Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(12)2021 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-34201246

RESUMO

Disordered plant chaperones play key roles in helping plants survive in harsh conditions, and they are indispensable for seeds to remain viable. Aside from well-known and thoroughly characterized globular chaperone proteins, there are a number of intrinsically disordered proteins (IDPs) that can also serve as highly effective protecting agents in the cells. One of the largest groups of disordered chaperones is the group of dehydrins, proteins that are expressed at high levels under different abiotic stress conditions, such as drought, high temperature, or osmotic stress. Dehydrins are characterized by the presence of different conserved sequence motifs that also serve as the basis for their categorization. Despite their accepted importance, the exact role and relevance of the conserved regions have not yet been formally addressed. Here, we explored the involvement of each conserved segment in the protective function of the intrinsically disordered stress protein (IDSP) A. thaliana's Early Response to Dehydration (ERD14). We show that segments that are directly involved in partner binding, and others that are not, are equally necessary for proper function and that cellular protection emerges from the balanced interplay of different regions of ERD14.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Proteínas Intrinsicamente Desordenadas/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas de Plantas/metabolismo , Estresse Fisiológico , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas Intrinsicamente Desordenadas/genética , Chaperonas Moleculares/genética , Pressão Osmótica , Proteínas de Plantas/genética
2.
Int J Mol Sci ; 21(11)2020 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-32503167

RESUMO

The potential barriers governing the motions of α-synuclein (αS) variants' hydration water, especially energetics of them, is in the focus of the work. The thermodynamical approach yielded essential information about distributions and heights of the potential barriers. The proteins' structural disorder was measured by ratios of heterogeneous water-binding interfaces. They showed the αS monomers, oligomers and amyloids to possess secondary structural elements, although monomers are intrinsically disordered. Despite their disordered nature, monomers have 33% secondary structure, and therefore they are more compact than a random coil. At the lowest potential barriers with mobile hydration water, monomers are already functional, a monolayer of mobile hydration water is surrounding them. Monomers realize all possible hydrogen bonds with the solvent water. αS oligomers and amyloids have half of the mobile hydration water amount than monomers because aggregation involves less mobile hydration. The solvent-accessible surface of the oligomers is ordered or homogenous in its interactions with water to 66%. As a contrast, αS amyloids are disordered or heterogeneous to 75% of their solvent accessible surface and both wild type and A53T amyloids show identical, low-level hydration. Mobile water molecules in the first hydration shell of amyloids are the weakest bound compared to other forms.


Assuntos
alfa-Sinucleína/química , Amiloide/química , Humanos , Ligação de Hidrogênio , Espectroscopia de Ressonância Magnética , Mutação , Ligação Proteica , Estrutura Secundária de Proteína , Proteínas Recombinantes/química , Solventes , Água/química
3.
Int J Mol Sci ; 20(9)2019 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-31032817

RESUMO

(1) Background: Processivity is common among enzymes and mechanochemical motors that synthesize, degrade, modify or move along polymeric substrates, such as DNA, RNA, polysaccharides or proteins. Processive enzymes can make multiple rounds of modification without releasing the substrate/partner, making their operation extremely effective and economical. The molecular mechanism of processivity is rather well understood in cases when the enzyme structurally confines the substrate, such as the DNA replication factor PCNA, and also when ATP energy is used to confine the succession of molecular events, such as with mechanochemical motors. Processivity may also result from the kinetic bias of binding imposed by spatial confinement of two binding elements connected by an intrinsically disordered (ID) linker. (2) Method: By statistical physical modeling, we show that this arrangement results in processive systems, in which the linker ensures an optimized effective concentration around novel binding site(s), favoring rebinding over full release of the polymeric partner. (3) Results: By analyzing 12 such proteins, such as cellulase, and RNAse-H, we illustrate that in these proteins linker length and flexibility, and the kinetic parameters of binding elements, are fine-tuned for optimizing processivity. We also report a conservation of structural disorder, special amino acid composition of linkers, and the correlation of their length with step size. (4) Conclusion: These observations suggest a unique type of entropic chain function of ID proteins, that may impart functional advantages on diverse enzymes in a variety of biological contexts.


Assuntos
Enzimas/química , Enzimas/metabolismo , Proteínas Intrinsicamente Desordenadas/química , Proteínas Intrinsicamente Desordenadas/metabolismo , Domínios e Motivos de Interação entre Proteínas , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Celulase/química , Celulase/metabolismo , Fenômenos Químicos , Sequência Conservada , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Relação Estrutura-Atividade
4.
Biochim Biophys Acta Gen Subj ; 1862(6): 1452-1461, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29550429

RESUMO

BACKGROUND: Adaptive mutations that alter protein functionality are enriched within intrinsically disordered protein regions (IDRs), thus conformational flexibility correlates with evolvability. Pre-structured motifs (PreSMos) with transient propensity for secondary structure conformation are believed to be important for IDR function. The glucocorticoid receptor tau1core transcriptional activation domain (GR tau1core) domain contains three α-helical PreSMos in physiological buffer conditions. METHODS: Sixty change-of-function mutants affecting the intrinsically disordered 58-residue GR tau1core were studied using disorder prediction and molecular dynamics simulations. RESULTS: Change-of-function mutations were partitioned into seven clusters based on their effect on IDR predictions and gene activation activity. Some mutations selected from clusters characterized by mutations altering the IDR prediction score, altered the apparent stability of the α-helical form of one of the PreSMos in molecular dynamics simulations, suggesting PreSMo stabilization or destabilization as strategies for functional adaptation. Indeed all tested gain-of-function mutations affecting this PreSMo were associated with increased stability of the α-helical PreSMo conformation, suggesting that PreSMo stabilization may be the main mechanism by which adaptive mutations can increase the activity of this IDR type. Some mutations did not appear to affect PreSMo stability. CONCLUSIONS: Changes in PreSMo stability account for the effects of a subset of change-of-function mutants affecting the GR tau1core IDR. GENERAL SIGNIFICANCE: Long IDRs occur in about 50% of human proteins. They are poorly characterized despite much recent attention. Our results suggest the importance of a subtle balance between PreSMo stability and IDR activity, which may provide a novel target for future pharmaceutical intervention.


Assuntos
Proteínas Intrinsicamente Desordenadas/química , Simulação de Dinâmica Molecular , Mutação , Conformação Proteica em alfa-Hélice , Receptores de Glucocorticoides/química , Humanos , Proteínas Intrinsicamente Desordenadas/genética , Receptores de Glucocorticoides/genética , Ativação Transcricional
5.
Int J Mol Sci ; 19(11)2018 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-30445805

RESUMO

Intrinsically disordered proteins (IDPs) are unorthodox proteins that do not form three-dimensional structures under non-denaturing conditions, but perform important biological functions. In addition, IDPs are associated with many critical diseases including cancers, neurodegenerative diseases, and viral diseases. Due to the generic name of "unstructured" proteins used for IDPs in the early days, the notion that IDPs would be completely unstructured down to the level of secondary structures has prevailed for a long time. During the last two decades, ample evidence has been accumulated showing that IDPs in their target-free state are pre-populated with transient secondary structures critical for target binding. Nevertheless, such a message did not seem to have reached with sufficient clarity to the IDP or protein science community largely because similar but different expressions were used to denote the fundamentally same phenomenon of presence of such transient secondary structures, which is not surprising for a quickly evolving field. Here, we summarize the critical roles that these transient secondary structures play for diverse functions of IDPs by describing how various expressions referring to transient secondary structures have been used in different contexts.


Assuntos
Proteínas Intrinsicamente Desordenadas/química , Motivos de Aminoácidos , Animais , Humanos , Espectroscopia de Ressonância Magnética , Estrutura Secundária de Proteína
6.
Angew Chem Int Ed Engl ; 56(5): 1278-1282, 2017 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-28000315

RESUMO

p53 is an important tumor-suppressor protein deactivation of which by mdm2 results in cancers. A SUMO-specific protease 4 (SUSP4) was shown to rescue p53 from mdm2-mediated deactivation, but the mechanism is unknown. The discovery by NMR spectroscopy of a "p53 rescue motif" in SUSP4 that disrupts p53-mdm2 binding is presented. This 29-residue motif is pre-populated with two transient helices connected by a hydrophobic linker. The helix at the C-terminus binds to the well-known p53-binding pocket in mdm2 whereas the N-terminal helix serves as an affinity enhancer. The hydrophobic linker binds to a previously unidentified hydrophobic crevice in mdm2. Overall, SUSP4 appears to use two synergizing modules, the p53 rescue motif described here and a globular-structured SUMO-binding catalytic domain, to stabilize p53. A p53 rescue motif peptide exhibits an anti-tumor activity in cancer cell lines expressing wild-type p53. A pre-structures motif in the intrinsically disordered proteins is thus important for target recognition.


Assuntos
Cisteína Endopeptidases/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Domínio Catalítico , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cisteína Endopeptidases/química , Humanos , Simulação de Dinâmica Molecular , Mutagênese , Peptídeos/farmacologia , Ligação Proteica , Proteínas Proto-Oncogênicas c-mdm2/química , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteína Supressora de Tumor p53/química , Proteína Supressora de Tumor p53/genética
7.
Biochem Biophys Res Commun ; 477(2): 181-7, 2016 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-27297113

RESUMO

Nucleolar phosphoprotein 140 (Nopp140) is a nucleolar protein, more than 80% of which is disordered. Previous studies have shown that the C-terminal region of Nopp140 (residues 568-596) interacts with protein kinase CK2α, and inhibits the catalytic activity of CK2. Although the region of Nopp140 responsible for the interaction with CK2α was identified, the structural features and the effect of this interaction on the structure of Nopp140 have not been defined due to the difficulty of structural characterization of disordered protein. In this study, the disordered feature of Nopp140 and the effect of CK2α on the structure of Nopp140 were examined using single-molecule fluorescence resonance energy transfer (smFRET) and electron paramagnetic resonance (EPR). The interaction with CK2α was increased conformational rigidity of the CK2α-interacting region of Nopp140 (Nopp140C), suggesting that the disordered and flexible conformation of Nopp140C became more rigid conformation as it binds to CK2α. In addition, site specific spin labeling and EPR analysis confirmed that the residues 574-589 of Nopp140 are critical for binding to CK2α. Similar technical approaches can be applied to analyze the conformational changes in other IDPs during their interactions with binding partners.


Assuntos
Proteínas Nucleares/química , Proteínas Nucleares/ultraestrutura , Fosfoproteínas/química , Fosfoproteínas/ultraestrutura , Sítios de Ligação , Caseína Quinase II/química , Caseína Quinase II/ultraestrutura , Ativação Enzimática , Proteínas Intrinsicamente Desordenadas , Ligação Proteica , Conformação Proteica , Dobramento de Proteína , Relação Estrutura-Atividade , Especificidade por Substrato
8.
Biochim Biophys Acta ; 1840(3): 993-1003, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24211251

RESUMO

BACKGROUND: IDPs function without relying on three-dimensional structures. No clear rationale for such a behavior is available yet. PreSMos are transient secondary structures observed in the target-free IDPs and serve as the target-binding "active" motifs in IDPs. Prolines are frequently found in the flanking regions of PreSMos. Contribution of prolines to the conformational stability of the helical PreSMos in IDPs is investigated. METHODS: MD simulations are performed for several IDP segments containing a helical PreSMo and the flanking prolines. To measure the influence of flanking-prolines on the structural content of a helical PreSMo calculations were done for wild type as well as for mutant segments with Pro→Asp, His, Lys, or Ala. The change in the helicity due to removal of a proline was measured both for the PreSMo region and for the flanking regions. RESULTS: The α-helical content in ~70% of the helical PreSMos at the early stage of simulation decreases due to replacement of an N-terminal flanking proline by other residues whereas the helix content in nearly all PreSMos increases when the same replacements occur at the C-terminal flanking region. The helix destabilizing/terminating role of the C-terminal flanking prolines is more pronounced than the helix promoting effect of the N-terminal flanking prolines. GENERAL SIGNIFICANCE: This work represents a novel example demonstrating that a proline is encoded in an IDP with a defined purpose. The helical PreSMos presage their target-bound conformations. As they most likely mediate IDP-target binding via conformational selection their helical content can be an important feature for IDP function.


Assuntos
Proteínas Intrinsicamente Desordenadas/química , Prolina/química , Estrutura Secundária de Proteína , Sequência de Aminoácidos , Fosfoproteína 32 Regulada por cAMP e Dopamina/química , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Securina/química , Proteína Supressora de Tumor p53/química
9.
Biochim Biophys Acta ; 1834(1): 342-50, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22906532

RESUMO

Human nucleolar phosphoprotein p140 (hNopp 140) is a highly phosphorylated protein inhibitor of casein kinase 2 (CK2). As in the case of many kinase-inhibitor systems, the inhibitor has been described to belong to the family of intrinsically disordered proteins (IDPs), which often utilize transient structural elements to bind their cognate enzyme. Here we investigated the structural status of this protein both to provide distinct lines of evidence for its disorder and to point out its transient structure potentially involved in interactions and also its tendency to aggregate. Structural disorder of hNopp140 is apparent by its anomalous electrophoretic mobility, protease sensitivity, heat stability, hydrodynamic behavior on size-exclusion chromatography, (1)H NMR spectrum and differential scanning calorimetry scan. hNopp140 has a significant tendency to aggregate and the change of its circular dichroism spectrum in the presence of 0-80% TFE suggests a tendency to form local helical structures. Wide-line NMR measurements suggest the overall disordered character of the protein. In all, our data suggest that this protein falls into the pre-molten globule state of IDPs, with a significant tendency to become ordered in the presence of its partner as demonstrated in the presence of transcription factor IIB (TFIIB).


Assuntos
Proteínas Nucleares/química , Fosfoproteínas/química , Caseína Quinase II/antagonistas & inibidores , Caseína Quinase II/química , Caseína Quinase II/metabolismo , Dicroísmo Circular , Humanos , Ressonância Magnética Nuclear Biomolecular , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Fator de Transcrição TFIIB/química , Fator de Transcrição TFIIB/metabolismo
10.
BMC Cancer ; 12: 274, 2012 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-22748190

RESUMO

BACKGROUND: A candidate oncogene GIG47, previously known as a neudesin with a neurotrophic activity, was identified by applying the differential expression analysis method. METHODS: As a first step to understand the molecular role of GIG47, we analyzed the expression profile of GIG47 in multiple human cancers including the breast cancer and characterized its function related to human carcinogenesis. Based on this oncogenic role of GIG47, we then embarked on determining the high-resolution structure of GIG47. We have applied multidimensional heteronuclear NMR methods to GIG47. RESULTS: GIG47 was over-expressed in primary breast tumors as well as other human tumors including carcinomas of the uterine cervix, malignant lymphoma, colon, lung, skin, and leukemia. To establish its role in the pathogenesis of breast cancer in humans, we generated stable transfectants of MCF7 cells. The ectopic expression of GIG47 in MCF7 cells promoted the invasiveness in the presence of 50% serum. In addition, it also resulted in the increased tumorigenicity in in vivo tumor formation assay. The tumorigenesis mechanism involving GIG47 might be mediated by the activation of MAPK and PI3K pathways. These results indicate that GIG47 plays a role in the breast tumorigenesis, thus representing a novel target for the treatment of breast cancer. To facilitate the development of GIG47-targeted therapeutics, we determined the structural configuration of GIG47. The high-resolution structure of GIG47 was obtained by combination of NMR and homology modeling. The overall structure of GIG47 has four α-helices and 6 ß-strands, arranged in a ß1-α1-ß2-ß3-α2-ß4-α3-α4-ß5-ß6 topology. There is a potential heme/steroid binding pocket formed between two helices α2 and α3. CONCLUSION: The determined three-dimensional structure of GIG47 may facilitate the development of potential anti-cancer agents.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Transformação Celular Neoplásica/genética , Peptídeos e Proteínas de Sinalização Intercelular/química , Peptídeos e Proteínas de Sinalização Intercelular/genética , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/genética , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Transformação Celular Neoplásica/metabolismo , Clonagem Molecular , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Modelos Moleculares , Proteínas do Tecido Nervoso/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Estrutura Secundária de Proteína , Interferência de RNA , Transdução de Sinais
11.
Proc Natl Acad Sci U S A ; 105(7): 2397-402, 2008 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-18272497

RESUMO

Recent experiments claiming that Naf-BBL protein follows a global downhill folding raised an important controversy as to the folding mechanism of fast-folding proteins. Under the global downhill folding scenario, not only do proteins undergo a gradual folding, but folding events along the continuous folding pathway also could be mapped out from the equilibrium denaturation experiment. Based on the exact calculation using a free energy landscape, relaxation eigenmodes from a master equation, and Monte Carlo simulation of an extended Muñoz-Eaton model that incorporates multiscale-heterogeneous pairwise interactions between amino acids, here we show that the very nature of a two-state cooperative transition such as a bimodal distribution from an exact free energy landscape and biphasic relaxation kinetics manifest in the thermodynamics and folding-unfolding kinetics of BBL and peripheral subunit-binding domain homologues. Our results provide an unequivocal resolution to the fundamental controversy related to the global downhill folding scheme, whose applicability to other proteins should be critically reexamined.


Assuntos
Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Dobramento de Proteína , Cinética , Modelos Biológicos , Ligação Proteica , Desnaturação Proteica , Temperatura , Termodinâmica
12.
Prog Mol Biol Transl Sci ; 183: 187-247, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34656329

RESUMO

Pre-Structured Motifs (PreSMos) are transient secondary structures observed in many intrinsically disordered proteins (IDPs) and serve as protein target-binding hot spots. The prefix "pre" highlights that PreSMos exist a priori in the target-unbound state of IDPs as the active pockets of globular proteins pre-exist before target binding. Therefore, a PreSMo is an "active site" of an IDP; it is not a spatial pocket, but rather a secondary structural motif. The classical and perhaps the most effective approach to understand the function of a protein has been to determine and investigate its structure. Ironically or by definition IDPs do not possess structure (here structure refers to tertiary structure only). Are IDPs then entirely structureless? The PreSMos provide us with an atomic-resolution answer to this question. For target binding, IDPs do not rely on the spatial pockets afforded by tertiary or higher structures. Instead, they utilize the PreSMos possessing particular conformations that highly presage the target-bound conformations. PreSMos are recognized or captured by targets via conformational selection (CS) before their conformations eventually become stabilized via structural induction into more ordered bound structures. Using PreSMos, a number of, if not all, IDPs can bind targets following a sequential pathway of CS followed by an induced fit (IF). This chapter presents several important PreSMos implicated in cancers, neurodegenerative diseases, and other diseases along with discussions on their conformational details that mediate target binding, a structural rationale for unstructured proteins.


Assuntos
Proteínas Intrinsicamente Desordenadas , Humanos , Estrutura Secundária de Proteína
13.
Biomolecules ; 10(3)2020 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-32164323

RESUMO

Elucidating the structural details of proteins is highly valuable and important for the proper understanding of protein function. In the case of intrinsically disordered proteins (IDPs), however, obtaining the structural details is quite challenging, as the traditional structural biology tools have only limited use. Nuclear magnetic resonance (NMR) is a unique experimental tool that provides ensemble conformations of IDPs at atomic resolution, and when studying IDPs, a slightly different experimental strategy needs to be employed than the one used for globular proteins. We address this point by reviewing many NMR investigations carried out on the α-synuclein protein, the aggregation of which is strongly correlated with Parkinson's disease.


Assuntos
Agregados Proteicos , alfa-Sinucleína/química , Humanos , Ressonância Magnética Nuclear Biomolecular , Doença de Parkinson/metabolismo , Estrutura Secundária de Proteína , alfa-Sinucleína/metabolismo
14.
Cells ; 9(8)2020 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-32784707

RESUMO

Details of the functional mechanisms of intrinsically disordered proteins (IDPs) in living cells is an area not frequently investigated. Here, we dissect the molecular mechanism of action of an IDP in cells by detailed structural analyses based on an in-cell nuclear magnetic resonance experiment. We show that the ID stress protein (IDSP) A. thaliana Early Response to Dehydration (ERD14) is capable of protecting E. coli cells under heat stress. The overexpression of ERD14 increases the viability of E. coli cells from 38.9% to 73.9% following heat stress (50 °C × 15 min). We also provide evidence that the protection is mainly achieved by protecting the proteome of the cells. In-cell NMR experiments performed in E. coli cells show that the protective activity is associated with a largely disordered structural state with conserved, short sequence motifs (K- and H-segments), which transiently sample helical conformations in vitro and engage in partner binding in vivo. Other regions of the protein, such as its S segment and its regions linking and flanking the binding motifs, remain unbound and disordered in the cell. Our data suggest that the cellular function of ERD14 is compatible with its residual structural disorder in vivo.


Assuntos
Proteínas de Arabidopsis/fisiologia , Escherichia coli/fisiologia , Resposta ao Choque Térmico , Proteínas Intrinsicamente Desordenadas/fisiologia , Arabidopsis/fisiologia , Escherichia coli/genética , Viabilidade Microbiana , Microrganismos Geneticamente Modificados/fisiologia , Chaperonas Moleculares/fisiologia , Ligação Proteica , Domínios Proteicos , Proteoma/metabolismo
15.
Mol Cells ; 41(10): 889-899, 2018 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-30352491

RESUMO

Intrinsically disordered proteins (IDPs) are highly unorthodox proteins that do not form three-dimensional structures under physiological conditions. The discovery of IDPs has destroyed the classical structure-function paradigm in protein science, 3-D structure = function, because IDPs even without well-folded 3-D structures are still capable of performing important biological functions and furthermore are associated with fatal diseases such as cancers, neurodegenerative diseases and viral pandemics. Pre-structured motifs (PreSMos) refer to transient local secondary structural elements present in the target-unbound state of IDPs. During the last two decades PreSMos have been steadily acknowledged as the critical determinants for target binding in dozens of IDPs. To date, the PreSMo concept provides the most convincing structural rationale explaining the IDP-target binding behavior at an atomic resolution. Here we present a brief developmental history of PreSMos and describe their common characteristics. We also provide a list of newly discovered PreSMos along with their functional relevance.


Assuntos
Proteínas Intrinsicamente Desordenadas/metabolismo , Ressonância Magnética Nuclear Biomolecular/métodos , Modelos Moleculares , Conformação Proteica
16.
Protein Sci ; 16(10): 2108-17, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17766372

RESUMO

The preS1 surface antigen of hepatitis B virus (HBV) is known to play an important role in the initial attachment of HBV to hepatocytes. We have characterized structural features of the full-length preS1 using heteronuclear NMR methods and discovered that this 119-residue protein is inherently unstructured without a unique tertiary structure under a nondenaturing condition. Yet, combination of various NMR parameters shows that the preS1 contains "pre-structured" domains broadly covering its functional domains. The most prominent domain is formed by residues 27-45 and overlaps with the putative hepatocyte-binding domain (HBD) encompassing residues 21-47, within which two well-defined pre-structured motifs, formed by Pro(32)-Ala(36) and Pro(41)-Phe(45) are found. Additional, somewhat less prominent, pre-structured motifs are also formed by residues 11-18, 22-25, 37-40, and 46-50. Overall results suggest that the preS1 is a natively unstructured protein (NUP) whose N-terminal 50 residues, populated with multiple pre-structured motifs, contribute critically to hepatocyte binding.


Assuntos
Antígenos de Superfície da Hepatite B/química , Precursores de Proteínas/química , Motivos de Aminoácidos , Sequência de Aminoácidos , Dados de Sequência Molecular , Ressonância Magnética Nuclear Biomolecular
17.
BMB Rep ; 50(10): 522-527, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28946939

RESUMO

A large number of transcriptional activation domains (TADs) are intrinsically unstructured, meaning they are devoid of a three-dimensional structure. The fact that these TADs are transcriptionally active without forming a 3-D structure raises the question of what features in these domains enable them to function. One of two TADs in human glucocorticoid receptor (hGR) is located at its N-terminus and is responsible for ∼70% of the transcriptional activity of hGR. This 58-residue intrinsically-disordered TAD, named tau1c in an earlier study, was shown to form three helices under trifluoroethanol, which might be important for its activity. We carried out heteronuclear multi-dimensional NMR experiments on hGR tau1c in a more physiological aqueous buffer solution and found that it forms three helices that are ∼30% pre-populated. Since pre-populated helices in several TADs were shown to be key elements for transcriptional activity, the three pre-formed helices in hGR tau1c delineated in this study should be critical determinants of the transcriptional activity of hGR. The presence of prestructured helices in hGR tau1c strongly suggests that the existence of pre-structured motifs in target-unbound TADs is a very broad phenomenon. [BMB Reports 2017; 50(10): 522-527].


Assuntos
Receptores de Glucocorticoides/metabolismo , Sequência de Aminoácidos , Humanos , Proteínas Intrinsicamente Desordenadas/fisiologia , Espectroscopia de Ressonância Magnética , Ressonância Magnética Nuclear Biomolecular/métodos , Ligação Proteica , Domínios Proteicos/fisiologia , Estrutura Secundária de Proteína , Ativação Transcricional/fisiologia
18.
BMB Rep ; 50(10): 485-486, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28712389

RESUMO

Many intrinsically unstructured/unfolded proteins (IUPs) contain transient local secondary structures even though they are "unstructured" in a tertiary sense. These local secondary structures are named "pre-structured motifs (PreSMos)" and in fact are the specificity determinants for IUP-target binding, i.e., the active sites in IUPs. Using high-resolution NMR we have delineated a PreSMo active site in the intrinsically unfolded mid-domain (residues 201-300) of SUMO-specific protease 4 (SUSP4). This 29-residue motif which we termed a p53 rescue motif can protect p53 from mdm2 quenching by binding to the p53-helix binding pocket in mdm2(3-109). Our work demonstrates that the PreSMo approach is quite effective in providing a structural rationale for interactions of p53-mdm2- SUSP4 and opens a novel avenue for designing mdm2- inhibiting anticancer compounds. [BMB Reports 2017; 50(10): 485-486].


Assuntos
Cisteína Endopeptidases/metabolismo , Proteínas Intrinsicamente Desordenadas/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Sequência de Aminoácidos , Animais , Imageamento por Ressonância Magnética/métodos , Camundongos , Ressonância Magnética Nuclear Biomolecular , Elementos Estruturais de Proteínas , Estrutura Secundária de Proteína
19.
Antiviral Res ; 72(3): 207-15, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16872688

RESUMO

We have determined the solution conformation of the major B cell epitope (residues 123-145, adrl23 hereafter) in the preS2 region of hepatitis B virus known to be associated with infection neutralization. The adrl23 shows an "L" shaped helix-turn-helix topology with two beta-turns formed by residues Ala(130)-Asp(133) and Asp(133)-Val(136) intervening the N- and C-terminal helices. The N-terminal alpha-helix consists of residues Ser(124)-Gln(129) whereas the C-terminal 3(10) helix is formed by residues Val(136)-Tyr(140). The beta-turns overlap partially with the putative "conformational" epitope. The overall topology of adrl23 is primarily maintained by hydrophobic interactions involving Phe(127), Leu(131), Leu(132), Val(136), and Tyr(140) that are clustered on one side of the molecule. An additional hydrophobic stabilization comes from Phe(141) that is buried inside the concave side of the molecule. A network of hydrogen bonds formed among Thr(125), His(128), and Arg(137) further contribute to the "boomerang-shaped" architecture of adrl23. The N-terminus of adrl23 is immobile due to a hydrogen bond between the N-terminal amide proton of Asn(123) and the hydroxyl oxygen of Thr(126). The side chains of Asp(133), Arg(135), Val(136), Leu(139), and Tyr(140) that were shown to be important for binding to a monoclonal antibody H8 mAb are surface exposed.


Assuntos
Antígenos de Superfície da Hepatite B/química , Vírus da Hepatite B/genética , Epitopos Imunodominantes/química , Precursores de Proteínas/química , Sequências Hélice-Volta-Hélice , Antígenos de Superfície da Hepatite B/imunologia , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Conformação Proteica , Precursores de Proteínas/imunologia , Estrutura Terciária de Proteína
20.
Mol Cells ; 21(2): 229-36, 2006 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-16682818

RESUMO

Gaegurin 4 (GGN4), a novel peptide isolated from the skin of a Korean frog, Rana rugosa, has broad spectrum antimicrobial activity. A number of amphipathic peptides closely related to GGN4 undergo a coil to helix transition with concomitant oligomerization in lipid membranes or membrane-mimicking environments. Despite intensive study of their secondary structures, the oligomeric states of the peptides before and after the transition are not well understood. To clarify the structural basis of its antibiotic action, we used analytical ultracentrifugation to define the aggregation state of GGN4 in water, ethyl alcohol, and 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP). The maximum size of GGN4 in 15% HFIP corresponded to a decamer, whereas it was monomeric in buffer. The oligomeric transition is accompanied by a cooperative 9 nm blue-shift of maximum fluorescence emission and a large secondary structure change from an almost random coil to an alpha-helical structure. GGN4 induces pores in lipid membranes and, using electrophysiological methods, we estimated the diameter of the pores to be exceed 7.3 A, which suggests that the minimal oligomer structure responsible is a pentamer.


Assuntos
Anti-Infecciosos , Peptídeos Catiônicos Antimicrobianos , Conformação Proteica , Precursores de Proteínas , Ranidae , Animais , Anti-Infecciosos/química , Anti-Infecciosos/isolamento & purificação , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/isolamento & purificação , Coreia (Geográfico) , Bicamadas Lipídicas/química , Precursores de Proteínas/química , Precursores de Proteínas/isolamento & purificação , Ultracentrifugação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA