Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Nature ; 492(7429): 406-10, 2012 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-23257883

RESUMO

The experimental realization of quantum spin liquids is a long-sought goal in physics, as they represent new states of matter. Quantum spin liquids cannot be described by the broken symmetries associated with conventional ground states. In fact, the interacting magnetic moments in these systems do not order, but are highly entangled with one another over long ranges. Spin liquids have a prominent role in theories describing high-transition-temperature superconductors, and the topological properties of these states may have applications in quantum information. A key feature of spin liquids is that they support exotic spin excitations carrying fractional quantum numbers. However, detailed measurements of these 'fractionalized excitations' have been lacking. Here we report neutron scattering measurements on single-crystal samples of the spin-1/2 kagome-lattice antiferromagnet ZnCu(3)(OD)(6)Cl(2) (also called herbertsmithite), which provide striking evidence for this characteristic feature of spin liquids. At low temperatures, we find that the spin excitations form a continuum, in contrast to the conventional spin waves expected in ordered antiferromagnets. The observation of such a continuum is noteworthy because, so far, this signature of fractional spin excitations has been observed only in one-dimensional systems. The results also serve as a hallmark of the quantum spin-liquid state in herbertsmithite.

2.
Phys Rev Lett ; 113(22): 227203, 2014 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-25494085

RESUMO

We present thermodynamic studies of a new spin-1/2 antiferromagnet containing undistorted kagome lattices-barlowite Cu_{4}(OH)_{6}FBr. Magnetic susceptibility gives θ_{CW}=-136 K, while long-range order does not happen until T_{N}=15 K with a weak ferromagnetic moment µ<0.1µ_{B}/Cu. A 60 T magnetic field induces a moment less than 0.5µ_{B}/Cu at T=0.6 K. Specific-heat measurements have observed multiple phase transitions at T≪∣θ_{CW}∣. The magnetic entropy of these transitions is merely 18% of k_{B}ln2 per Cu spin. These observations suggest that nontrivial spin textures are realized in barlowite with magnetic frustration. Comparing with the leading spin-liquid candidate herbertsmithite, the superior interkagome environment of barlowite sheds light on new spin-liquid compounds with minimum disorder. The robust perfect geometry of the kagome lattice makes charge doping promising.

3.
Phys Rev Lett ; 108(15): 157202, 2012 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-22587279

RESUMO

We report thermodynamic measurements of the S=1/2 kagome lattice antiferromagnet ZnCu3(OH)6Cl2, a promising candidate system with a spin-liquid ground state. Using single crystal samples, the magnetic susceptibility both perpendicular and parallel to the kagome plane has been measured. A small, temperature-dependent anisotropy has been observed, where χ(z)/χ(p)>1 at high temperatures and χ(z)/χ(p)<1 at low temperatures. Fits of the high-temperature data to a Curie-Weiss model also reveal an anisotropy. By comparing with theoretical calculations, the presence of a small easy-axis exchange anisotropy can be deduced as the primary perturbation to the dominant Heisenberg nearest neighbor interaction. These results have great bearing on the interpretation of theoretical calculations based on the kagome Heisenberg antiferromagnet model to the experiments on ZnCu3(OH)6Cl2.

4.
J Am Chem Soc ; 132(45): 16185-90, 2010 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-20964423

RESUMO

Structural characterization, exploiting X-ray scattering differences at elemental absorption edges, is developed to quantitatively determine crystallographic site-specific metal disorder. We apply this technique to the problem of Zn-Cu chemical disorder in ZnCu(3)(OH)(6)Cl(2). This geometrically frustrated kagomé antiferromagnet is one of the best candidates for a spin-liquid ground state, but chemical disorder has been suggested as a mundane explanation for its magnetic properties. Using anomalous scattering at the Zn and Cu edges, we determine that there is no Zn occupation of the intralayer Cu sites within the kagomé layer; however there is Cu present on the Zn intersite, leading to a structural formula of (Zn(0.85)Cu(0.15))Cu(3)(OH)(6)Cl(2). The lack of Zn mixing onto the kagomé lattice sites lends support to the idea that the electronic ground state in ZnCu(3)(OH)(6)Cl(2) and its relatives is nontrivial.

5.
J Phys Condens Matter ; 29(9): 095802, 2017 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-28004638

RESUMO

We report on temperature dependence of the infrared reflectivity spectra of a single crystalline herbertsmithite in two polarizations-parallel and perpendicular to the kagome plane of Cu atoms. We observe anomalous broadening of the low frequency phonons possibly caused by fluctuations in the exotic dynamical magnetic order of the spin liquid.

6.
Science ; 350(6261): 655-8, 2015 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-26542565

RESUMO

The kagome Heisenberg antiferromagnet is a leading candidate in the search for a spin system with a quantum spin-liquid ground state. The nature of its ground state remains a matter of active debate. We conducted oxygen-17 single-crystal nuclear magnetic resonance (NMR) measurements of the spin-1/2 kagome lattice in herbertsmithite [ZnCu3(OH)6Cl2], which is known to exhibit a spinon continuum in the spin excitation spectrum. We demonstrated that the intrinsic local spin susceptibility χ(kagome), deduced from the oxygen-17 NMR frequency shift, asymptotes to zero below temperatures of 0.03J, where J ~ 200 kelvin is the copper-copper superexchange interaction. Combined with the magnetic field dependence of χ(kagome) that we observed at low temperatures, these results imply that the kagome Heisenberg antiferromagnet has a spin-liquid ground state with a finite gap.

7.
Sci Rep ; 5: 11705, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-26129886

RESUMO

Recently, oxides of Ir(4+) have received renewed attention in the condensed matter physics community, as it has been reported that certain iridates have a strongly spin-orbital coupled (SOC) electronic state, J eff = ½, that defines the electronic and magnetic properties. The canonical example is the Ruddlesden-Popper compound Sr2IrO4, which has been suggested as a potential route to a new class of high temperature superconductor due to the formal analogy between J eff = ½ and the S = ½ state of the cuprate superconductors. The quest for other iridium oxides that present tests of the underlying SOC physics is underway. In this spirit, here we report the synthesis and physical properties of two new quaternary tetravalent iridates, MLa10Ir4O24 (M = Sr, Ba). The crystal structure of both compounds features isolated IrO6 octahedra in which the electronic configuration of Ir is d(5). Both compounds order antiferromagnetically despite the lack of obvious superexchange pathways, and resistivity measurement shows that SrLa10Ir4O24 is an insulator.

8.
J Phys Condens Matter ; 23(16): 164207, 2011 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-21471612

RESUMO

We present transverse field muon spin rotation/relaxation measurements on single crystals of the spin-1/2 kagome antiferromagnet Herbertsmithite. We find that the spins are more easily polarized when the field is perpendicular to the kagome plane. We demonstrate that the difference in magnetization between the different directions cannot be accounted for by Dzyaloshinskii-Moriya-type interactions alone and that anisotropic axial interaction is present.

9.
Nano Lett ; 6(12): 2773-80, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17163704

RESUMO

Bulk rhombohedral Bi at ambient pressure is a well-known semimetal, and its transition to a superconductor has not been observed, at least down to 50 mK. We report that, unlike bulk rhombohedral Bi, granular Bi nanowires with well-defined rhombohedral grains of approximately 10 nm diameter, fabricated by electrochemically depositing Bi into porous polycarbonate membranes at ambient pressure, are superconducting with two transition temperatures, Tc, of 7.2 and 8.3 K. These Tc values coincide with Tc values of the high-pressure phases Bi-III and Bi-V, respectively. Analysis of our structural and transport data indicates that the superconductivity in granular Bi nanowires probably arises from grain boundary areas where there are structural reconstructions between the grains showing a preferred orientation within a small angular distribution.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA