RESUMO
The identification of cancer driver genes is crucial for early detection, effective therapy, and precision medicine of cancer. Cancer is caused by the dysregulation of several genes at various levels of regulation. However, current techniques only capture a limited amount of regulatory information, which may hinder their efficacy. In this study, we present IMI-driver, a model that integrates multi-omics data into eight biological networks and applies Multi-view Collaborative Network Embedding to embed the gene regulation information from the biological networks into a low-dimensional vector space to identify cancer drivers. We apply IMI-driver to 29 cancer types from The Cancer Genome Atlas (TCGA) and compare its performance with nine other methods on nine benchmark datasets. IMI-driver outperforms the other methods, demonstrating that multi-level network integration enhances prediction accuracy. We also perform a pan-cancer analysis using the genes identified by IMI-driver, which confirms almost all our selected candidate genes as known or potential drivers. Case studies of the new positive genes suggest their roles in cancer development and progression.
Assuntos
Biologia Computacional , Redes Reguladoras de Genes , Neoplasias , Humanos , Neoplasias/genética , Redes Reguladoras de Genes/genética , Biologia Computacional/métodos , Genômica/métodos , Bases de Dados Genéticas , Regulação Neoplásica da Expressão Gênica/genética , Algoritmos , MultiômicaRESUMO
The crab-eating macaques ( Macaca fascicularis ) and rhesus macaques ( M. mulatta ) are widely studied nonhuman primates in biomedical and evolutionary research. Despite their significance, the current understanding of the complex genomic structure in macaques and the differences between species requires substantial improvement. Here, we present a complete genome assembly of a crab-eating macaque and 20 haplotype-resolved macaque assemblies to investigate the complex regions and major genomic differences between species. Segmental duplication in macaques is â¼42% lower, while centromeres are â¼3.7 times longer than those in humans. The characterization of â¼2 Mbp fixed genetic variants and â¼240 Mbp complex loci highlights potential associations with metabolic differences between the two macaque species (e.g., CYP2C76 and EHBP1L1 ). Additionally, hundreds of alternative splicing differences show post-transcriptional regulation divergence between these two species (e.g., PNPO ). We also characterize 91 large-scale genomic differences between macaques and humans at a single-base-pair resolution and highlight their impact on gene regulation in primate evolution (e.g., FOLH1 and PIEZO2 ). Finally, population genetics recapitulates macaque speciation and selective sweeps, highlighting potential genetic basis of reproduction and tail phenotype differences (e.g., STAB1 , SEMA3F , and HOXD13 ). In summary, the integrated analysis of genetic variation and population genetics in macaques greatly enhances our comprehension of lineage-specific phenotypes, adaptation, and primate evolution, thereby improving their biomedical applications in human diseases.
RESUMO
We present haplotype-resolved reference genomes and comparative analyses of six ape species, namely: chimpanzee, bonobo, gorilla, Bornean orangutan, Sumatran orangutan, and siamang. We achieve chromosome-level contiguity with unparalleled sequence accuracy (<1 error in 500,000 base pairs), completely sequencing 215 gapless chromosomes telomere-to-telomere. We resolve challenging regions, such as the major histocompatibility complex and immunoglobulin loci, providing more in-depth evolutionary insights. Comparative analyses, including human, allow us to investigate the evolution and diversity of regions previously uncharacterized or incompletely studied without bias from mapping to the human reference. This includes newly minted gene families within lineage-specific segmental duplications, centromeric DNA, acrocentric chromosomes, and subterminal heterochromatin. This resource should serve as a definitive baseline for all future evolutionary studies of humans and our closest living ape relatives.