Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Curr Microbiol ; 79(9): 249, 2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35834051

RESUMO

Bacillus altitudinis is a widely distributed soil bacterium that has various functional activities, including remediation of contaminated soil, degradation of herbicides, and enhancement of plant growth. B. altitudinis GQYP101 was isolated from the rhizosphere soil of Lycium barbarum L. and demonstrated potential as a plant growth-promoting bacterium. In this work, strain GQYP101 could solubilize phosphorus, and increased the stem diameter, maximum leaf area, and fresh weight of corn in a pot experiment. Nitrogen and phosphorus contents of corn seedlings (aerial part) increased by 100% and 47.9%, respectively, after application of strain GQYP101. Concurrently, nitrogen and phosphorus contents of corn root also increased, by 55.40% and 20.3%, respectively. Furthermore, rhizosphere soil nutrients were altered and the content of available phosphorus increased by 73.2% after application of strain GQYP101. The mechanism by which strain GQYP101 improved plant growth was further investigated by whole genome sequence analysis. Strain GQYP101 comprises a circular chromosome and a linear plasmid. Some key genes of strain GQYP101 were identified that were related to phosphate solubilization, alkaline phosphatase, chemotaxis, and motility. The findings of this study may provide a theoretical basis for strain GQYP101 to enhance crop yield as microbial fertilizer.


Assuntos
Microbiota , Rizosfera , Bacillus , Bactérias/metabolismo , Nitrogênio , Fosfatos/metabolismo , Fósforo , Plântula , Solo/química , Microbiologia do Solo , Zea mays/metabolismo
2.
Ecotoxicol Environ Saf ; 247: 114273, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36356529

RESUMO

Sterigmatocystin (STE) is a common hepatotoxic and nephrotoxic contaminant in cereals, however, its phytotoxicity and mechanisms are poorly understood. Here, the phytotoxic mechanisms of STE were investigated via the metabolomics of Amaranthus retroflexus L. A total of 140 and 113 differential metabolites were detected in the leaves and stems, respectively, among which amino acids, lipids, and phenolic compounds were significantly perturbed. Valine, leucine, isoleucine, and lysine biosynthesis were affected by STE. These metabolic responses revealed that STE might be toxic to plants by altering the plasma membrane and inducing oxidative damage, which was verified by measuring the relative electrical conductivity and quantification of reactive oxygen species. The elevated amino acids, as well as the decreased of D-sedoheptuiose-7-phosphate indicated increased proteolysis and carbohydrate metabolism restriction. Furthermore, the IAA level also decreased. This study provides a better understanding of the impacts of STE on the public health, environment and food security.


Assuntos
Alcaloides , Amaranthus , Toxinas Biológicas , Esterigmatocistina , Metabolômica , Aminoácidos
3.
J Mol Cell Cardiol ; 138: 66-74, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31758962

RESUMO

There is controversy regarding whether excess FGF23 causes left ventricular hypertrophy (LVH) directly through activation of fibroblast growth factor receptor 4 (FGFR4) in cardiomyocytes or indirectly through reductions in soluble Klotho (sK). We investigated the respective roles of myocardial FGFR4 and sKL in mediating FGF23-induced LVH using mouse genetic and pharmacological approaches. To investigate a direct role of myocardial FGFR4 in mediating the cardiotoxic effects of excess circulating FGF23, we administered rFGF23 to mice with cardiac-specific loss of FGFR4 (FGFR4 heart-cKO). We tested a model of sKL deficiency, hypertension and LVH created by the conditional deletion of FGFR1 in the renal distal tubule (FGFR1DT cKO mice). The cardioprotective effects of sKL in both mouse models was assessed by the systemic administration of recombinant sKL. We confirmed that FGF23 treatment activates PLCγ in the heart and induces LVH in the absence of membrane α-Klotho. Conditional deletion of FGFR4 in the myocardium prevented rFGF23-induced LVH in mice, establishing direct cardiotoxicity of FGF23 through activation of FGFR4. Recombinant sKL administration prevented LVH, but not HTN, in FGFR1DT cKO mice, consistent with direct cardioprotective effects. Co-administration of recombinant sKL with FGF23 in culture inhibited rFGF23-induced p-PLCγ signaling. Thus, FGF23 ability to include LVH represents a balance between FGF23 direct cardiac activation of FGFR4 and the modulating effects of circulating sKL to alter FGF23-dependent myocardial signaling pathways.


Assuntos
Fatores de Crescimento de Fibroblastos/metabolismo , Glucuronidase/metabolismo , Hipertrofia Ventricular Esquerda/metabolismo , Miocárdio/metabolismo , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos/metabolismo , Transdução de Sinais , Animais , Citoproteção , Fator de Crescimento de Fibroblastos 23 , Deleção de Genes , Células HEK293 , Humanos , Hipertrofia Ventricular Esquerda/diagnóstico por imagem , Túbulos Renais Distais/patologia , Proteínas Klotho , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/metabolismo , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Solubilidade
4.
Adv Exp Med Biol ; 1155: 543-553, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31468430

RESUMO

Taurine transporter (TauT) has been identified as a target gene of p53 tumor suppressor. TauT is also found to be overexpressed in variety type of human cancers, such as leukemia. This study showed that expression of TauT was upregulated by c-Myc and c-Jun oncogenes. To explore whether blocking of TauT inhibits tumor development, the RNA interference (RNAi) and immune targeting approaches were tested in tumor cells in vitro and in p53 mutant mice in vivo. Knockdown of TauT expression by RNAi resulted in cell cycle G2 arrest and suppressed human breast cancer MCF-7 cells proliferation determined by colonies production and cell migration assays. Knockdown of TauT also rendered MCF-7 cells more susceptible to chemotherapeutic drug-induced apoptosis. An antibody specifically against TauT blocked taurine uptake and induced cell cycle G2 arrest leading to cell death of variety type of tumor cells without affecting the viability of normal mammalian cells. TauT peptide vaccination significantly increased median lifespan (1.5-fold) of the p53 null mice and rescued p53+/- mice by extending the median lifespan from 315 days to 621 days. Furthermore, single dose treatment of tumor-bearing (thymic lymphoma) p53 null mice with TauT peptide reduced tumor size by about 50% and significantly prolonged survival of these mice from average 7 days (after observing the thymic lymphoma) to 21 days. This finding demonstrates that a novel TauT peptide vaccine can delay, inhibit, and/or treat p53 mutation related spontaneous tumorigenesis in vivo. Therefore, TauT peptide may be used as a universal cancer vaccine to prevent and/or treat patients with p53 mutation-mediated cancers.


Assuntos
Vacinas Anticâncer , Imunoterapia , Glicoproteínas de Membrana , Proteínas de Membrana Transportadoras , Interferência de RNA , Proteína Supressora de Tumor p53/genética , Animais , Anticorpos Monoclonais/farmacologia , Pontos de Checagem do Ciclo Celular , Técnicas de Silenciamento de Genes , Genes jun , Genes myc , Humanos , Células MCF-7 , Camundongos , Camundongos Knockout , Terapia de Alvo Molecular , Mutação , Taurina , Vacinas de Subunidades Antigênicas
5.
J Am Soc Nephrol ; 29(1): 69-80, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28993502

RESUMO

The bone-derived hormone fibroblast growth factor-23 (FGF-23) activates complexes composed of FGF receptors (FGFRs), including FGFR1, and α-Klotho in the kidney distal tubule (DT), leading to increased sodium retention and hypertension. However, the role of FGFR1 in regulating renal processes linked to hypertension is unclear. Here, we investigated the effects of selective FGFR1 loss in the DT. Conditional knockout (cKO) of FGFR1 in the DT (FGFR1DT-cKO mice) resulted in left ventricular hypertrophy (LVH) and decreased kidney expression of α-Klotho in association with enhanced BP, decreased expression of angiotensin converting enzyme 2, and increased expression of the Na+-K+-2Cl- cotransporter. Notably, recombinant FGF-23 administration similarly decreased the kidney expression of α-Klotho and induced LVH in mice. Pharmacologic activation of FGFR1 with a monoclonal anti-FGFR1 antibody (R1MAb1) normalized BP and significantly attenuated LVH in the Hyp mouse model of excess FGF-23, but did not induce a response in FGFR1DT-cKO mice. The hearts of FGFR1DT-cKO mice showed increased expression of the transient receptor potential cation channel, subfamily C, member 6 (TRPC6), consistent with cardiac effects of soluble Klotho deficiency. Moreover, administration of recombinant soluble Klotho lowered BP in the Hyp mice. Thus, FGFR1 in the DT regulates systemic hemodynamic responses opposite to those predicted by the actions of FGF-23. These cardiovascular effects appear to be mediated by paracrine FGF control of kidney FGFR1 and subsequent regulation of soluble Klotho and TRPC6. FGFR1 in the kidney may provide a new molecular target for treating hypertension.


Assuntos
Pressão Sanguínea/efeitos dos fármacos , Pressão Sanguínea/genética , Hipertensão/genética , Hipertrofia Ventricular Esquerda/genética , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética , Enzima de Conversão de Angiotensina 2 , Animais , Anticorpos Monoclonais/farmacologia , Feminino , Fator de Crescimento de Fibroblastos 23 , Fatores de Crescimento de Fibroblastos/farmacologia , Glucuronidase/genética , Glucuronidase/metabolismo , Fatores Imunológicos/farmacologia , Túbulos Renais Distais , Proteínas Klotho , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miocárdio/metabolismo , Peptidil Dipeptidase A/genética , Peptidil Dipeptidase A/metabolismo , RNA Mensageiro/metabolismo , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/imunologia , Proteínas Recombinantes/farmacologia , Simportadores de Cloreto de Sódio-Potássio/genética , Simportadores de Cloreto de Sódio-Potássio/metabolismo , Canais de Cátion TRPC/genética , Canais de Cátion TRPC/metabolismo , Canal de Cátion TRPC6
6.
Pestic Biochem Physiol ; 142: 148-154, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29107238

RESUMO

Phytophthora nicotianae causes serious black shank disease in tobacco. Syringa oblata essential oil and its main components were evaluated to develop an effective and environmentally friendly biocontrol agent. Eugenol, which exhibited the strongest activity, was intensively investigated in vitro and in vivo. The mycelial growth of P. nicotianae was inhibited by eugenol at a minimum inhibitory concentration of 200µgmL-1, and inhibition occurred in a dose-dependent manner. Extracellular pH and extracellular conductivity results indicated that eugenol increased membrane permeability. Flow cytometry and fluorescent staining results further showed that eugenol disrupted mycelial membranes but did not affect spore membrane integrity. The in vivo results confirmed that treatment of tobacco with various concentrations of eugenol formulations reduced disease incidence and better controlled against the disease. Our results suggested that the ability of eugenol to control tobacco black shank depended on its ability to damage mycelial membranes and that eugenol formulations have potential as an eco-friendly antifungal agent for controlling tobacco blank shank.


Assuntos
Antifúngicos/farmacologia , Eugenol/farmacologia , Nicotiana/microbiologia , Óleos Voláteis/farmacologia , Phytophthora/efeitos dos fármacos , Doenças das Plantas/microbiologia , Extratos Vegetais/farmacologia , Syringa/química , Antifúngicos/química , Eugenol/química , Testes de Sensibilidade Microbiana , Óleos Voláteis/química , Phytophthora/crescimento & desenvolvimento , Extratos Vegetais/química
7.
Yi Chuan ; 39(4): 346-353, 2017 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-28420613

RESUMO

Spotted-leaf mutants form spots in leaves or leaf sheaths under normal condition. The spotted-leaf phenotypes are similar to hypersensitive reaction of plants attacked by pathogen. Identification and characterization of the spotted-leaf mutants are helpful for understanding the mechanisms of resistance to plant diseases. Here, we identify two spotted-leaf mutants spl101 and spl102 from an EMS-treated elite japonica cultivar KYJ (Kuanyejing). spl101 and spl102 form serious spots at the late heading stage. Genetic analyses show that the spotted-leaf phenotypes of both spl101 and spl102 are caused by a single recessive mutation, respectively. By employing the Mutmap method, we reveal that both spl101 and spl102 contain mutations in the OsEDR1 gene. The spl101 mutation occurs in the 5°-splicing site of the 6th intron of OsEDR1, which causes abnormal recognition of the 6th intron and leads to the frameshift mutation. The spl102 mutant contains a mutation in the tenth exon of OsEDR1, resulting in an amino acid change from the phenylalanine (F) to the cysteine (C). OsEDR1 has been reported to regulate pathogen-resistant reaction, and loss of OsEDR1 function produces similar phenotypes to those of spl101 and spl102. Here, two newly identified alleles of OsEDR1 will be benefit for further understanding the molecular mechanisms of the OsEDR1 gene in disease resistance, and will be helpful for enriching the rice germplasm resources. In addition, our results also validate the effectiveness of the Mutmap method in cloning the candidate mutations.


Assuntos
Oryza/metabolismo , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Mutação , Oryza/genética , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética
8.
J Biol Chem ; 290(16): 10447-59, 2015 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-25752607

RESUMO

Fibroblastic growth factor receptor 1 (FGFR1) signaling pathways are implicated in the regulation of FGF-23 gene transcription, but the molecular pathways remain poorly defined. We used low molecular weight (LMW, 18 kDa) FGF-2 and high molecular weight (HMW) FGF-2 isoforms, which, respectively, activate cell surface FGF receptors and intranuclear FGFR1, to determine the roles of membrane FGFRs and integrative nuclear FGFR1 signaling (INFS) in the regulation of FGF-23 gene transcription in osteoblasts. We found that LMW-FGF-2 induced NFAT and Ets1 binding to conserved cis-elements in the proximal FGF-23 promoter and stimulated FGF-23 promoter activity through PLCγ/calcineurin/NFAT and MAPK pathways in SaOS-2 and MC3T3-E1 osteoblasts. In contrast, HMW-FGF-2 stimulated FGF-23 promoter activity in osteoblasts through a cAMP-dependent binding of FGFR1 and cAMP-response element-binding protein (CREB) to a conserved cAMP response element (CRE) contiguous with the NFAT binding site in the FGF-23 promoter. Mutagenesis of the NFAT and CRE binding sites, respectively, inhibited the effects of LMW-FGF-2 and HMW-FGF-23 to stimulate FGF-23 promoter activity. FGF-2 activation of both membrane FGFRs and INFS-dependent FGFR1 pathways may provide a means to integrate systemic and local regulation of FGF-23 transcription under diverse physiological and pathological conditions.


Assuntos
Fator 2 de Crescimento de Fibroblastos/metabolismo , Fatores de Crescimento de Fibroblastos/genética , Osteoblastos/metabolismo , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética , Transcrição Gênica , Calcineurina/genética , Calcineurina/metabolismo , Diferenciação Celular , Linhagem Celular , AMP Cíclico/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Fator 2 de Crescimento de Fibroblastos/genética , Fator 2 de Crescimento de Fibroblastos/farmacologia , Fator de Crescimento de Fibroblastos 23 , Fatores de Crescimento de Fibroblastos/metabolismo , Regulação da Expressão Gênica , Humanos , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Peso Molecular , Fatores de Transcrição NFATC/genética , Fatores de Transcrição NFATC/metabolismo , Osteoblastos/citologia , Osteoblastos/efeitos dos fármacos , Fosfolipase C gama/genética , Fosfolipase C gama/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/farmacologia , Proteína Proto-Oncogênica c-ets-1 , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Transdução de Sinais
9.
Curr Opin Nephrol Hypertens ; 25(4): 333-42, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27219044

RESUMO

PURPOSE OF REVIEW: This review examines the role of fibroblast growth factor-23 (FGF-23) in mineral metabolism, innate immunity and adverse cardiovascular outcomes. RECENT FINDINGS: FGF-23, produced by osteocytes in bone, activates FGFR/α-Klotho (α-Kl) complexes in the kidney. The resulting bone-kidney axis coordinates renal phosphate reabsorption with bone mineralization, and creates a counter-regulatory feedback loop to prevent vitamin D toxicity. FGF-23 acts to counter-regulate the effects of vitamin D on innate immunity and cardiovascular responses. FGF-23 is ectopically expressed along with α-Kl in activated macrophages, creating a proinflammatory paracrine signaling pathway that counters the antiinflammatory actions of vitamin D. FGF-23 also inhibits angiotensin-converting enzyme 2 expression and increases sodium reabsorption in the kidney, leading to hypertension and left ventricular hypertrophy. Finally, FGF-23 is purported to cause adverse cardiac and impair neutrophil responses through activation of FGFRs in the absence of α-Kl. Although secreted forms of α-Kl have FGF-23 independent effects, the possibility of α-Kl independent effects of FGF-23 is controversial and requires additional experimental validation. SUMMARY: FGF-23 participates in a bone-kidney axis regulating mineral homeostasis, proinflammatory paracrine macrophage signaling pathways, and in a bone-cardio-renal axis regulating hemodynamics that counteract the effects of vitamin D.


Assuntos
Osso e Ossos/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Hipertensão/metabolismo , Hipertrofia Ventricular Esquerda/metabolismo , Imunidade Inata/imunologia , Rim/metabolismo , Enzima de Conversão de Angiotensina 2 , Animais , Fator de Crescimento de Fibroblastos 23 , Fatores de Crescimento de Fibroblastos/imunologia , Glucuronidase/metabolismo , Homeostase , Humanos , Minerais/metabolismo , Osteócitos/metabolismo , Peptidil Dipeptidase A/metabolismo , Fosfatos/metabolismo , Transdução de Sinais , Sódio/metabolismo , Vitamina D/metabolismo
10.
Hypertension ; 81(3): 541-551, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38164755

RESUMO

BACKGROUND: KDM6A (Lysine-Specific Demethylase 6A) is a specific demethylase for histone 3 lysine (K) 27 trimethylation (H3K27me3). The purpose of this study is to investigate whether KDM6A in renal tubule cells plays a role in the regulation of kidney function and blood pressure. METHODS: We first crossed Ksp-Cre+/- and KDM6Aflox/flox mice for generating inducible kidney-specific deletion of KDM6A gene. RESULTS: Notably, conditional knockout of KDM6A gene in renal tubule cells (KDM6A-cKO) increased H3K27me3 levels which leads to a decrease in Na excretion and elevation of blood pressure. Further analysis showed that the expression of NKCC2 (Na-K-2Cl cotransporter 2) and NCC (Na-Cl cotransporters) was upregulated which contributes to impaired Na excretion in KDM6A-cKO mice. The expression of AQP2 (aquaporin 2) was also increased in KDM6A-cKO mice, which may facilitate water reabsorption in KDM6A-cKO mice. The expression of Klotho was downregulated while expression of aging markers including p53, p21, and p16 was upregulated in kidneys of KDM6A-cKO mice, indicating that deletion of KDM6A in the renal tubule cells promotes kidney aging. Interestingly, KDM6A-cKO mice developed salt-sensitive hypertension which can be rescued by treatment with Klotho. KDM6A deficiency induced salt-sensitive hypertension likely through downregulation of the Klotho/ERK (extracellular signal-regulated kinase) signaling and upregulation of the WNK (with-no-lysine kinase) signaling. CONCLUSIONS: This study provides the first evidence that KDM6A plays an essential role in maintaining normal tubular function and blood pressure. Renal tubule cell specific KDM6A deficiency causes hypertension due to increased H3K27me3 levels and the resultant downregulation of Klotho gene expression which disrupts the Klotho/ERK/NCC/NKCC2 signaling.


Assuntos
Histona Desmetilases , Hipertensão , Proteínas Serina-Treonina Quinases , Animais , Camundongos , Aquaporina 2/metabolismo , Pressão Sanguínea/fisiologia , Histonas/metabolismo , Hipertensão/genética , Hipertensão/metabolismo , Rim/metabolismo , Lisina/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Sódio/metabolismo , Cloreto de Sódio/metabolismo , Histona Desmetilases/metabolismo
11.
Adv Exp Med Biol ; 776: 291-305, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23392891

RESUMO

The interaction between taurine and the absorption of fat-soluble -vitamins, such as vitamin A and D, has been an interesting topic in the field of -nutrition science, because taurine-conjugated bile acid optimizes fat and fat-soluble vitamin absorption. However, whether the hormone calcitriol (1,25-dihydroxyvitamin D(3)) and retinoic acid regulate the expression of the TauT gene is unknown. In this study, we test the hypothesis that the TauT gene is regulated by vitamin D(3) (VD(3)) and retinoic acid (RA) via activation of the vitamin D receptor (VDR) and retinoic acid receptor (RXR). Taurine uptake, Western blotting, gene reporter assay, and immunohistochemical analysis of TauT, VDR, and RXR were used in VD(3)- and/or RA-treated LLC-PK1 and MCF-7 cells. We demonstrated that VD(3) alone had little effect on TauT expression in both LLC-PK1 and MCF-7 cells. Expression of TauT was significantly increased by RA, which was synergized by the addition of VD(3) after RXR activation in LLC-PK1 cells. In contrast, expression of TauT was significantly decreased by the combination of VD(3) and RA in MCF-7 cells. Regulation of TauT by VD(3)/RA appears to occur at the transcriptional level, as determined by a reporter gene assay of the TauT promoter. Immunohistochemical study showed that VDR and RXR were activated by VD(3) and RA, respectively, in both LLC-PK1 and MCF-7 cells. The activated VDR and RXR also colocated in nuclei of both cells, suggesting that a VDR/RXR complex is involved in the transcriptional regulation of TauT. Our results show that expression of TauT is differentially regulated by VD(3) and RA via formation of VDR and RXR complexes in the nuclei in a cell type-dependent manner.


Assuntos
Calcitriol/farmacologia , Glicoproteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Receptores de Calcitriol/metabolismo , Receptores X de Retinoides/metabolismo , Tretinoína/farmacologia , Animais , Cães , Regulação da Expressão Gênica/efeitos dos fármacos , Células HEK293 , Humanos , Células LLC-PK1 , Células MCF-7 , Células Madin Darby de Rim Canino , Glicoproteínas de Membrana/genética , Proteínas de Membrana Transportadoras/genética , Modelos Biológicos , Suínos
12.
Adv Exp Med Biol ; 776: 307-20, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23392892

RESUMO

Studies have demonstrated that TauT deficiency results in small kidneys in TauT knockout mice. Our studies have shown that TauT is a direct target of several genes, including p53 and WT1, which play an important role in renal development. However, whether the TauT gene is directly involved in renal development is largely unknown. In the present study, we created a TauT-deficient cell model by RNAi in human embryonic kidney 293 cells, and the effect of TauT on renal development was investigated. Knockdown of TauT significantly decreased the growth rate, cell migration, and colony formation of 293 cells. Inhibition of TauT caused cell cycle G2 arrest. Microarray analysis showed that several genes involved in cell cycle regulation or cell division, such as CDK6 and CDC7, were significantly downregulated in TauT-deficient 293 cells as compared to control 293 cells. In conclusion, the results from this study suggest that TauT plays a role in the development of renal cells. Knockdown of TauT impairs kidney development, possibly through regulation of cell cycle-related genes.


Assuntos
Técnicas de Silenciamento de Genes , Glicoproteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Animais , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ensaio de Unidades Formadoras de Colônias , Doxorrubicina/farmacologia , Citometria de Fluxo , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Células HEK293 , Humanos , Glicoproteínas de Membrana/antagonistas & inibidores , Glicoproteínas de Membrana/deficiência , Proteínas de Membrana Transportadoras/deficiência , Camundongos , Interferência de RNA , Transdução de Sinais/efeitos dos fármacos , Cicatrização/efeitos dos fármacos
13.
Nat Prod Res ; 37(4): 651-656, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35506313

RESUMO

Extracts from plants used in Chinese medicine can be good sources of fungicides for agricultural applications. In this study, we separated and identified antifungal compounds from four traditional Chinese medicine extracts and evaluated their antifungal activities in vitro and in vivo. In vitro, honokiol extracted from Artemisia argyi showed broad-spectrum antimicrobial and mycelial inhibitory activity with EC50 in the range 3.56 - 33.85 µg/mL against eight plant pathogens. q-PCR indicated that honokiol might induce cell cancerisation and inhibit cellular respiration, which provided significant insights into honokiol function in tobacco resistance to molecular mechanisms of the phytopathogenic fungus Phytophthora nicotianae. In vivo, honokiol significantly decreased the rate of fungal infection in eggplants, potatoes, grapes, cherry tomatoes, and cucumbers, and enhanced disease resistance in tobacco. Overall, our results indicate that honokiol has the potential to control a variety of fungal and oomycete diseases, and A. argyi could be a source of honokiol.


Assuntos
Artemisia , Lignanas , Antifúngicos/farmacologia , Lignanas/farmacologia , Extratos Vegetais/farmacologia
14.
Microb Biotechnol ; 16(1): 139-147, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36415948

RESUMO

Aspergillus genus is a key component in fermentation and food processing. However, sterigmatocystin (STE)-a mycotoxin produced by several species of Aspergillus-limits the use of some Aspergillus species (such as Aspergillus versicolor, Aspergillus inflatus, and Aspergillus parasiticus) because of its toxicity and carcinogenicity. Here, we engineered an STE-free Aspergillus versicolor strain based on genome mining techniques. We sequenced and assembled the Aspergillus versicolor D5 genome (34.52 Mb), in which we identified 16 scaffolds and 54 biosynthetic gene clusters (BGCs). We silenced cytochrome P450 coding genes STC17 and STC27 by insertional inactivation. The production of STE in the Δstc17 mutant strain was increased by 282% but no STE was detected in the Δstc27 mutant. Metabolites of Δstc27 mutant exhibited growth-promoting effect on plants. Our study makes significant progress in improving the application of some Aspergillus strains by restricting their production of toxic and carcinogenic compounds.


Assuntos
Aspergillus , Esterigmatocistina , Esterigmatocistina/metabolismo , Aspergillus/genética , Aspergillus/metabolismo , Metabolismo Secundário , Fermentação
15.
Amino Acids ; 43(6): 2249-63, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22580723

RESUMO

This article examines the actions of taurine on models of renal dysfunction, the potential mechanisms of taurine action and the possible clinical significance of these findings. Our laboratory has written previously on the role of taurine in renal function and we have focused upon the normal physiology of the kidney and on the mechanisms and regulation of the renal transport of taurine. This review is a distinct change of emphasis in that we describe a number of studies which have evaluated various aspects of renal dysfunction, including hypertension and proteinuria, specific glomerular and tubular disorders, acute and chronic renal conditions, urinary tract conditions including infection and nephrolithiasis, and diabetic nephropathy. The subject of chronic kidney disease and renal transplantation will also be examined relative to ß amino acid. The studies evaluated will be mainly recent ones, recognizing that older reviews of the role of this taurine in the kidney are available.


Assuntos
Nefropatias/metabolismo , Taurina/metabolismo , Animais , Humanos , Nefropatias/tratamento farmacológico , Nefropatias/fisiopatologia , Testes de Função Renal , Taurina/uso terapêutico
16.
Adv Sci (Weinh) ; 9(15): e2104034, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35315252

RESUMO

Generation of kidney organoids using autologous kidney stem cells represents an attractive strategy for treating and potentially replacing the failing kidneys. However, whether adult mammalian kidney stem cells have regenerative capacity remains unknown. Here, previously unidentified adult kidney Sca1+ Oct4+ stem/progenitor cells are isolated. Interestingly, culturing these cells leads to generation of kidney-like structures. First, the assembly of self-organizing 3D kidney-like structures is observed. These kidney organoids contain podocytes, proximal tubules, and endothelial cells that form networks of capillary loop-like structures. Second, the differentiation of kidney stem cells into functionally mature tubules and self-organizing kidney-shaped structures in monolayer culture that selectively endocytoses dextran, is shown. Finally, the de novo generation of an entire self-organizing nephron from monolayer cultures is observed. Mechanistically, it is demonstrated that Sirt2-mediated canonical Wnt/ß-catenin signaling is critical for the development of kidney organoids. Thus, the first evidence is provided that the adult mouse kidney stem cells are capable of de novo generating kidney organoids.


Assuntos
Células-Tronco Pluripotentes , Podócitos , Animais , Células Endoteliais , Rim , Mamíferos , Camundongos , Sirtuína 2 , beta Catenina
17.
Bioresour Technol ; 350: 126913, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35231600

RESUMO

This study investigated the effects of adding biocontrol microbes on metabolites and pathogenic microorganisms during mushroom residue composting and the relationships of metabolite changes with microbes and material transformation. The results showed that the addition of Bacillus subtilis (BS) and Trichoderma harzianum (TH) with mushroom residue promoted the conversion of organic carbon and nitrogen. The abundance of pathogenic microbes was increased in biocontrol microbial treatments. BS or TH treatments increased the levels of amino acids, carbohydrates, and bacteriostatic alkaloid metabolites. Network analysis revealed that the main microorganisms significantly related to alkaloid metabolites were Rhabdanaerobium, Atopostipes, Planifilum and Ureibacillus. The increased bacterial abundance and decreased NO3--N and TOC were closely related to the increases in amino acid and alkaloid metabolites after biocontrol agent treatments. Generally, adding biocontrol microbes is an effective way to increase the levels of antibacterial metabolites, but there is a risk of increasing the abundance of pathogenic microbes.


Assuntos
Agaricales , Alcaloides , Compostagem , Microbiota , Aminoácidos , Esterco , Óleos de Plantas , Solo
18.
Front Microbiol ; 13: 940156, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36081807

RESUMO

Tobacco bacterial wilt caused by Ralstonia solanacearum is one of the most devastating diseases. Microbial keystone taxa were proposed as promising targets in plant disease control. In this study, we obtained an antagonistic Bacillus isolate EM-1 from bacterial wilt-suppressive soil, and it was considered rhizosphere-resident bacteria based on high (100%) 16S rRNA gene similarity to sequences derived from high-throughput amplicon sequencing. According to 16S rRNA gene sequencing and MLSA, strain EM-1 was identified as Bacillus velezensis. This strain could inhibit the growth of R. solanacearum, reduce the colonization of R. solanacearum in tobacco roots, and decrease the incidence of bacterial wilt disease. In addition, strain EM-1 also showed a strong inhibitory effect on other phytopathogens, such as Alternaria alternata and Phytophthora nicotianae, indicating a wide antagonistic spectrum. The antimicrobial ability of EM-1 can be attributed to its volatile, lipopeptide and polyketide metabolites. Iturin A (C14, C15, and C16) was the main lipopeptide, and macrolactin A and macrolactin W were the main polyketides in the fermentation broth of EM-1, while heptanone and its derivatives were dominant among the volatile organic compounds. Among them, heptanones and macrolactins, but not iturins, might be the main potential antibacterial substances. Complete genome sequencing was performed, and the biosynthetic gene clusters responsible for iturin A and macrolactin were identified. Moreover, strain EM-1 can also induce plant resistance by increasing the activity of CAT and PPO in tobacco. These results indicated that EM-1 can serve as a biocontrol Bacillus strain for tobacco bacterial wilt control. This study provides a better insight into the strategy of exploring biocontrol agent based on rhizosphere microbiome.

19.
Phytochemistry ; 197: 113125, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35157922

RESUMO

The filamentous fungi Fusarium sp. are well-known for their ability to produce abundant specialised metabolites with attractive chemical structures and bioactivities. In this study, chemical analyses of the endophyte F. equiseti D39 led to the isolation and identification of two pairs of undescribed 3-decalinoyltetramic acids (3DTAs) E/Z diastereomers, decalintetracids A and B. Their structures were elucidated by comprehensive spectroscopic analysis and quantum-chemical calculations. Although 3DTAs were commonly reported from fungi, decalintetracid A possessed an unprecedented tricyclo [7.2.1.02,7] dodecane skeleton, which added the diversity of these fungal metabolites. In addition, decalintetracid B was featured by a unique 6/6/5 ring system core. A plausible biosynthetic pathway for decalintetracids A and B was proposed. Both compounds exhibited phytotoxicity toward Amaranthus retroflexus L. and Amaranthus hybrid, indicating their potential as natural herbicides.


Assuntos
Alcaloides , Fusarium , Alcaloides/metabolismo , Endófitos , Fusarium/química , Pirrolidinonas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA