de Músculo Liso/patologia , Miócitos de Músculo Liso/fisiologia , Fatores de Necrose Tumoral
6.
Nano Lett ; 24(34): 10443-10450, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39140834

RESUMO

Counterion adsorption at the solid-liquid interface affects numerous applications. However, the counterion adsorption density in the Stern layer has remained poorly evaluated. Here we report the direct determination of surface charge density at the shear plane between the Stern layer and the diffuse layer. By the Grahame equation extension and streaming current measurements for different solid surfaces in different aqueous electrolytes, we are able to obtain the counterion adsorption density in the Stern layer, which is mainly related to the surface charge density but is less affected by the bulk ion concentration. The charge inversion concentration is further found to be sensitive to the ion type and ion valence rather than to the charged surface, which is attributed to the ionic competitive adsorption and ion-ion correlations. Our findings offer a framework for understanding ion distribution in many physical and chemical processes where the Stern layer is ubiquitous.

7.
Nano Lett ; 2024 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-39401413

RESUMO

Aqueous zinc-bromine redox systems possess multiple merits for scalable energy storage. Applying bromine complexing agents shows effectiveness in alleviating the key challenge of ubiquitous crossover of reactive liquid bromine species, while the underlying microscopic mechanism requires a deep understanding to engineer better complexing electrochemistry. Herein, taking a series of quaternary ammonium ionic liquids (methyl4NBr, ethyl4NBr, propyl4NBr, and butyl4NBr) as a redox mediator model, operando optical monitoring was used to visualize the dynamic electrochemical behaviors, unveiling the ionic liquid-mediated polybromide electrochemistry with a distinct chain length effect. A longer chain length possesses a stronger electrostatic interaction in the complexing product to effectively capture Br2. Operando results reveal the liquid nature of the reversibly electrogenerated polybromide microdroplets in the butyl4NBr-added redox system, which promoted the Br3-/Br- conversion kinetics and alleviated the self-discharge for improved battery performance. This work provides direct evidence and new insights into complexing electrochemistry for advancing Zn-Br2 batteries.

8.
Nano Lett ; 24(22): 6634-6643, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38742828

RESUMO

The effect of strong metal-support interaction (SMSI) has never been systematically studied in the field of nanozyme-based catalysis before. Herein, by coupling two different Pd crystal facets with MnO2, i.e., (100) by Pd cube (Pdc) and (111) by Pd icosahedron (Pdi), we observed the reconstruction of Pd atomic structure within the Pd-MnO2 interface, with the reconstructed Pdc (100) facet more disordered than Pdi (111), verifying the existence of SMSI in such coupled system. The rearranged Pd atoms in the interface resulted in enhanced uricase-like catalytic activity, with Pdc@MnO2 demonstrating the best catalytic performance. Theoretical calculations suggested that a more disordered Pd interface led to stronger interactions with intermediates during the uricolytic process. In vitro cell experiments and in vivo therapy results demonstrated excellent biocompatibility, therapeutic effect, and biosafety for their potential hyperuricemia treatment. Our work provides a brand-new perspective for the design of highly efficient uricase-mimic catalysts.


Assuntos
Hiperuricemia , Compostos de Manganês , Óxidos , Urato Oxidase , Hiperuricemia/tratamento farmacológico , Urato Oxidase/química , Urato Oxidase/uso terapêutico , Urato Oxidase/metabolismo , Óxidos/química , Compostos de Manganês/química , Compostos de Manganês/farmacologia , Humanos , Paládio/química , Paládio/farmacologia , Animais , Catálise , Ácido Úrico/química , Camundongos
9.
Nano Lett ; 24(11): 3432-3440, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38391135

RESUMO

Uricase-catalyzed uric acid (UA) degradation has been applied for hyperuricemia therapy, but this medication is limited by H2O2 accumulation, which can cause oxidative stress of cells, resulting in many other health issues. Herein, we report a robust cubic hollow nanocage (HNC) system based on polyvinylpyrrolidone-coated PdPt3 and PdIr3 to serve as highly efficient self-cascade uricase/peroxidase mimics to achieve the desired dual catalysis for both UA degradation and H2O2 elimination. These HNCs have hollow cubic shape with average wall thickness of 1.5 nm, providing desired synergy to enhance catalyst's activity and stability. Density functional theory calculations suggest the PdIr3 HNC surface tend to promote OH*/O* desorption for better peroxidase-like catalysis, while the PdPt3 HNC surface accelerates the UA oxidation by facilitating O2-to-H2O2 conversion. The dual catalysis power demonstrated by these HNCs in cell studies suggests their great potential as a new type of nanozyme for treating hyperuricemia.


Assuntos
Hiperuricemia , Peroxidase , Humanos , Peroxidase/uso terapêutico , Urato Oxidase/uso terapêutico , Povidona/uso terapêutico , Hiperuricemia/tratamento farmacológico , Peróxido de Hidrogênio , Ácido Úrico/metabolismo , Oxirredutases , Corantes
10.
J Struct Biol ; 216(1): 108070, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38395113

RESUMO

CRISPR-Cas system is an RNA-guided adaptive immune system widespread in bacteria and archaea. Among them, type III CRISPR-Cas systems are the most ancient throughout the CRISPR-Cas family, proving anti-phage defense through a crRNA-guided RNA targeting manner and possessing multiple enzymatic activities. Type III CRISPR-Cas systems comprise four typical members (type III-A to III-D) and two atypical members (type III-E and type III-F), providing immune defense through distinct mechanisms. Here, we delve into structural studies conducted on three well-characterized members: the type III-A, III-B, and III-E systems, provide an overview of the structural insights into the crRNA-guided target RNA cleavage, self/non-self discrimination, and the target RNA-dependent regulation of enzymatic subunits in the effector complex.


Assuntos
Sistemas CRISPR-Cas , RNA Guia de Sistemas CRISPR-Cas , Sistemas CRISPR-Cas/genética , RNA/genética , Bactérias/genética , Biologia
11.
Anal Chem ; 96(24): 10038-10045, 2024 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-38847602

RESUMO

Ferroptosis is a pattern of cell death caused by iron-dependent accumulation of lipid peroxides and is closely associated with the occurrence and development of multiple diseases. Acrolein (ACR), one of the final metabolites of lipid peroxidation, is a reactive carbonyl species with strong biotoxicity. Effective detection of ACR is important for understanding its role in the progression of ferroptosis and studying the specific mechanisms of ferroptosis-mediated diseases. However, visualization detection of ACR during ferroptosis has not yet been reported. In this work, the first ratiometric fluorescent probe (HBT-SH) based on 2-(2'-hydroxyphenyl) benzothiazole (HBT) was designed for tracing endogenous ACR with an unprecedented regiospecific ACR-induced intramolecular cyclization strategy, which employs 2-aminoethanethiol as an ACR-selective recognition receptor. The experimental results showed that HBT-SH has excellent selectivity, high sensitivity (LOD = 0.26 µM) and good biocompatibility. More importantly, the upregulation of ACR levels was observed during ferroptosis in HeLa cells and zebrafish, indicating that ACR may be a specific active molecule that plays an essential biological role during ferroptosis or may serve as a potential marker of ferroptosis, which has great significance for studying the pathological process and treatment options of ferroptosis-related diseases.


Assuntos
Acroleína , Ferroptose , Corantes Fluorescentes , Peixe-Zebra , Ferroptose/efeitos dos fármacos , Acroleína/química , Acroleína/metabolismo , Corantes Fluorescentes/química , Corantes Fluorescentes/síntese química , Humanos , Células HeLa , Animais , Regulação para Cima/efeitos dos fármacos , Imagem Óptica , Estrutura Molecular
12.
Small ; 20(33): e2309654, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38530064

RESUMO

Aligned carbon nanotube (A-CNT) with high semiconducting purity and high-density have been considered as one of the most promising active channels for field-effect transistors (FETs), but conjugated polymer dispersant residues on the surface of A-CNT have become the main obstacle for its further development in electronics applications. In this work, a series of removable conjugated polymers (CPs) are designed and synthesized to achieve favorable purification and alignment for CNT arrays with a high density of ≈360 CNTs/µm. Furthermore, a removal process of CPs on the CNT array film is developed. Raman spectra show that the CNTs in array film are almost not damaged after the removal process, and the G/D ratio is as high as 35. The field-effect transistors (FETs) are fabricated with a saturation current density up to 600 µA µm-1 and a current on-off ratio of ≈105, even with a relatively long channel length of ≈3 µm.

13.
Small ; 20(15): e2306600, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38009782

RESUMO

2D Bi2O2Se has recently garnered significant attention in the electronics and optoelectronics fields due to its remarkable photosensitivity, broad spectral absorption, and excellent long-term environmental stability. However, the development of integrated Bi2O2Se photodetector with high performance and low-power consumption is limited by material synthesis method and the inherent high carrier concentration of Bi2O2Se. Here, a type-I heterojunction is presented, comprising 2D Bi2O2Se and lead-free bismuth perovskite CsBi3I10, for fast response and broadband detection. Through effective charge transfer and strong coupling effect at the interfaces of Bi2O2Se and CsBi3I10, the response time is accelerated to 4.1 µs, and the detection range is expanded from ultraviolet to near-infrared spectral regions (365-1500 nm). The as-fabricated photodetector exhibits a responsivity of 48.63 AW-1 and a detectivity of 1.22×1012 Jones at 808 nm. Moreover, efficient modulation of the dominant photocurrent generation mechanism from photoconductive to photogating effect leads to sensitive response exceeding 103 AW-1 for heterojunction-based photo field effect transistor (photo-FETs). Utilizing the large-scale growth of both Bi2O2Se and CsBi3I10, the as-fabricated integrated photodetector array demonstrates outstanding homogeneity and stability of photo-response performance. The proposed 2D Bi2O2Se/CsBi3I10 perovskite heterojunction holds promising prospects for the future-generation photodetector arrays and integrated optoelectronic systems.

14.
Small ; 20(24): e2310234, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38155520

RESUMO

The development of chiral nanostructures-based supramolecular catalysts with satisfied enantioselectivity remains a significantly more challenging task. Herein, the synthesis and self-assembly of various amino acid amphiphiles as chiral supramolecular catalysts after metal ion coordination is reported and systematically investigate their enantioselectivity in asymmetric Diels-Alder reactions. In particular, the self-assembly of l/d-phenylglycine-based amphiphiles (l/d-PhgC16) and Cu(II) into chiral supramolecular catalysts in the methanol/water solution mixture is described, which features the interesting M/P nanohelices (diameter ≈8 nm) and mostly well-aligned M/P nanoribbons (NRs). The M/P supramolecular catalysts show both high but inverse enantioselectivity (>90% ee) in Diels-Alder reactions, while their monomeric counterparts display nearly racemic products. Analysis of the catalytic results suggests the outstanding enantioselectivities are closely related to the specific stereochemical microenvironment provided by the arrangement of the amphiphiles in the supramolecular assembly. Based on the experimental evidence of chirality transfer from supramolecular nanohelices to coordinated Cu(II) and substrate aza-chalcone and the molecular dynamics simulations, the enantioselective catalytic mechanisms are proposed. Moreover, the relationships between molecular structures of amino acid amphiphiles (the hydrophilic head group and hydrophobic alkyl chain length) in supramolecular catalysts and enantioselectivity in Diels-Alder reactions are elaborated.

15.
J Transl Med ; 22(1): 373, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637810

RESUMO

BACKGROUND: Numerous studies highlight the genetic underpinnings of mental disorders comorbidity, particularly in anxiety, depression, and schizophrenia. However, their shared genetic loci are not well understood. Our study employs Mendelian randomization (MR) and colocalization analyses, alongside multi-omics data, to uncover potential genetic targets for these conditions, thereby informing therapeutic and drug development strategies. METHODS: We utilized the Consortium for Linkage Disequilibrium Score Regression (LDSC) and Mendelian Randomization (MR) analysis to investigate genetic correlations among anxiety, depression, and schizophrenia. Utilizing GTEx V8 eQTL and deCODE Genetics pQTL data, we performed a three-step summary-data-based Mendelian randomization (SMR) and protein-protein interaction analysis. This helped assess causal and comorbid loci for these disorders and determine if identified loci share coincidental variations with psychiatric diseases. Additionally, phenome-wide association studies, drug prediction, and molecular docking validated potential drug targets. RESULTS: We found genetic correlations between anxiety, depression, and schizophrenia, and under a meta-analysis of MR from multiple databases, the causal relationships among these disorders are supported. Based on this, three-step SMR and colocalization analyses identified ITIH3 and CCS as being related to the risk of developing depression, while CTSS and DNPH1 are related to the onset of schizophrenia. BTN3A1, PSMB4, and TIMP4 were identified as comorbidity loci for both disorders. Molecules that could not be determined through colocalization analysis were also presented. Drug prediction and molecular docking showed that some drugs and proteins have good binding affinity and available structural data. CONCLUSIONS: Our study indicates genetic correlations and shared risk loci between anxiety, depression, and schizophrenia. These findings offer insights into the underlying mechanisms of their comorbidities and aid in drug development.


Assuntos
Esquizofrenia , Humanos , Esquizofrenia/genética , Depressão/genética , Simulação de Acoplamento Molecular , Ansiedade/genética , Transtornos de Ansiedade/genética , Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único/genética , Complexo de Endopeptidases do Proteassoma , Butirofilinas , Antígenos CD
16.
Rev Cardiovasc Med ; 25(4): 146, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-39076549

RESUMO

Background: Mitral valve repair (MVr) is an effective treatment for degenerative mitral regurgitation (DMR).And the outcomes and repair rates for posterior leaflet prolapse (PLP), anterior leaflet prolapse (ALP), and bileaflet prolapse (BLP) vary. This study aimed to compare the outcomes of mitral valve repair for patients with PLP, ALP, and BLP. Methods: From 2010 to 2019, 1192 patients with degenerative mitral valve regurgitation underwent surgery at our hospital. And 1069 patients were identified. The average age of all patients was (54.74 ± 12.17) years old for all patients. 273 patients (25.5%) had ALP, 148 patients (13.8%) had BLP, and 648 patients (60.6%) had PLP. All patients were followed up for an average duration of 5.1 years. We compared the outcomes of patients with ALP, PLP, and BLP. Results: Patients with ALP were the youngest of the 3 groups and had the highest prevalence of atrial fibrillation. Patients with PLP had the highest prevalence of hypertension, whereas patients with BLP and ALP had larger left ventricular end-diastolic and left ventricular end-systolic diameters. ALP and BLP repairs had a longer cardiopulmonary bypass and aortic cross-clamp time.10 patients dead in-hospital, 5 patients had PLP, 3 had ALP, and 2 had BLP. The 10-year survival cumulative incidences of reoperation among ALP, BLP, and PLP repairs were not significantly different. ALP repair still had higher cumulative incidences of recurrent mitral regurgitation (MR) compared to PLP. Conclusions: The rates of long-term survival and freedom from reoperation were not significantly different among patients with ALP, BLP, and PLP. ALP repair has higher cumulative incidences of recurrent MR compared to PLP.

17.
Langmuir ; 40(36): 19125-19133, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39190551

RESUMO

Chemodynamic therapy is an appealing modality in cancer treatment. However, its therapeutic effectiveness is impeded by insufficient catalytic efficiency and overexpression of glutathione (GSH) at the tumor site. In this study, a poly(o-phenylenediamine) (PoPD)@copper sulfide (CuS) nanoplatform was developed as dual-level reactive oxygen species (ROS) amplifier for enhanced photothermal-chemodynamic therapy. The PoPD@CuS nanoplatform exhibited photothermal performance, chemodynamic performance, and GSH-depleting capability. Alongside its improved photothermal conversion efficiency with tumor pH-responsiveness, the photothermal behavior of PoPD@CuS could elevate chemodynamic activity by regulating the temperature spatiotemporally, leading to increased ROS production. Moreover, GSH depletion of PoPD@CuS could suppress ROS scavenging, further enhancing oxidative stress in the tumor region. Consequently, functioning as a dual-level ROS amplifier, PoPD@CuS showcased remarkable effectiveness in photothermal-chemodynamic combination therapy.


Assuntos
Cobre , Espécies Reativas de Oxigênio , Espécies Reativas de Oxigênio/metabolismo , Cobre/química , Cobre/farmacologia , Humanos , Animais , Fenilenodiaminas/química , Fenilenodiaminas/farmacologia , Glutationa/metabolismo , Glutationa/química , Camundongos , Terapia Fototérmica , Fototerapia/métodos , Linhagem Celular Tumoral , Antineoplásicos/química , Antineoplásicos/farmacologia
18.
Langmuir ; 40(28): 14555-14560, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38940619

RESUMO

Understanding the interaction between metal ions as catalytic centers and supramolecular scaffolds as chiral substrates plays an important role in developing chiral supramolecular catalysts with high enantioselectivity. Herein, we found that compared with l-norleucine chiral amphiphile (l-NorC16), l-methionine chiral amphiphile (l-MetC16) with the only heteroatom of S site difference in the hydrophilic group can form a similar supramolecular chiral nanoribbon (NR) with the bilayer structure through the self-assembly approach; yet, the interaction between the Cu(II) ion catalytic centers and supramolecular scaffolds is reinforced, favoring the chirality transfer and therefore enhancing their catalytic enantioselectivity of Diels-Alder reaction from 23% [l-NorC16-NR-Cu(II)] to 78% [l-MetC16-NR-Cu(II)]. Our work demonstrates a new strategy from the perspective of strengthening the metal ion-supramolecular scaffold interaction for the preparation of chiral supramolecular catalysts with good catalytic enantioselectivity.

19.
Cancer Control ; 31: 10732748241272482, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39403995

RESUMO

BACKGROUND: Sedated colonoscopy has been increasingly selected. However, the effect of sedated colonoscopy on polyp/adenoma detection rate (PDR/ADR) remains controversial among studies. METHODS: In this retrospective study, the medical records of 11 504 consecutive patients who underwent colonoscopy at our department from July 1, 2021 to December 31, 2022 were collected. Patients were divided into sedated and unsedated groups according to the use of intravenous sedation during colonoscopy. Overall PDR/ADR, right-side, transverse, and left-side colon PDR/ADR, and single and multiple PDR/ADR were calculated. By adjusting for age, gender, body mass index, inpatient, screening/surveillance, cecal intubation time, colonoscopy withdrawal time ≥6 min, and an endoscopist's experience ≥5 years, multivariate logistic regression analyses were performed to evaluate the association of sedated colonoscopy with overall PDR/ADR, right-side, transverse, and left-side colon PDR/ADR, and single and multiple PDR/ADR, where the absence of PDR/ADR was used as reference. Odds ratios (ORs) with their 95% confidence intervals (CIs) were calculated. RESULTS: Overall, 2275 patients were included, of whom 293 and 1982 underwent sedated and unsedated colonoscopy, respectively. Multivariate logistic regression analyses showed that sedated colonoscopy was independently associated with lower overall PDR/ADR (OR = 0.640, 95% CI = 0.460-0.889, P = 0.008), right-side colon PDR/ADR (OR = 0.591, 95% CI = 0.417-0.837, P = 0.003), single PDR/ADR (OR = 0.659, 95% CI = 0.436-0.996, P = 0.048), and multiple PDR/ADR (OR = 0.586, 95% CI = 0.402-0.855, P = 0.005), but not transverse or left-side colon PDR/ADR. CONCLUSION: Sedated colonoscopy may not be beneficial in terms of overall PDR/ADR, right-side colon PDR/ADR, and number of polyps/adenomas. Thus, it should be selectively recommended. Additionally, it should be necessary to explore how to improve the quality of sedated colonoscopy.


Assuntos
Adenoma , Pólipos do Colo , Colonoscopia , Humanos , Colonoscopia/métodos , Feminino , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Pólipos do Colo/diagnóstico , Adenoma/diagnóstico , Idoso , Sedação Consciente/métodos , Adulto
20.
Diabetes Obes Metab ; 26(11): 5013-5024, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39308336

RESUMO

AIM: We evaluated the efficacy and safety of cofrogliptin, a novel dipeptidyl peptidase-4 inhibitor taken once every 2 weeks (Q2W), compared with linagliptin (taken daily) in patients with type 2 diabetes inadequately controlled on metformin in China. MATERIALS AND METHODS: In this phase 3 randomized, double-blind, active-controlled, multicentre study, patients were randomly assigned 1:1:1 to receive cofrogliptin 10 mg Q2W, cofrogliptin 25 mg Q2W, or linagliptin 5 mg daily, all as an add-on treatment to metformin, for 24 weeks. Eligible patients could enter an open-label extension period and receive cofrogliptin 25 mg Q2W for an additional 28 weeks. The primary endpoint was change in glycated haemoglobin from baseline to 24 weeks, with a non-inferiority margin of 0.4% for cofrogliptin versus linagliptin treatment. RESULTS: Overall, 465 patients entered the 24-week treatment period (median age: 57.0 years). The least-squares mean (standard error) change in glycated haemoglobin from baseline to week 24 was -0.96 (0.063), -0.99 (0.064) and -1.07 (0.065) for the cofrogliptin 10 mg, cofrogliptin 25 mg and linagliptin 5 mg groups, respectively. The between-group difference met the predefined margin for non-inferiority of cofrogliptin (10 and 25 mg) versus linagliptin treatment. The incidence of common adverse events (≥5% patients) during the 24-week treatment period was similar between treatment groups. There were no serious hypoglycaemic events. CONCLUSION: In Chinese patients with type 2 diabetes inadequately controlled on metformin, the glucose-lowering effect of cofrogliptin (Q2W) was non-inferior to linagliptin (daily), with a similar safety profile maintained over 52 weeks of treatment.


Assuntos
Diabetes Mellitus Tipo 2 , Inibidores da Dipeptidil Peptidase IV , Quimioterapia Combinada , Hemoglobinas Glicadas , Hipoglicemiantes , Linagliptina , Metformina , Humanos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/sangue , Linagliptina/uso terapêutico , Linagliptina/administração & dosagem , Metformina/uso terapêutico , Metformina/administração & dosagem , Pessoa de Meia-Idade , Método Duplo-Cego , Masculino , Feminino , China/epidemiologia , Hipoglicemiantes/uso terapêutico , Hipoglicemiantes/administração & dosagem , Inibidores da Dipeptidil Peptidase IV/uso terapêutico , Inibidores da Dipeptidil Peptidase IV/administração & dosagem , Idoso , Hemoglobinas Glicadas/análise , Hemoglobinas Glicadas/efeitos dos fármacos , Hemoglobinas Glicadas/metabolismo , Esquema de Medicação , Adulto , Glicemia/efeitos dos fármacos , Glicemia/metabolismo , Hipoglicemia/induzido quimicamente , Hipoglicemia/epidemiologia , Hipoglicemia/prevenção & controle , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA