Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 118
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Bioorg Chem ; 148: 107406, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38728907

RESUMO

Bacterial infections are the second leading cause of death worldwide, and the evolution and widespread distribution of antibiotic-resistance elements in bacterial pathogens exacerbate the threat crisis. Carbohydrates participate in bacterial infection, drug resistance and the process of host immune regulation. Numerous antimicrobials derived from carbohydrates or contained carbohydrate scaffolds that are conducive to an increase in pathogenic bacteria targeting, the physicochemical properties and druggability profiles. In the paper, according to the type and number of sugar residues contained in antimicrobial molecules collected from the literatures ranging from 2014 to 2024, the antimicrobial activities, action mechanisms and structure-activity relationships were delineated and summarized, for purpose to provide the guiding template to select the type and size of sugars in the design of oligosaccharide-based antimicrobials to fight the looming antibiotic resistance crisis.


Assuntos
Antibacterianos , Testes de Sensibilidade Microbiana , Oligossacarídeos , Relação Estrutura-Atividade , Oligossacarídeos/química , Oligossacarídeos/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Estrutura Molecular , Bactérias/efeitos dos fármacos , Humanos , Monossacarídeos/química , Monossacarídeos/farmacologia , Dissacarídeos/química , Dissacarídeos/farmacologia
2.
Appl Environ Microbiol ; 89(1): e0106122, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36533928

RESUMO

Avian pathogenic Escherichia coli, a causative agent of avian colibacillosis, has been causing serious economic losses in the poultry industry. The increase in multidrug-resistant isolates and the complexity of the serotypes of this pathogen, especially the recently reported emergence of a newly predominant serogroup of O145, make the control of this disease difficult. To address this challenge, a high-throughput screening approach, called Pan-RV (Reverse vaccinology based on pangenome analysis), is proposed to search for universal protective antigens against the three traditional serogroups and the newly emerged O145. Using this approach, a total of 61 proteins regarded as probable antigens against the four important serogroups were screened from the core genome of 127 Avian pathogenic Escherichia coli (APEC) genomes, and six were verified by Western blots using antisera. Overall, our research will provide a foundation for the development of an APEC subunit vaccine against avian colibacillosis. Given the exponential growth of whole-genome sequencing (WGS) data, our Pan-RV pipeline will make screening of bacterial vaccine candidates inexpensive, rapid, and efficient. IMPORTANCE With the emergence of drug resistance and the newly predominant serogroup O145, the control of Avian pathogenic Escherichia coli is facing a serious challenge; an efficient immunological method is urgently needed. Here, for the first time, we propose a high-throughput screening approach to search for universal protective antigens against the three traditional serogroups and the newly emerged O145. Importantly, using this approach, a total of 61 proteins regarded as probable antigens against the four important serogroups were screened, and three were shown to be immunoreactive with all antisera (covering the four serogroups), thereby providing a foundation for the development of APEC subunit vaccines against avian colibacillosis. Further, our Pan-RV pipeline will provide immunological control strategies for pathogens with complex and variable genetic backgrounds such as Escherichia coli and will make screening of bacterial vaccine candidates more inexpensive, rapid, and efficient.


Assuntos
Infecções por Escherichia coli , Vacinas contra Escherichia coli , Doenças das Aves Domésticas , Animais , Escherichia coli/genética , Sorogrupo , Infecções por Escherichia coli/prevenção & controle , Infecções por Escherichia coli/veterinária , Aves Domésticas , Vacinas Bacterianas , Doenças das Aves Domésticas/prevenção & controle , Doenças das Aves Domésticas/microbiologia , Galinhas
3.
Microb Pathog ; 179: 106110, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37060967

RESUMO

Cystic echinococcosis (CE) is a zoonotic parasitic disease caused by the metacestode larva of Echinococcus granulosus. In this study, two-dimensional gel electrophoresis (2-DE) coupled with immunoblot analysis revealed that E. granulosus severin and 14-3-3zeta proteins (named EgSeverin and Eg14-3-3zeta, respectively) might be two potential biomarkers for serological diagnosis of echinococcosis. The recombinant EgSeverin (rEgSeverin, 45 kDa) and Eg14-3-3zeta (rEg14-3-3zeta, 35 kDa) were administered subcutaneously to BALB/c mice to obtain polyclonal antibodies for immunofluorescence analyses (IFAs). And IFAs showed that both proteins were located on the surface of protoscoleces (PSCs). Western blotting showed that both proteins could react with sera from E. granulosus-infected sheep, dog, and mice. Indirect ELISAs (rEgSeverin- and rEg14-3-3zeta-iELISA) were developed, respectively, with sensitivities and specificities ranging from 83.33% to 100% and a coefficient of variation (CV %) of less than 10%. The rEgSeverin-iELISA showed cross-reaction with both E. granulosus and E. multilocularis, while the rEg14-3-3zeta-iELISA showed no cross-reaction with other sera except for the E. granulosus-infected ones. The field sheep sera from Xinjiang and Qinghai were analyzed using rEgSeverin-iELISA, rEg14-3-3zeta-iELISA, and a commercial kit respectively, and no significant differences were found among the three methods (p > 0.05). However, the CE positive rates in sheep sera from Qinghai were significantly higher than those from Xinjiang (p < 0.01). Overall, the results suggest that EgSeverin and Eg14-3-3zeta could be promising diagnostic antigens for E. granulosus infection.


Assuntos
Equinococose , Echinococcus granulosus , Cães , Animais , Ovinos , Camundongos , Echinococcus granulosus/genética , Proteínas 14-3-3/metabolismo , Equinococose/diagnóstico , Equinococose/veterinária , Western Blotting , Ensaio de Imunoadsorção Enzimática/métodos , Zoonoses , Anticorpos Anti-Helmínticos
4.
Vet Res ; 54(1): 71, 2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37644526

RESUMO

Macrophages play a pivotal role in the inflammatory response to the zoonotic pathogen E. coli, responsible for causing enteric infections. While considerable research has been conducted to comprehend the pathogenesis of this disease, scant attention devoted to host-derived H2S. Herein, we reported that E. coli infection enhanced the expression of CSE in macrophages, accompanied by a significantly increased inflammatory response. This process may be mediated by the involvement of excessive autophagy. Inhibition of AMPK or autophagy with pharmacological inhibitors could alleviate the inflammation. Additionally, cell model showed that the mRNA expression of classic inflammatory factors (Il-1ß, Il-6), macrophage polarization markers (iNOS, Arg1) and ROS production was significantly down-regulated after employing CSE specific inhibitor PAG. And PAG is capable of inhibiting excessive autophagy through the LKB1-AMPK-ULK1 axis. Interestingly, exogenous H2S could suppress inflammation response. Our study emphasizes the importance of CSE in regulating the macrophage-mediated response to E. coli. Increased CSE in macrophages leads to excessive inflammation, which should be considered a new target for drug development to treat intestinal infection.


Assuntos
Infecções por Escherichia coli , Escherichia coli , Animais , Proteínas Quinases Ativadas por AMP , Infecções por Escherichia coli/tratamento farmacológico , Infecções por Escherichia coli/veterinária , Transdução de Sinais , Inflamação/veterinária
5.
Bioorg Med Chem ; 83: 117232, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36940608

RESUMO

α-Mangostin (α-MG) has demonstrated to display potent activities against Gram-positive bacterial. However, the contribution of phenolic hydroxyl groups of α-MG to the antibacterial activity remains obscure, severely hampering selection of structure modification to develop more potential α-MG-based anti-bacterial derivatives. Herein, twenty-one α-MG derivatives are designed, synthesized and evaluated for the antibacterial activities. The structure activity relationships (SARs) reveal that the contribution of the phenolic groups ranks as C3 > C6 > C1, and the phenolic hydroxyl group at C3 is essential to the antibacterial activity. Of note, compared to the parent compound α-MG, 10a with one acetyl at C1 exhibits the higher safety profiles due to its higher selectivity and no hemolysis, and the more potent antibacterial efficacy in an animal skin abscess model. Our evidences further present that, in comparison with α-MG, 10a has a stronger ability in depolarizing membrane potentials and leads to more leakage of bacterial proteins, consistent with the results observed by transmission electron microscopy (TEM). Transcriptomics analysis demonstrates those observations possibly relate to disturbed synthesis of proteins participating in the biological process of membrane permeability and integrity. Collectively, our findings provide a valuable insight for developing α-MG-based antibacterial agents with little hemolysis and new action mechanism via structural modifications at C1.


Assuntos
Antibacterianos , Xantonas , Animais , Antibacterianos/química , Microscopia Eletrônica de Transmissão , Bactérias , Relação Estrutura-Atividade , Fenóis , Xantonas/química , Testes de Sensibilidade Microbiana
6.
Microb Pathog ; 170: 105679, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35843442

RESUMO

Cryptosporidium parvum is an obligate protozoan parasite invading epithelial cells of small intestine of human and animals, and causing diarrheal disease. In apicomplexan parasites, calcium signaling can regulate many essential biological processes such as invasion and migration. As the main intracellular receptor for calcium ions, calmodulins control the activities of hundreds of enzymes and proteins. Calmodulin-like protein (CML) is an important member of the calmodulin family and may play a key role in C. parvum, however, the actual situation is still not clear. The present study aimed to identify the parasite interaction partner proteins of C. parvum calmodulin-like protein (CpCML). By constructing the cpcml bait plasmid, 5 potential CpCML - interacting proteins in C. parvum oocyst were screened by yeast-two-hybrid system (Y2H). Bimolecular fluorescence complementation (BiFC) and Co-immunoprecipitation (Co-IP) were performed as subsequent validations. Fibrillarin RNA methylase (FBL) was identified via this screening method as CpCML interacting protein in C. parvum. The identification of this interaction made it possible to get a further understanding of the function of CpCML and its contribution to the pathogenicity of C. parvum.


Assuntos
Criptosporidiose , Cryptosporidium parvum , Cryptosporidium , Animais , Calmodulina/genética , Calmodulina/metabolismo , Proteínas Cromossômicas não Histona , Criptosporidiose/parasitologia , Cryptosporidium/genética , Cryptosporidium parvum/genética , Cryptosporidium parvum/metabolismo , Humanos , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , tRNA Metiltransferases
7.
Microb Pathog ; 167: 105546, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35512440

RESUMO

As a halophilic food-borne pathogen, Vibrio parahaemolyticus continueo be a major health issue worldwide. The pathogenic mechanisms of V. parahaemolyticus are still not fully understood. One of the most abundant and widely distributed groups of helix-turn-helix transcription factors is the GntR family of regulators, which are involved in the regulation of various biological processes in bacteria, but little is known about their functions in V. parahaemolyticus. Here, we identified a gene designated as hutC in V. parahaemolyticus SH112 that encodes a member belongs to the HutC subfamily of the large GntR transcriptional regulator family. Compared to the wild type, the hutC mutant strain was significantly more sensitive to acid, bile salt, Triton X-100, and sodium dodecyl sulfate stresses. Our results showed that HutC is required for optimal swimming motility but not necessary for the swarming of V. parahaemolyticus. In addition, inactivation of hutC in V. parahaemolyticus SH112 led to decreased biofilm formation, reduced cytotoxicity in Coca-2 cells, and defective virulence in vivo compared to the wild-type strain. Furthermore, transcriptome sequencing (RNA-Seq) analysis and real-time PCR indicated 4 upregulated and 14 downregulated genes in the hutC mutant strain. Functional analysis revealed that 4 upregulated genes were related to the histidine metabolism pathway. The 14 downregulated genes were mostly related to the cellular metabolic process, binding, and membrane part. This study presents evidence that HutC is involved in bacterial survival under conditions of stress, swimming motility, biofilm formation, cytotoxicity, virulence, and gene regulation of V. parahaemolyticus during infection.


Assuntos
Vibrio parahaemolyticus , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biofilmes , Regulação Bacteriana da Expressão Gênica , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Vibrio parahaemolyticus/genética , Virulência/genética
8.
Microb Pathog ; 164: 105424, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35092833

RESUMO

Cryptosporidium parvum is a major cause of diarrheal disease in immature or weakened immune systems, mainly in infants and young children in resource-poor settings. Despite its high prevalence, fully effective and safe drugs for the treatment of C. parvum infections remain scarce, and there is no vaccine. Meanwhile, curcumin has shown protective effects against C. parvum infections. However, the mechanisms of action and relationship to the gut microbiota and innate immune responses are unclear. Immunosuppressed neonatal mice were infected with oocysts of C. parvum and either untreated or treated with a normal diet, curcumin or paromomycin. We found that curcumin stopped C. parvum oocysts shedding in the feces of infected immunosuppressed neonatal mice, prevented epithelial damage, and villi degeneration, as well as prevented recurrence of infection. Curcumin supplementation increased the relative abundance of Bacteroidetes and decreased the relative abundance of Firmicutes and Proteobacteria in mice infected with C. parvum as shown by 16S rRNA gene sequencing analysis. The relative abundance of Lactobacillus, Bacteroides, Akkermansia, Desulfovibrio, Prevotella, and Helicobacter was significantly associated with C. parvum infection inhibited by curcumin. Curcumin significantly (P < 0.01) suppressed IFN-γ and IL -18 gene expression levels in immunosuppressed neonatal C. parvum-infected mice. We demonstrate that the therapeutic effects curcumin are associated with alterations in the gut microbiota and innate immune-related genes, which may be linked to the anti-Cryptosporidium mechanisms of curcumin.


Assuntos
Criptosporidiose , Cryptosporidium parvum , Cryptosporidium , Curcumina , Microbioma Gastrointestinal , Animais , Animais Recém-Nascidos , Criptosporidiose/tratamento farmacológico , Criptosporidiose/prevenção & controle , Cryptosporidium parvum/fisiologia , Curcumina/farmacologia , Curcumina/uso terapêutico , Fezes , Imunidade Inata , Camundongos , RNA Ribossômico 16S/genética
9.
Parasite Immunol ; 44(8): e12937, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35652261

RESUMO

Until now, no completely effective parasite-specific drugs or vaccines have been approved for the treatment of cryptosporidiosis. Through the separation and identification of the sporozoite membrane protein of Cryptosporidium parvum (C. parvum), 20 related proteins were obtained. Among them, a calmodulin-like protein (CML) has a similar functional domain-exchange factor hand (EF-hand) motif as calmodulin proteins (CaMs), so it may play a similarly important role in the invasion process. A 663 bp full gene encoding the C. parvum calmodulin-like protein (CpCML) was inserted in pET28a vector and expressed in Escherichia coli. An immunofluorescence assay showed that CpCML was mainly located on the surface of the sporozoites. Three-week-old female BALB/c mice were used for modelling the immunoreactions and immunoprotection of recombinant CpCML (rCpCML) against artificial Cryptosporidium tyzzeri infections. The results indicated a significantly increased in anti-CpCML antibody response, which was induced by the immunized recombinant protein. Compared to rP23 (recombinant P23), GST6P-1 (expressed by pGEX-6P-1 transfected E. coli), GST4T-1 (expressed by pGEX-4T-1 transfected E. coli), glutathione (GSH), adjuvant and blank control groups, rCpCML-immunized mice produced specific spleen cell proliferation in addition to different production levels of IL-2, IFN-γ, TNF-α, IL-4 and IL-5. Additionally, immunization with rCpCML led to 34.08% reduction of oocyst shedding in C. tyzzeri infected mice faeces which was similar to rP23. These results suggest that CpCML may be developed as a potential vaccine candidate antigen against cryptosporidiosis.


Assuntos
Criptosporidiose , Cryptosporidium parvum , Proteínas de Membrana , Proteínas de Protozoários , Animais , Anticorpos Antiprotozoários , Calmodulina , Criptosporidiose/prevenção & controle , Cryptosporidium parvum/genética , Escherichia coli/genética , Feminino , Proteínas de Membrana/genética , Camundongos , Proteínas de Protozoários/genética , Esporozoítos
10.
Vet Res ; 53(1): 90, 2022 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-36371263

RESUMO

Foamy macrophages containing prominent cytoplasmic lipid droplets (LDs) are found in a variety of infectious diseases. However, their role in Streptococcus uberis-induced mastitis is unknown. Herein, we report that S. uberis infection enhances the fatty acid synthesis pathway in macrophages, resulting in a sharp increase in LD levels, accompanied by a significantly enhanced inflammatory response. This process is mediated by the involvement of fatty acid binding protein 4 (FABP4), a subtype of the fatty acid-binding protein family that plays critical roles in metabolism and inflammation. In addition, FABP4 siRNA inhibitor cell models showed that the deposition of LDs decreased, and the mRNA expression of Tnf, Il1b and Il6 was significantly downregulated after gene silencing. As a result, the bacterial load in macrophages increased. Taken together, these data demonstrate that macrophage LD formation is a host-driven component of the immune response to S. uberis. FABP4 contributes to promoting inflammation via LDs, which should be considered a new target for drug development to treat infections.


Assuntos
Doenças dos Bovinos , Mastite Bovina , Infecções Estreptocócicas , Feminino , Animais , Bovinos , Gotículas Lipídicas/metabolismo , Macrófagos/microbiologia , Proteínas de Ligação a Ácido Graxo/genética , Proteínas de Ligação a Ácido Graxo/metabolismo , Inflamação/metabolismo , Inflamação/veterinária , Infecções Estreptocócicas/veterinária , Mastite Bovina/microbiologia , Doenças dos Bovinos/metabolismo
11.
Avian Pathol ; 51(1): 66-75, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34845943

RESUMO

RESEARCH HIGHLIGHTSPan-RV analysis was used for the first time in the discovery of APEC-protective proteins.A total of 53 potential protective proteins were screened out.Four proteins were verified as potential vaccine candidates using western blotting.


Assuntos
Infecções por Escherichia coli , Vacinas contra Escherichia coli , Doenças das Aves Domésticas , Animais , Galinhas , Escherichia coli/genética , Infecções por Escherichia coli/prevenção & controle , Infecções por Escherichia coli/veterinária , Doenças das Aves Domésticas/prevenção & controle
12.
J Appl Microbiol ; 132(6): 4236-4251, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35343028

RESUMO

AIMS: To study the effects of environmental stress and nutrient conditions on biofilm formation of avian pathogenic Escherichia coli (APEC). METHODS AND RESULTS: The APEC strain DE17 was used to study biofilm formation under various conditions of environmental stress (including different temperatures, pH, metal ions, and antibiotics) and nutrient conditions (Luria-Bertani [LB] and M9 media, with the addition of different carbohydrates, if necessary). The DE17 biofilm formation ability was strongest at 25°C in LB medium. Compared to incubation at 37°C, three biofilm-related genes (csgD, dgcC, and pfs) were significantly upregulated and two genes (flhC and flhD) were downregulated at 25°C, which resulted in decreased motility. However, biofilm formation was strongest in M9 medium supplemented with glucose at 37°C, and the number of live bacteria was the highest as determined by confocal laser scanning microscopy. The bacteria in the biofilm were surrounded by a thick extracellular matrix, and honeycomb-like or rough surfaces were observed by scanning electron microscopy. Moreover, biofilm formation of the DE17 strain was remarkably inhibited under acidic conditions, whereas neutral and alkaline conditions were more suitable for biofilm formation. Biofilm formation was also inhibited at specific concentrations of cations (Na+ , K+ , Ca2+ , and Mg2+ ) and antibiotics (ampicillin, chloramphenicol, kanamycin, and spectinomycin). The real-time quantitative reverse transcription PCR showed that the transcription levels of biofilm-related genes change under different environmental conditions. CONCLUSIONS: Nutritional and environmental factors played an important role in DE17 biofilm development. The transcription levels of biofilm-related genes changed under different environmental and nutrient conditions. SIGNIFICANCE AND IMPACT OF THE STUDY: The findings suggest that nutritional and environmental factors play an important role in APEC biofilm development. Depending on the different conditions involved in this study, it can serve as a guide to treating biofilm-related infections and to eliminating biofilms from the environment.


Assuntos
Infecções por Escherichia coli , Proteínas de Escherichia coli , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Biofilmes , Meios de Cultura/farmacologia , Escherichia coli , Infecções por Escherichia coli/microbiologia , Humanos
13.
J Appl Microbiol ; 133(6): 3741-3754, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36073301

RESUMO

AIMS: The aim of this study was to develop a novel approach using lateral flow recombinase polymerase amplification (RPA-LF) combined with immunomagnetic separation (IMS) for the rapid detection of Staphylococcus aureus in milk. METHODS AND RESULTS: Under optimum conditions, the average capture efficiency values for S. aureus strains (104 colony-forming units [CFU] per ml) was above 95.0% in PBST and ~80% in milk within 45 min with 0.7 mg immunomagnetic beads. The RPA-LF assay, which comprised DNA amplification via RPA at 39°C for 10 min and visualization of the amplicons through LF strips for 5 min, detected S. aureus within 15 min. The method only detected S. aureus and did not show cross-reaction with other bacteria, exhibiting a high level of specificity. Sensitivity experiments confirmed a detection limit of RPA-LF assay as low as 600 fg per reaction for the S. aureus genome (corresponding to approximately 36 CFU of S. aureus), which was about 16.7-fold more sensitive than that of the conventional polymerase chain reaction method. When RPA-LF was used in combination with IMS to detect S. aureus inoculated into artificially contaminated milk, it exhibited a detection limit of approximately 40 CFU per reaction. CONCLUSIONS: The newly developed IMS-RPA-LF method enabled detection of S. aureus at levels as low as 40 CFU per reaction in milk samples without culture enrichment for an overall testing time of only 70 min. SIGNIFICANCE AND IMPACT OF THE STUDY: The newly developed IMS-lateral flow RPA-LF assay effectively combines sample preparation, amplification and detection into a single platform. Because of its high sensitivity, specificity and speed, the IMS-RPA-LF assay will have important implications for the rapid detection of S. aureus in contaminated food.


Assuntos
Recombinases , Infecções Estafilocócicas , Humanos , Animais , Staphylococcus aureus/genética , Leite/microbiologia , Separação Imunomagnética , Técnicas de Amplificação de Ácido Nucleico/métodos , Infecções Estafilocócicas/diagnóstico , Sensibilidade e Especificidade
14.
World J Microbiol Biotechnol ; 38(8): 130, 2022 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-35688968

RESUMO

Avian pathogenic Escherichia coli (APEC) is the main pathogens that inflict the poultry industry. Biofilm as the pathogenic factors of APEC, which can enhance the anti-host immune system of APEC and improve its survival in the environment. In order to screen for new genes related to APEC biofilm. The APEC strain APEC81 was used to construct a mutant library by Tn5 insertion mutagenesis. Moreover the 28 mutant strains with severely weakened biofilm were successfully screened from 1500 mutant strains by crystal violet staining, in which 17 genes were obtained by high-efficiency thermal asymmetric interlaced PCR. The reported genes include 3 flagella genes (fliS, fliD, and fliR), 4 curli fimbriae genes (csgD, csgA, csgF, and csgG) and 3 type 1 fimbriae genes (fimA, fimD, and fimC). The novel genes include 3 coenzyme genes (gltA, bglX, and mltF) and 4 putative protein genes (yehE, 07045, 11735, 11255). To investigate whether these 17 genes co-regulate the biofilm, the 17 identified genes were deleted from APEC strain APEC81. The results showed that except for the 11735 and 11255 genes, the deletion of 15 genes significantly reduced the biofilm formation ability of APEC81 (P < 0.05). The result of rdar (red, dry and rough) colony morphology showed that curli fimbriae genes (csgD, csgA, csgF, and csgG) and other functional genes (fimC, glxK, yehE, 07045, and 11255) affected the colony morphology. In particular, the hypothetical protein YehE had the greatest influence on the biofilm. It was predicted to have the same structure as the type 1 fimbria protein. When yehE was deleted, the fimE transcription was up-regulated, and the fimA and fimB transcription were down-regulated, resulting in a decrease in type 1 fimbriae. Hence, the yehE mutant significantly reduced the biofilm and the adhesion and invasion ability to cells (P < 0.05). This study identified 5 novel genes (gltA, bglX, mltF, yehE, and 07045) related to biofilm formation and confirmed that yehE affects biofilm formation by type 1 fimbriae, which will benefit further study of the mechanism of biofilm regulation in APEC.


Assuntos
Infecções por Escherichia coli , Proteínas de Escherichia coli , Doenças das Aves Domésticas , Transposases/metabolismo , Animais , Biofilmes , Galinhas , Proteínas de Ligação a DNA , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Fímbrias/genética , Integrases
15.
J Bacteriol ; 203(20): e0033621, 2021 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-34309400

RESUMO

Mammary gland-derived Escherichia coli is an important pathogen causing dairy cow mastitis. Mammary gland mucosal immunity against infectious E. coli mainly depends on recognition of pathogen-associated molecular patterns by innate receptors. Stimulator of interferon (IFN) gene (STING) has recently been the dominant mediator in reacting to bacterial intrusion and preventing inflammatory disorders. In this study, we first proved that the diguanylate cyclase YeaJ relieves mouse mammary gland pathological damage by changing E. coli phenotypic and host STING-dependent innate immunity responses. YeaJ decreases mammary gland circular vacuoles, bleeding, and degeneration in mice. In addition, YeaJ participates in STING-IRF3 signaling to regulate inflammation in vivo. In vitro, YeaJ decreases damage to macrophages (RAW264.7) but not to mouse mammary epithelial cells (EpH4-Ev). Consistent with the results in mouse mammary glands, YeaJ significantly activates the STING/TBK1/IRF3 pathway in RAW264.7 macrophages as well. In conclusion, the deletion of yeaJ facilitates E. coli NJ17 escape from STING-dependent innate immunity recognition in vitro and in vivo. This study highlights a novel role for YeaJ in E. coli infection, which provides a better understanding of host-bacterium interactions and potential prophylactic strategies for infections. IMPORTANCE E. coli is the etiological agent of environmental mastitis in dairy cows, which causes massive financial losses worldwide. However, the pathophysiological role of YeaJ in the interaction between E. coli and host remains unclear. We found that YeaJ significantly influences various biological characteristics and suppresses severe inflammatory response as well as greater damage. YeaJ alleviates damage to macrophages (RAW264.7) and mouse mammary gland. Moreover, these effects of YeaJ are achieved at least partial by mediating the STING-IRF3 signaling pathway. In conclusion, the deletion of yeaJ facilitates E. coli NJ17 escape from STING-dependent innate immunity recognition in vitro and in vivo. This study is the basis for further research to better understand host-bacterium interactions and provides potential prophylactic strategies for infections.


Assuntos
Células Epiteliais/microbiologia , Proteínas de Escherichia coli/metabolismo , Escherichia coli/imunologia , Escherichia coli/metabolismo , Macrófagos/microbiologia , Fósforo-Oxigênio Liases/metabolismo , Animais , Biofilmes/crescimento & desenvolvimento , Adesão Celular , Proteínas de Escherichia coli/genética , Feminino , Regulação Bacteriana da Expressão Gênica/imunologia , Glândulas Mamárias Animais/citologia , Camundongos , Movimento , Mutação , Fósforo-Oxigênio Liases/genética , Células RAW 264.7
16.
Infect Immun ; 89(5)2021 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-33593890

RESUMO

Haemaphysalis longicornis is a blood-feeding hard tick known for transmitting a variety of pathogens, including Babesia How the parasites in the imbibed blood become anchored in the midgut of ticks is still unknown. Leucine-rich repeat domain (LRR)-containing protein, which is associated with the innate immune reaction and conserved in many species, has been detected in H. longicornis and has previously been indicated in inhibiting the growth of Babesia gibsoni However, the detailed mechanism is unknown. In this study, one of the ligands for LRR from H. longicornis (HlLRR) was identified in Babesia microti, designated BmActin, using glutathione transferase (GST) pulldown experiments and immunofluorescence assays. Moreover, RNA interference of HlLRR led to a decrease in the BmActin mRNA expression in the midgut of fully engorged ticks which fed on B. microti-infected mice. We also found that the expression level of the innate immune molecules in H. longicornis, defensin, antimicrobial peptides (AMPs), and lysozyme, were downregulated after the knockdown of HlLRR. However, subolesin expression was upregulated. These results indicate that HlLRR not only recognizes BmActin but may also modulate innate immunity in ticks to influence Babesia growth, which will further benefit the development of anti-Babesia vaccines or drugs.


Assuntos
Babesia microti/fisiologia , Interações Hospedeiro-Parasita , Ixodidae/parasitologia , Proteínas/metabolismo , Animais , Vetores Aracnídeos/parasitologia , Babesiose/imunologia , Babesiose/parasitologia , Modelos Animais de Doenças , Expressão Gênica , Interações Hospedeiro-Parasita/imunologia , Imunidade Inata , Ixodidae/imunologia , Proteínas de Repetições Ricas em Leucina , Ligantes , Camundongos
17.
Anal Bioanal Chem ; 412(12): 2903-2914, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32128642

RESUMO

This study was the first attempt to optimize a recombinase polymerase amplification (RPA) and lateral flow (LF) assay combined with immunomagnetic separation (IMS) for the detection of Vibrio parahaemolyticus in raw oysters. The newly developed IMS-RPA-LF assay effectively combines sample preparation, amplification, and detection into a single platform. Under optimal conditions, the average capture efficiency (CE) for 104 colony forming units (CFU)/mL of four V. parahaemolyticus strains with 0.4 mg of immunomagnetic beads within 45 min was 80.3%. After optimization, the RPA-LF assay was able to detect V. parahaemolyticus within 15 min, comprising DNA amplification with RPA for 10 min at 37 °C and visualization of the amplicons through LF strips for 5 min. The RPA-LF assay exhibited good specificity by showing a test line for eight V. parahaemolyticus strains with different serotypes but no cross-reaction with 12 non-V. parahaemolyticus bacteria. RPA-LF assay was found to be sensitive and detected as low as 10 pg genomic DNA of V. parahaemolyticus. For spiked oyster samples, the detection sensitivity of V. parahaemolyticus was improved to 2 CFU/g by IMS-RPA-LF after enrichment for 4 h; in contrast, the IMS-PCR method required 8 h. Hence, even when V. parahaemolyticus was present in very low numbers in samples, the IMS-RPA-LF assay could be completed within half a workday. Because of the high sensitivity, specificity, and speed of the IMS-RPA-LF assay, this newly developed method opens a novel pathway for rapid diagnostic screening of V. parahaemolyticus in seafood, which is an increasingly important health issue worldwide. Graphical abstract.


Assuntos
Separação Imunomagnética/métodos , Técnicas de Amplificação de Ácido Nucleico/métodos , Ostreidae/microbiologia , Reação em Cadeia da Polimerase/métodos , Vibrioses/diagnóstico , Vibrio parahaemolyticus/genética , Animais , Microbiologia de Alimentos , Vibrioses/microbiologia , Vibrio parahaemolyticus/isolamento & purificação
18.
Avian Pathol ; 49(6): 532-546, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32894030

RESUMO

Avian pathogenic Escherichia coli (APEC) is a subgroup of extra-intestinal pathogenic E. coli (ExPEC) strains that cause avian colibacillosis, resulting in significant economic losses to the poultry industry worldwide. It has been reported that a few two-component signal transduction systems (TCS) participate in the regulation of the virulence factors of APEC infection. In this study, a basSR-deficient mutant strain was constructed from its parent strain APECX40 (WT), and high-throughput sequencing (RNA-seq) was performed to analyse the transcriptional profile of WT and its mutant strain XY1. Results showed that the deletion of basSR down-regulated the transcript levels of a series of biofilm- and virulence-related genes. Results of biofilm formation assays and bird model experiments indicated that the deletion of basSR inhibited biofilm formation in vitro and decreased bacterial virulence and colonization in vivo. In addition, electrophoretic mobility shift assays confirmed that the BasR protein could bind to the promoter regions of several biofilm- and virulence-related genes, including ais, opgC and fepA. This study suggests that the BasSR TCS might be a global regulator in the pathogenesis of APEC infection. RESEARCH HIGHLIGHTS Transcriptional profiling showed that BasSR might be a global regulator in APEC. BasSR increases APEC pathogenicity in vivo. BasSR positively regulates biofilm- and the virulence-associated genes. BasSR can bind to the promoter regions of virulence-associated genes ais, opgC and fepA.


Assuntos
Biofilmes/crescimento & desenvolvimento , Galinhas/microbiologia , Infecções por Escherichia coli/veterinária , Escherichia coli/patogenicidade , Doenças das Aves Domésticas/microbiologia , Fatores de Virulência/genética , Animais , Biologia Computacional , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Infecções por Escherichia coli/microbiologia , Perfilação da Expressão Gênica/veterinária , Mutação , Virulência
19.
Microb Pathog ; 127: 296-303, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30553014

RESUMO

Avian pathogenic Escherichia coli (APEC) causes severe respiratory and systemic diseases in poultry. The wzy gene encodes the O-antigen polymerase (Wzy), which plays an important role in the synthesis of the lipopolysaccharide (LPS) of bacteria. However, the function of the wzy gene in APEC remains unclear. Hence, in this study, a strain harboring a wzy gene mutant (DE17Δwzy) was constructed and the characteristics of this strain were analyzed. The results showed that mutant of wzy changed the phenotype of the LPS and affected serum agglutination of the O-antigen. Decreased motility and biofilm formation was also observed, but the endotoxin titer of the LPS in APEC was not affected. In addition, the wzy mutation significantly decreased the adherence and invasion to DF-1 cells, especially the survival abilities in duck serum and complement. Furthermore, an LD50 assay revealed that the virulence of mutant strain DE17Δwzy was attenuated 132-fold compared with wild-type strain DE17. Moreover, the bacterial load in the blood, liver, spleen, and kidneys of ducks infected with DE17Δwzy was decreased significantly compared with wild-type strain DE17 (p < 0.0001). These results confirmed that the wzy gene is associated with LPS biosynthesis and bacterial pathogenicity in APEC.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Escherichia coli/patogenicidade , Glicosiltransferases/metabolismo , Lipopolissacarídeos/biossíntese , Redes e Vias Metabólicas/genética , Estruturas Animais/microbiologia , Animais , Aderência Bacteriana , Carga Bacteriana , Doenças das Aves/microbiologia , Galinhas , Patos , Endocitose , Escherichia coli/genética , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/veterinária , Proteínas de Escherichia coli/genética , Fibroblastos/microbiologia , Técnicas de Inativação de Genes , Glicosiltransferases/genética , Dose Letal Mediana
20.
Vet Res ; 50(1): 109, 2019 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-31831050

RESUMO

The function of Autoinducer-2 (AI-2) which acts as the signal molecule of LuxS-mediated quorum sensing, is regulated through the lsr operon (which includes eight genes: lsrK, lsrR, lsrA, lsrC, lsrD, lsrB, lsrF, and lsrG). However, the functions of the lsr operon remain unclear in avian pathogenic Escherichia coli (APEC), which causes severe respiratory and systemic diseases in poultry. In this study, the presence of the lsr operon in 60 APEC clinical strains (serotypes O1, O2, and O78) was investigated and found to be correlated with serotype and has the highest detection rate in O78. The AI-2 binding capacity of recombinant protein LsrB of APEC (APEC-LsrB) was verified and was found to bind to AI-2 in vitro. In addition, the lsr operon was mutated in an APEC strain (APEC94Δlsr(Cm)) and the mutant was found to be defective in motility and AI-2 uptake. Furthermore, deletion of the lsr operon attenuated the virulence of APEC, with the LD50 of APEC94Δlsr(Cm) decreasing 294-fold compared with wild-type strain APEC94. The bacterial load in the blood, liver, spleen, and kidneys of ducks infected with APEC94Δlsr(Cm) decreased significantly (p < 0.0001). The results of transcriptional analysis showed that 62 genes were up-regulated and 415 genes were down-regulated in APEC94Δlsr(Cm) compared with the wild-type strain and some of the down-regulated genes were associated with the virulence of APEC. In conclusion, our study suggests that lsr operon plays a role in the pathogenesis of APEC.


Assuntos
Proteínas de Transporte/metabolismo , Infecções por Escherichia coli/veterinária , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Homosserina/análogos & derivados , Lactonas/metabolismo , Doenças das Aves Domésticas/microbiologia , Percepção de Quorum , Animais , Biofilmes , Proteínas de Transporte/genética , China/epidemiologia , Escherichia coli/genética , Escherichia coli/patogenicidade , Infecções por Escherichia coli/epidemiologia , Infecções por Escherichia coli/microbiologia , Proteínas de Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica/fisiologia , Homosserina/genética , Homosserina/metabolismo , Aves Domésticas , Doenças das Aves Domésticas/epidemiologia , Sorogrupo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA