Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 112
Filtrar
1.
Nano Lett ; 22(2): 636-643, 2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35019656

RESUMO

The three-precursors approach has proven to be advantageous for obtaining high-quality metal halide perovskite nanocrystals (PNCs). However, the current halide precursors of choice are mainly limited to those highly toxic organohalides, being unfavorable for large-scale and sustainable use. Moreover, most of the resulting PNCs still suffer from low quality in terms of photoluminescence quantum yield (PLQY). Herein we present all-inorganic germanium salts, GeX4 (X = Cl, Br, I), serving as robust and less hazardous alternatives that are capable of ensuring improved material properties for both Pb-based and Pb-free PNCs. Importantly, unlike most of the other inorganic halide sources, the GeX4 compound does not deliver the Ge element into the final compositions, whereas the PLQY and phase stability of the resulting nanocrystals are significantly improved. Theoretical calculations suggest that Ge halide precursors provide favorable conditions in both dielectric environment and thermodynamics, which jointly contribute to the formation of size-confined defect-suppressed nanoparticles.

2.
Angew Chem Int Ed Engl ; 62(2): e202213240, 2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36377275

RESUMO

Double perovskites (DPs) are one of the most promising candidates for developing white light-emitting diodes (WLEDs) owing to their intrinsic broadband emission from self-trapped excitons (STEs). Translation of three-dimensional (3D) DPs to one-dimensional (1D) analogues, which could break the octahedral tolerance factor limit, is so far remaining unexplored. Herein, by employing a fluorinated organic cation, we report a series of highly luminescent 1D DP-inspired materials, (DFPD)2 MI InBr6 (DFPD=4,4-difluoropiperidinium, MI =K+ and Rb+ ). Highly efficient warm-white photoluminescence quantum yield of 92 % is achieved by doping 0.3 % Sb3+ in (DFPD)2 KInBr6 . Furthermore, single-component warm-WLEDs fabricated with (DFPD)2 KInBr6 :Sb yield a luminance of 300 cd/m2 , which is one of the best-performing lead-free metal-halides WLEDs reported so far. Our study expands the scope of In-based metal-halides from 3D to 1D, which exhibit superior optical performances and broad application prospects.

3.
Nano Lett ; 21(20): 8671-8678, 2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34633829

RESUMO

For inorganic semiconductor nanostructure, excitons in the triplet states are known as the "dark exciton" with poor emitting properties, because of the spin-forbidden transition. Herein, we report a design principle to boost triplet excitons photoluminescence (PL) in all-inorganic lead-free double-perovskite nanocrystals (NCs). Our experimental data reveal that singlet self-trapped excitons (STEs) experience fast intersystem crossing (80 ps) to triplet states. These triplet STEs give bright green color emission with unity PL quantum yield (PLQY). Furthermore, efficient energy transfer from triplet STEs to dopants (Mn2+) can be achieved, which leads to white-light emitting with 87% PLQY in both colloidal and solid thin film NCs. These findings illustrate a fundamental principle to design efficient white-light emitting inorganic phosphors, propelling the development of illumination-related applications.

4.
Chemistry ; 26(34): 7720-7726, 2020 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-32281693

RESUMO

Exploring high-performance electrocatalysts, especially non-noble metal electrocatalysts, for the oxygen evolution reaction (OER) is critical to energy storage and conversion. Herein, we report for the first time that conjugated microporous polymers (CMPs) incorporating salen can be used as OER electrocatalysts with outstanding performances. The best OER electrocatalyst (salen-CMP-Fe-3) exhibits a low Tafel slope of 63 mV dec-1 and an overpotential of 238 mV at 10 mA cm-2 . DFT and Grand Canonical Monte Carlo calculations confirmed that the significantly improved electrocatalytic properties can be attributed to the intrinsic catalytic activity of the salen moiety and the enrichment effect of the pore structures. This work demonstrates that salen-based conjugated polymers are a type of metal-coordinated porous polymer that show excellent catalyst performance.

5.
Phys Chem Chem Phys ; 20(4): 2205-2210, 2018 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-29264601

RESUMO

Host-guest charge transfer (HGCT) plays a key role in applications from solar energy conversion to photocatalysis. Herein, a HGCT system, a pillared Pt(ii) metallacage with encapsulated coronene was synthesized and the ultrafast excited-state dynamics were investigated by combination of femtosecond transient absorption spectroscopy, nanosecond transient emission spectrocopy and quantum chemistry calculations. Two significant ultrafast dynamic processes were unveiled: (i) charge transfer from a singlet local excited (1LE) state associated with the coronene moiety to a 1HGCT state with τ = 9.5 ps; and (ii) triplet-triplet energy transfer from a high 3HGCT state to a 3LE state with τ = 139.5 ps. The resulting long-lived species, the lowest 3LE and 3HGCT states eventually decay to the ground state in microsecond time scales of 5.2 and 43.4 µs respectively. Moreover, a clear mechanism depicting the main excited-state decay pathways connecting the initial photoexcited transients with the resulting species was proposed.

6.
J Am Chem Soc ; 139(36): 12474-12479, 2017 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-28837322

RESUMO

Luminescent supramolecular lanthanide edifices have many potential applications in biology, environments, and materials science. However, it is still a big challenge to improve the luminescent performance of multinuclear lanthanide assemblies in contrast to their mononuclear counterparts. Herein, we demonstrate that combination of intraligand charge transfer (ILCT) sensitization and coordination-driven self-assembly gives birth to bright EuIII tetrahedral cages with a record emission quantum yield of 23.1%. The ILCT sensitization mechanism has been unambiguously confirmed by both time-dependent density functional theory calculation and femtosecond transient absorption studies. Meanwhile, dual-responsive sensing toward both anions and cations has been demonstrated making use of the ILCT transition on the ligand. Without introduction of additional recognition units, high sensitivity and selectivity are revealed for the cage in both turn-off luminescent sensing toward I- and turn-on sensing toward Cu2+. This study offers important design principles for the future development of luminescent lanthanide molecular materials.

7.
J Chem Phys ; 145(16): 164314, 2016 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-27802659

RESUMO

The excited-state orientation hydrogen-bonding dynamics, and vibronic spectra of isoquinoline (IQ) and its cationic form IQc in water have been investigated at the time-dependent density functional theory quantum chemistry level plus Franck-Condon simulation and interpretation. The excited-state orientation hydrogen bond strengthening has been found in IQ:H2O complex due to the charge redistribution upon excitation; this is interpreted by simulated 1:1 mixed absorption spectra of free IQ and IQ:H2O complex having best agreement with experimental results. Conversely, the orientation hydrogen bond in IQc:H2O complex would be strongly weakening in the S1 state and this is interpreted by simulated absorption spectra of free IQc having best agreement with experimental results. By performing Franck-Condon simulation, it reveals that several important vibrational normal modes with frequencies about 1250 cm-1 involving the wagging motion of the hydrogen atoms are very sensitive to the formation of the orientation hydrogen bond for the IQ/IQc:H2O complex and this is confirmed by damped Franck-Condon simulation with free IQ/IQc in water. However, the emission spectra of the IQ and IQc in water have been found differently. Upon the excitation, the simulated fluorescence of IQ in water is dominated by the IQ:H2O complex; thus hydrogen bond between IQ and H2O is much easier to form in the S1 state. While the weakened hydrogen bond in IQc:H2O complex is probably cleaved upon the laser pulse because the simulated emission spectrum of the free IQc is in better agreement with the experimental results.

8.
J Org Chem ; 80(1): 568-81, 2015 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-25436874

RESUMO

Rhodamine-bromonaphthaleneimide (RB-NI) and rhodamine-bromonaphthalenediimide (RB-NDI) dyads were prepared for switching of the triplet excited states. Bromo-NI or bromo-NDI parts in the dyads are the spin converters, i.e., the triplet state producing modules, whereas the RB unit is the acid-activatable electron donor/energy acceptor. NI and NDI absorb at 359 and 541 nm, and the T1 state energy levels are 2.25 and 1.64 eV, respectively. RB undertakes the reversible spirolactam (RB-c) ↔ opened amide (RB-o) transformation. RB-c shows no visible light absorption, and the triplet-state energy level is ET1 = 3.36 eV. Conversely RB-o shows strong absorption at 557 nm, and ET1 is 1.73 eV. Thus, the acid-activated fluorescence-resonance-energy-transfer (FRET) competes with the ISC of NI or NDI. No triplet state was observed for the dyads with nanosecond time-resolved transient absorption spectroscopy. Upon addition of acid, strong fluorescence and long-living triplet excited states were observed. Thus, the producing of triplet state is acid-activatable. The triplet state of RB-NI is localized on RB-o part, whereas in RB-NDI the triplet state is delocalized on both the NDI and RB-o units. The ISC of spin converter was not outcompeted by RET. These studies are useful for switching of triplet excited state.

9.
J Phys Chem A ; 119(50): 12579-85, 2015 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-26562362

RESUMO

The effect of a hydrogen bond on the photochemical synthesis of silver nanoparticles has been investigated via experimental and theoretical methods. In a benzophenone system, the photochemical synthesis process includes two steps, which are that hydrogen abstraction reaction and the following reduction reaction. We found that for the first step, an intermolecular hydrogen bond enhances the proton transfer. The efficiency of hydrogen abstraction increases with the hydrogen bond strength. For the second step, the hydrogen-bonded ketyl radical complex shows higher reducibility than the ketyl radical. The inductively coupled plasma-optical emission spectroscopy (ICP-OES) measurement exhibits a 2.49 times higher yield of silver nanoparticles in the hydrogen bond ketyl radical complex system than that for the ketyl radical system. Theoretical calculations show that the hydrogen bond accelerates electron transfer from the ketyl radical to the silver ion by raising the SOMO energy of the ketyl radical; thus, the SOMO-LUMO interaction is more favorable.

10.
Org Biomol Chem ; 12(8): 1220-31, 2014 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-24336836

RESUMO

In this paper, we have investigated the tandem reaction mechanism for the N-aziridinyl imine compounds forming triquinanes via trimethylenemethane (TMM) diyls in detail. Based on the calculated results, the reaction is initiated by the cleavage of the N-aziridinyl in the substrate, followed by an intramolecular 1,3-dipolar (3 + 2) cycloaddition preferentially leading to a linearly-fused tetrahydrocyclopentapyrazole intermediate. Next, the intermediate loses N2 to form the singlet TMM diyl M3S, which can then undergo another concerted (3 + 2) cycloaddition to generate the linearly-fused cis­trans or cis­syn triquinane products. In addition, M3S can also undergo intersystem crossing to the triplet TMM diyl M3T, and the six possible reaction pathways associated with M3T have also been identified. The calculated results reveal that the cis­trans fused pathway associated with M3S is energetically preferred with the highest free energy barrier of 25.0 kcal mol(−1). In comparison, the cyclization of M3T requires much higher activation free energies (ΔG(≠) = 34.4­57.8 kcal mol(−1)). At the experimental temperature 110 °C, only the linearly-fused cis­trans and cis­syn pathways associated with M3T (ΔG(≠) = 34.4 and 35.5 kcal mol(−1) respectively) are possible. The calculated results also indicate that for both M3S and M3T, the linearly-fused cis­trans triquinane should be the main product, which is consistent with the experimental observation. At last, conformational and NBO analyses on key transition states identified the cis­trans stereocontrol factors. Further calculations indicate that the methyl substituent on the allene group of the reactant substrate improves the stereoselectivity of the reaction but does not affect the rate-determining step.

11.
J Phys Chem A ; 118(39): 8929-35, 2014 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-24940722

RESUMO

A parallel code for state-to-state quantum dynamics with propagation of time-dependent wavepacket in reactant coordinates has been developed on graphical processing units (GPUs). The propagation of wavepacket and the transformation of wavepacket from reactant to product Jacobi coordinates are entirely calculated on GPUs. A new interpolation procedure is introduced for coordinate transformation to decrease the five-loop computation to two four-loop computations. This procedure has a negligible consumption of extra GPU memory in comparison with that of the wavepacket and produces a considerable acceleration of the computational speed of the transformation. The code is tested to get differential cross sections of H+HD reaction and state-resolved reaction probabilities of O+HD for total angular momenta J = 0, 10, 20, and 30. The average speedups are 57.0 and 83.5 for the parallel computations on two C2070 and K20m GPUs relative to serial computation on Intel E5620 CPU, respectively.

12.
J Chem Phys ; 141(23): 235101, 2014 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-25527960

RESUMO

On-the-fly ab initio molecular dynamics calculations have been performed to investigate the relaxation mechanism of green fluorescent protein chromophore anion under vacuum. The CASSCF surface hopping simulation method based on Zhu-Nakamura theory is applied to present the real-time conformational changes of the target molecule. The static calculations and dynamics simulation results suggest that not only the twisting motion around bridging bonds between imidazolinone and phenoxy groups but the strength mode of C=O and pyramidalization character of bridging atom are major factors on the ultrafast fluorescence quenching process of the isolated chromophore anion. The abovementioned factors bring the molecule to the vicinity of conical intersections on its potential energy surface and to finish the internal conversion process. A Hula-like twisting pattern is displayed during the relaxation process and the entire decay process disfavors a photoswitching pattern which corresponds to cis-trans photoisomerization.


Assuntos
Proteínas de Fluorescência Verde/química , Simulação de Dinâmica Molecular , Conformação Proteica , Espectrometria de Fluorescência , Termodinâmica
13.
J Am Chem Soc ; 135(17): 6694-702, 2013 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-23560763

RESUMO

In this work, spectroscopic techniques and quantum chemistry calculations were used to investigate the photophysical properties of various multinuclear platinum complexes with different conformational geometries. This suite of complexes includes a Pt-pyridyl square, a Pt-carboxylate triangle, and a mixed Pt-pyridyl-carboxylate rectangle, as well as two mononuclear Pt model complexes. Studying the individual molecular precursors in the context of larger assemblies is important to provide a complete understanding of the factors governing the observed photophysical properties of a given system. The absorption and emission bands of the parent linear dipyridyl donor (ligand 1) are largely preserved in the [4 + 4] square and the multicomponent [4 + 2 + 2] rectangle (3 and 4, respectively), with significant red shifts. The [3 + 3] Pt-carboxylate triangle containing p-phthalic acid is nonemissive. Phosphorescence and nanosecond transient spectroscopy on 3 and 4 reveal that the introduction of platinum atoms enhances spin-orbital coupling, thereby increasing the rate of intersystem crossing. This phenomenon is consistent with the low fluorescence quantum yields and short fluorescence lifetimes of 3 and 4. Moreover, the electronic structures for the ground state and low-lying excited states of these compounds were studied using quantum chemistry calculations. The fluorescent states of the platinum complexes are local excited states of ligand-centered π-π* transition features, whereas the nonfluorescent states are intramolecular charge-transfer states. These low-lying intramolecular charge-transfer states are responsible for the nonemissive nature of small molecules 1 and 2 and triangle 5. As the interactions between these components determine the properties of their corresponding assemblies, we establish novel excited-state decay mechanisms which dictate the observed spectra.

14.
Acc Chem Res ; 45(3): 404-13, 2012 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-22070387

RESUMO

Because of its fundamental importance in many branches of science, hydrogen bonding is a subject of intense contemporary research interest. The physical and chemical properties of hydrogen bonds in the ground state have been widely studied both experimentally and theoretically by chemists, physicists, and biologists. However, hydrogen bonding in the electronic excited state, which plays an important role in many photophysical processes and photochemical reactions, has scarcely been investigated. Upon electronic excitation of hydrogen-bonded systems by light, the hydrogen donor and acceptor molecules must reorganize in the electronic excited state because of the significant charge distribution difference between the different electronic states. The electronic excited-state hydrogen-bonding dynamics, which are predominantly determined by the vibrational motions of the hydrogen donor and acceptor groups, generally occur on ultrafast time scales of hundreds of femtoseconds. As a result, state-of-the-art femtosecond time-resolved vibrational spectroscopy is used to directly monitor the ultrafast dynamical behavior of hydrogen bonds in the electronic excited state. It is important to note that the excited-state hydrogen-bonding dynamics are coupled to the electronic excitation. Fortunately, the combination of femtosecond time-resolved spectroscopy and accurate quantum chemistry calculations of excited states resolves this issue in laser experiments. Through a comparison of the hydrogen-bonded complex to the separated hydrogen donor or acceptor in ground and electronic excited states, the excited-state hydrogen-bonding structure and dynamics have been obtained. Moreover, we have also demonstrated the importance of hydrogen bonding in many photophysical processes and photochemical reactions. In this Account, we review our recent advances in electronic excited-state hydrogen-bonding dynamics and the significant role of electronic excited-state hydrogen bonding on internal conversion (IC), electronic spectral shifts (ESS), photoinduced electron transfer (PET), fluorescence quenching (FQ), intramolecular charge transfer (ICT), and metal-to-ligand charge transfer (MLCT). The combination of various spectroscopic experiments with theoretical calculations has led to tremendous progress in excited-state hydrogen-bonding research. We first demonstrated that the intermolecular hydrogen bond in the electronic excited state is greatly strengthened for coumarin chromophores and weakened for thiocarbonyl chromophores. We have also clarified that the intermolecular hydrogen-bond strengthening and weakening correspond to red-shifts and blue-shifts, respectively, in the electronic spectra. Moreover, radiationless deactivations (via IC, PET, ICT, MLCT, and so on) can be dramatically influenced through the regulation of electronic states by hydrogen-bonding interactions. Consequently, the fluorescence of chromophores in hydrogen-bonded surroundings is quenched or enhanced by hydrogen bonds. Our research expands our understanding of the nature of hydrogen bonding by delineating the interaction between hydrogen bonds and photons, thereby providing a basis for excited-state hydrogen bonding studies in photophysics, photochemistry, and photobiology.

15.
Nanotechnology ; 24(24): 245401, 2013 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-23680858

RESUMO

We demonstrated CdS quantum dot-sensitized solar cells (QDSSCs) based on anatase TiO2 nanosheets with exposed {001} and {100} facets. Under the illumination of one Sun (AM 1.5 G, 100 mW cm(-2)), the photovoltaic conversion efficiencies were 2.29% for a QDSSC based on {001}-TiO2 nanosheets, 2.18% for a QDSSC based on {100}-TiO2 nanosheets, and 1.46% for a QDSSC based on commercial Degussa P25. It was found that the exposed highly reactive facets of TiO2 nanosheets had a remarkable influence on the QDSSCs due to their better adsorption abilities for QDs, leading to the high short current density and the enhanced photovoltaic performance.

16.
J Phys Chem A ; 117(36): 8512-8, 2013 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-23391255

RESUMO

An efficient graphics processing units (GPUs) version of time-dependent wavepacket code is developed for the atom-diatom state-to-state reactive scattering processes. The propagation of the wavepacket is entirely calculated on GPUs employing the split-operator method after preparation of the initial wavepacket on the central processing unit (CPU). An additional split-operator method is introduced in the rotational part of the Hamiltonian to decrease communication of GPUs without losing accuracy of state-to-state information. The code is tested to calculate the differential cross sections of H + H2 reaction and state-resolved reaction probabilities of nonadiabatic triplet-singlet transitions of O((3)P,(1)D) + H2 for the total angular momentum J = 0. The global speedups of 22.11, 38.80, and 44.80 are found comparing the parallel computation of one GPU, two GPUs by exact rotational operator, and two GPU versions by an approximate rotational operator with serial computation of the CPU, respectively.

17.
J Phys Chem A ; 117(16): 3266-78, 2013 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-23544797

RESUMO

n-Heptane is the most important straight chain paraffin in the fossil-fuel industry. In this work, pyrolysis of n-heptane at high temperature is investigated by a series of ReaxFF based reactive molecular dynamic simulations. The pyrolysis correlated intermediate reactions, important product/intermediate distributions, and corresponding kinetics behaviors are systematically analyzed at atomistic level. The results indicate that the entire pyrolysis process is radical-dominated. The unimolecular dissociation is the main pathway of n-heptane decomposition. Initiation of the decomposition is mainly through C-C bond fission. Central C-C bonds would dissociate prior to the terminal ones. Besides, the Rice-Kossiakoff theory is proved for the pyrolysis of n-heptane at the atomistic level. To give a better description of the pyrolysis behavior, some alkane related intermolecular reactions should be considered in the mechanism. The apparent activation energy extracted from the present simulations is 43.02-54.49 kcal/mol in the temperature range 2400-3000 K, which is reasonably consistent with the experimental results.

18.
Org Biomol Chem ; 10(38): 7689-706, 2012 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-22903528

RESUMO

The phosphine-catalyzed [4 + 2] annulations between allenoates and electron-poor trifluoromethyl ketones or N-tosylbenzaldimine dipolarophiles have been investigated in continuum solvation using density functional theory (DFT) calculations. The detailed reaction mechanisms as well as the high cis-diastereoselectivities of the reactions have been firstly clarified. Our calculated results reveal that the whole catalytic process is presumably initiated with the nucleophilic attack of phosphine catalyst at the allenoate to produce the zwitterionic intermediate , which subsequently undergoes γ-addition to the electron-poor C=O (or C=N) dipolarophile to form another intermediate . The following [1,3] hydrogen shift of is demonstrated to proceed via two consecutive proton transfer steps without the assistance of protic solvent: the anionic O6 (or N6) of first acts as a base catalyst to abstract a proton from C1 to produce the intermediate , and then the OH (or NH) group can donate the acidic proton to C3 to complete the [1,3] hydrogen shift and generate the intermediate . Finally, the intramolecular Michael-type addition followed by the elimination of catalyst furnishes the final product. High cis-diastereoselectivities are also predicted for both the two reactions, which is in good agreement with the experimental observations. For the reaction of allenoates with trifluoromethyl ketones, the first proton transfer is found to be the diastereoselectivity-determining step. The cumulative effects of the steric repulsion, electrostatic interaction as well as other weak interactions appear to contribute to the relative energies of transition states leading to the diastereomeric products. On the contrary, in the case of N-tosylbenzaldimines, the Michael-type addition is found to be the diastereoselectivity-determining step. Similarly, steric repulsion, as well as electrostatic interaction is also identified to be the dominant factors in controlling the high cis-diastereoselectivity of this reaction.


Assuntos
Alcadienos/química , Iminas/química , Cetonas/química , Fosfinas/química , Catálise , Ciclização , Estrutura Molecular , Teoria Quântica , Estereoisomerismo
19.
J Phys Chem A ; 116(40): 9911-8, 2012 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-22970704

RESUMO

The 90° and 60° bimetallic platinum complexes with special structures are widely used in coordination-driven self-assembled metallosupramolecular architectures, and these complexes are the key components of triangular, rectangular, and polygonal metallacycle and metallocage supramolecules. Therefore, spectroscopic techniques and quantum chemistry calculations were employed in this article to investigate the photophysical properties of these bimetallic platinum complexes. Compared with spectra for the ligands, the absorption spectra of these Pt complexes are red-shifted, and the fluorescence spectra become wider and are also red-shifted. Moreover, the reasons for the low fluorescence quantum yields and short fluorescence lifetimes of these compounds were investigated using quantum chemistry calculations. We demonstrate that the fluorescent states of the bimetallic platinum complexes can be considered as local excited states, and that they possess a ligand-centered π-π* transition feature. Meanwhile, the platinum metals act as perturbation for these transitions, whereas the nonfluorescent states are classified as intramolecular charge-transfer states. Furthermore, a new fluorescence modulation mechanism is developed to explain the different emission processes of these complexes with different ligands.

20.
J Chem Phys ; 137(20): 204305, 2012 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-23206001

RESUMO

The photoisomerization mechanisms of bridged azobenzene are investigated by means of surface hopping dynamics simulations based on the Zhu-Nakamura theory. In the geometry optimizations and potential energy surface calculations, four minimum-energy conical intersections between the ground state and the lowest excited state are found to play important roles in the trans-cis and cis-trans isomerization processes. The trans-cis photoisomerization proceeds through two minimum-energy conical intersections. Ultrafast pedal motion of the N atoms and twisting of phenyl rings around their N-C bonds allows the molecule to move to a minimum-energy conical intersection, after which surface hopping from S(1) to S(0) occurs. In the S(0) state, further rotation occurs around the N=N bond and two N-C bonds until the azo moiety and phenyl rings complete their isomerization. Finally, the cis form is achieved by subsequent adjustment of the ethylene bridge. In the cis-trans photodynamics, there is one rotational pathway, in the middle of which two CIs are responsible for the surface hopping to the S(0) state. After the nonadiabatic transition, the molecule reaches the trans form through a barrierless pathway and the two phenyl rings and the additional bridge complete their reorientation almost at the same time.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA