Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Brief Bioinform ; 24(2)2023 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-36882016

RESUMO

Precisely calling chromatin loops has profound implications for further analysis of gene regulation and disease mechanisms. Technological advances in chromatin conformation capture (3C) assays make it possible to identify chromatin loops in the genome. However, a variety of experimental protocols have resulted in different levels of biases, which require distinct methods to call true loops from the background. Although many bioinformatics tools have been developed to address this problem, there is still a lack of special introduction to loop-calling algorithms. This review provides an overview of the loop-calling tools for various 3C-based techniques. We first discuss the background biases produced by different experimental techniques and the denoising algorithms. Then, the completeness and priority of each tool are categorized and summarized according to the data source of application. The summary of these works can help researchers select the most appropriate method to call loops and further perform downstream analysis. In addition, this survey is also useful for bioinformatics scientists aiming to develop new loop-calling algorithms.


Assuntos
Cromatina , Biologia Computacional , Biologia Computacional/métodos , Cromatina/genética , Cromossomos , Algoritmos , Genoma
2.
Crit Rev Biotechnol ; : 1-22, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38830825

RESUMO

Transcription factors often contain several different functional regions, including DNA-binding domains, and play an important regulatory role in plant growth, development, and the response to external stimuli. YABYY transcription factors are plant-specific and contain two special domains (N-terminal C2C2 zinc-finger and C-terminal helix-loop-helix domains) that are indispensable. Specifically, YABBY transcription factors play key roles in maintaining the polarity of the adaxial-abaxial axis of leaves, as well as in regulating: vegetative and reproductive growth, hormone response, stress resistance, and secondary metabolite synthesis in plants. Recently, the identification and functional verification of YABBY transcription factors in different plants has increased. On this basis, we summarize recent advances in the: identification, classification, expression patterns, and functions of the YABBY transcription factor family. The normal expression and function of YABBY transcription factors rely on a regulatory network that is established through the interaction of YABBY family members with other genes. We discuss the interaction network of YABBY transcription factors during leaf polarity establishment and floral organ development. This article provides a reference for research on YABBY function, plant genetic improvement, and molecular breeding.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA