Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nanotechnology ; 34(47)2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37607526

RESUMO

Two one-dimensional nanowires, Fe3O4and MnO2nanowires, were modified with polyphosphazene-derived carbon (PZSC) usingin situpolymerization and high-temperature calcination methods. PZSC coated with MnO2nanowire (MnO2/PZSCNW) was designed as the positive electrode, while PZSC coated with Fe3O4nanowire (Fe3O4/PZSCNW) was designed as the negative electrode. Both MnO2/PZSCNW (+) and Fe3O4/PZSCNW (-) exhibit much larger specific capacities than the corresponding MnO2and Fe3O4nanowires, reaching 75.5 mAh g-1and 75.9 mAh g-1, respectively. The maximum specific capacity, power and energy density of MnO2/PZSCNW (+)//Fe3O4/PZSCNW (-) in alkaline electrolyte are up to 63.2 mAh g-1, 429.6 W kg-1and 53.7 Wh kg-1, respectively. After 10 000 cycles, the cell maintains 100% capacity. The experimental results indicate that the polyphosphazene-derived carbon coating can significantly improve the electrochemical performance, providing a feasible solution for constructing high-performance supercapacitors.

2.
Nanotechnology ; 32(49)2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34433136

RESUMO

Penta-graphene (PG) is a new theoretical two-dimensional metastable carbon allotrope composed entirely of carbon pentagons. In this paper, molecular dynamics simulations are performed to investigate the effects of the hydrogenation on the tensile and shear mechanical properties, together with the failure mechanism of PG with vacancy defects. The results show that hydrogenation can effectively tune the mechanical properties and failure mechanism of PG with vacancy defects. The defective PG (DPG) with low hydrogenation coverages exhibits obvious plastic deformation features under tensile and shear loading, and pentagon-to-polygon structural transformation is observed, while complete hydrogenation can change the failure mechanism of DPG from plastic deformation to brittle fracture. Both the tensile and shear moduli and elastic limit of DPG first decrease dramatically and then increase slowly with the increase of hydrogenation coverage, while tensile and shear strain increases almost monotonically with rising hydrogenation coverage. Complete hydrogenation can result in large enhancement of tensile and shear elastic stress limit and strain. These results may provide an important guideline for effectively tuning the mechanical properties of PG and other two-dimensional nanomaterials.

3.
Nanotechnology ; 32(27)2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33711833

RESUMO

Penta-graphene is a new two-dimensional metastable carbon allotrope composed entirely of carbon pentagons with unique electronic and mechanical properties. In this work we evaluate the mechanical properties of new classes of defective penta-graphene (DPG) subjected to tensile and shear loading by using molecular dynamics simulations. The types of defects considered here are monovacancy at either 4-coordinated C1 site or 3-coordinated C2 site, and double vacancy (DV). We focus in particular on the effects of the different topologies of defects and their concentrations on the elastic constants and the nonlinear mechanics of this allotropic form of carbon. The results indicate that DPG has a plastic behavior similar to pristine penta-graphene, which is caused by the irreversible pentagon-to-polygon structural transformation occurring during tensile and shear loading. The tensile and shear moduli decrease linearly with the concentration of defects. Monotonic reductions of the tensile yield and shear stresses are also present but less pronounced, while the yield strains are unaffected. Penta-graphene with 4-coordinated and DVs feature a change of the Poisson's ratio from negative to positive when the defect concentration rises to about 3% and 6%. Temperature can trigger structural reconstruction for free-standing DPG. The critical transition temperature increases due to the vacancy defects and the defects can delay the structure transition. These findings are expected to provide important guidelines for the practical applications of penta-graphene based micro/nano electromechanical systems.

4.
Nanotechnology ; 23(49): 495703, 2012 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-23149394

RESUMO

The tribological behavior of graphene oxide (GO) films deposited on a mica substrate has been investigated by atomic force microscopy, in which different voltages were applied to a tip. It was found that the frictional forces on the GO films remain unchanged in the presence of negative tip voltages, while the frictional forces increase remarkably with an increase of the voltage when positive voltages are given to the tip, and at a certain positive tip voltage the frictional forces reach a stable value with increasing number of repeated cycles. To study the influence of the tip voltage on the frictional forces of the GO films, the adhesive and electrostatic force gradients between the tip and GO films were measured. The results showed that the adhesive and electrostatic forces increased with increase of the positive tip voltages. This phenomenon is due to the polarization of charges in the GO films induced by the applied tip voltages, which causes intensive electrostatic interactions between the tip and GO films and a corresponding rise in the adhesive forces and the frictional forces.


Assuntos
Grafite/química , Membranas Artificiais , Microscopia de Força Atômica/métodos , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Óxidos/química , Fricção , Teste de Materiais , Tamanho da Partícula , Estresse Mecânico , Propriedades de Superfície , Viscosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA