Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Curr Microbiol ; 81(11): 354, 2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39269482

RESUMO

Amphibians face the threat of decline and extinction, and their health is crucially affected by the microbiota. Their health and ecological adaptability essentially depend on the diverse microbial communities that are shaped by unique host traits and environmental factors. However, there is still limited research on this topic. In this study, cutaneous (C) and gut (G) microbiota in Rana amurensis (A) and R. dybowskii (D) was analyzed through 16S amplicon sequencing. Groups AC and DC significantly differed in alpha diversity, while the gut groups (AG and DG) showed no such differences. Analyses of Bray-Curtis dissimilarity matrix and unweighted UniFrac distances showed significant differences in cutaneous microbiota between groups AC and DC, but not between groups AG and DG. Stochastic processes significantly influenced the assembly of cutaneous and gut microbiota in amphibians, with a notably higher species dispersal rate in the gut. The predominant phyla in the skin of R. amurensis and R. dybowskii were Bacteroidetes and Proteobacteria, respectively, with significant variations in Bacteroidota. Contrarily, the gut microbiota of both species was dominated by Firmicutes, Proteobacteria, and Bacteroidetes, without significant phylum-level differences. Linear discriminant analysis effect size (LEfSe) analysis identified distinct microbial enrichment in each group. Predictive analysis using phylogenetic investigation of communities by reconstruction of unobserved states 2 (PICRUSt2) revealed the significant functional pathways associated with the microbiota, which indicates their potential roles in immune system function, development, regeneration, and response to infectious diseases. This research underscores the critical impact of both host and environmental factors in shaping amphibian microbial ecosystems and emphasizes the need for further studies to explore these complex interactions for conservation efforts.


Assuntos
Bactérias , Microbioma Gastrointestinal , Filogenia , RNA Ribossômico 16S , Ranidae , Pele , Animais , Pele/microbiologia , Ranidae/microbiologia , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , RNA Ribossômico 16S/genética , Microbiota , Biodiversidade
2.
BMC Vet Res ; 17(1): 333, 2021 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-34674716

RESUMO

BACKGROUND: Captive amphibians frequently receive antibiotic baths to control bacterial diseases. The potential collateral effect of these antibiotics on the microbiota of frogs is largely unknown. To date, studies have mainly relied on oral administration to examine the effects of antibiotics on the gut microbiota; in contrast, little is known regarding the effects of bath-applied antibiotics on the gut microbiota. The gut microbiota compositions of the gentamicin, recovery, and control groups were compared by Illumina high-throughput sequencing, and the functional profiles were analysed using Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt). Furthermore, the relationship between the structure and predicted functional composition of the gut microbiota was determined. RESULTS: The alpha diversity indices were significantly reduced by the gentamicin bath, illustrating that this treatment significantly changed the composition of the gut microbiota. After 7 days, the gut microbiota of the recovery group was not significantly different from that of the gentamicin group. Forty-four indicator taxa were selected at the genus level, comprising 42 indicators representing the control group and 2 indicators representing the gentamicin and recovery groups. Potential pathogenic bacteria of the genera Aeromonas, Citrobacter, and Chryseobacterium were significantly depleted after the gentamicin bath. There was no significant positive association between the community composition and functional composition of the gut microbiota in the gentamicin or control frogs, indicating that the functional redundancy of the gut bacterial community was high. CONCLUSIONS: Gentamicin significantly changed the structure of the gut microbiota of R. dybowskii, and the gut microbiota exhibited weak resilience. However, the gentamicin bath did not change the functional composition of the gut microbiota of R. dybowskii, and there was no significant correlation between the structural composition and the functional composition of the gut microbiota.


Assuntos
Antibacterianos/administração & dosagem , Antibacterianos/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Gentamicinas/administração & dosagem , Gentamicinas/farmacologia , Ranidae/microbiologia , Administração Tópica , Animais , Bactérias/classificação , Bactérias/efeitos dos fármacos , Bactérias/genética
3.
Ecotoxicol Environ Saf ; 210: 111873, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33418157

RESUMO

Food availability represents a major worldwide concern due to population growth, increased demand, and climate change. Therefore, it is imperative to identify compounds that can improve crop performance. Plant biostimulants have gained prominence because of their potentials to increase germination, productivity and quality of a wide range of horticultural and agronomic crops. Phosphite (Phi), an analog of orthophosphate, is an emerging biostimulant used in horticulture and agronomy. The aim of this study was to uncover the molecular mechanisms through which Phi acts as a biostimulant with potential effects of overall plant growth. Field and greenhouse experiments, using 4 potato cultivars, showed that following Phi applications, plant performance, including several physio-biochemical traits, crop productivity, and quality traits, were significantly improved. RNA sequencing of control and Phi-treated plants of cultivar Xingjia No. 2, at 0 h, 6 h, 24 h, 48 h, 72 h and 96 h after the Phi application for 24 h revealed extensive changes in the gene expression profiles. A total of 2856 differentially expressed genes were identified, suggesting that multiple pathways of primary and secondary metabolism, such as flavonoids biosynthesis, starch and sucrose metabolism, and phenylpropanoid biosynthesis, were strongly influenced by foliar applications of Phi. GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) enrichment analyses associated with defense responses revealed significant effects of Phi on a plethora of defense mechanisms. These results suggest that Phi acted as a biostimulant by priming the plants, that was, by triggering dynamic changes in gene expression and modulating metabolic fluxes in a way that allowed plants to perform better. Therefore, Phi usage has the potential to improve crop yield and health, alleviating the challenges posed by the need of feeding a growing world population, while minimizing the agricultural impact on human health and environment.


Assuntos
Fosfitos/farmacologia , Solanum tuberosum/efeitos dos fármacos , Metabolismo dos Carboidratos/efeitos dos fármacos , Solanum tuberosum/crescimento & desenvolvimento , Solanum tuberosum/metabolismo , Estresse Fisiológico/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos
4.
BMC Genomics ; 21(1): 533, 2020 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-32746779

RESUMO

BACKGROUND: Water spinach (Ipomoea aquatica) is an important heat-resistant leafy vegetable that can survive under long-time heat stress condition. However, the physiological characteristics and molecular changes in its response to heat stress are poorly understood. RESULTS: In this study the selected water spinach cultivars with different thermo resistance and their physiological response to heat stress were examined. Under prolonged heat stress, plant growth was inhibited in all tested cultivars. This inhibition was accompanied by the reduction of photosynthetic performance. The reactive oxygen species system in terms of superoxide and hydrogen peroxide contents, as well as antioxidant polyphenols, were evaluated. The results showed that prolonged heat stress caused reduced antioxidant capacity, but the role of antioxidant capacity in a prolonged thermotolerance was not predominant. Transcriptomic analysis of the water spinach subjected to heat stress revealed that 4145 transcripts were specifically expressed with 2420 up-regulated and 1725 down-regulated in heat-sensitive and heat-tolerant cultivars treated with 42 °C for 15 days. Enrichment analysis of these differentially expressed genes showed that the main metabolic differences between heat-sensitive and heat-tolerant cultivars were the carbohydrate metabolism and phenylpropanoid biosynthesis. The results of carbohydrate profiles and RT-qPCR also suggested that heat stress altered carbohydrate metabolism and associated changes in transcriptional level of genes involved in sugar transport and metabolic transition. CONCLUSIONS: The prolonged heat stress resulted in a reduced antioxidant capacity while the role of antioxidant capacity in a prolonged thermotolerance of water spinach was not predominant. Transcriptome analysis and the measurement of carbohydrates as well as the gene expression evaluation indicated that the response of the metabolic pathway such as carbohydrate and phenylpropanoid biosynthesis to heat stress may be a key player in thermo resistance.


Assuntos
Ipomoea , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Resposta ao Choque Térmico/genética , Folhas de Planta/genética , Estresse Fisiológico/genética , Transcriptoma
5.
Nucleic Acids Res ; 46(13): 6627-6641, 2018 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-29846688

RESUMO

PINA is a novel ATPase and DNA helicase highly conserved in Archaea, the third domain of life. The PINA from Sulfolobus islandicus (SisPINA) forms a hexameric ring in crystal and solution. The protein is able to promote Holliday junction (HJ) migration and physically and functionally interacts with Hjc, the HJ specific endonuclease. Here, we show that SisPINA has direct physical interaction with Hjm (Hel308a), a helicase presumably targeting replication forks. In vitro biochemical analysis revealed that Hjm, Hjc, and SisPINA are able to coordinate HJ migration and cleavage in a concerted way. Deletion of the carboxyl 13 amino acid residues impaired the interaction between SisPINA and Hjm. Crystal structure analysis showed that the carboxyl 70 amino acid residues fold into a type II KH domain which, in other proteins, functions in binding RNA or ssDNA. The KH domain not only mediates the interactions of PINA with Hjm and Hjc but also regulates the hexameric assembly of PINA. Our results collectively suggest that SisPINA, Hjm and Hjc work together to function in replication fork regression, HJ formation and HJ cleavage.


Assuntos
Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , DNA Helicases/química , DNA Helicases/metabolismo , Replicação do DNA , DNA Cruciforme/metabolismo , Proteínas Arqueais/química , Proteínas Arqueais/metabolismo , DNA/metabolismo , Endodesoxirribonucleases/metabolismo , Modelos Moleculares , Domínios e Motivos de Interação entre Proteínas , Sulfolobus/enzimologia
6.
Ecotoxicol Environ Saf ; 200: 110779, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32460045

RESUMO

Melon is of great value in food, medicine and industry. In recent years, the continuous cropping obstacles of melon is increasingly prominent, which seriously affects the cultivation. Autotoxicity is the key factor for the obstacles. Root is the first line against autotoxicity and main organs for autotoxins secretion. Some physiological responses and differentially expressed genes (DEGs) related to autotoxicity are only limited to root system. Considering the lack of relevant research, physiological researches combined with transcriptome sequencing of melon seedling after autotoxicity stress mediated by root exudates (RE) was performed to help characterize the response mechanism to autotoxicity in melon roots. The results showed that autotoxicity inhibited root morphogenesis of melon seedlings, induced the excessive accumulation of reactive oxygen species (ROS) and lipid peroxidation in roots, and activated most antioxidant enzymes. Compared with the control group, the osmoregulation substance content was always at a high level. DEGs response to autotoxicity in roots were distinguished from that in leaves. Functional annotation of these DEGs suggested that autotoxicity affected biological regulation in a negative manner. DEGs were mainly involved in the synthesis of antioxidants, DNA damage and metabolism, and stress response. These setbacks were associated with the deterioration of root morphogenesis, generation of dwarf and slender roots, and ultimately leading to plant death. The results may provide important information for revealing the response mechanism of root to autotoxicity, and provide theoretical basis for solving the continuous cropping obstacles in melon.


Assuntos
Produção Agrícola/métodos , Cucumis melo/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Raízes de Plantas/efeitos dos fármacos , Poluentes do Solo/toxicidade , Transcriptoma/efeitos dos fármacos , Cucumis melo/genética , Cucumis melo/metabolismo , Perfilação da Expressão Gênica , Peroxidação de Lipídeos/efeitos dos fármacos , Osmorregulação/efeitos dos fármacos , Estresse Oxidativo/genética , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/genética , Folhas de Planta/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Plântula/efeitos dos fármacos , Plântula/genética , Plântula/metabolismo
7.
Ecotoxicol Environ Saf ; 190: 110048, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-31837570

RESUMO

Phosphite (Phi), an analog of phosphate (Pi) anion, is emerging as a potential biostimulator, fungicide and insecticide. Here, we reported that Phi also significantly enhanced thermotolerance in potatoes under heat stress. Potato plants with and without Phi pretreatment were exposed to heat stress and their heat tolerance was examined by assessing the morphological characteristics, photosynthetic pigment content, photosystem II (PS II) efficiency, levels of oxidative stress, and level of DNA damage. In addition, RNA-sequencing (RNA-Seq) was adopted to investigate the roles of Phi signals and the underlying heat resistance mechanism. RNA-Seq revealed that Phi orchestrated plant immune responses against heat stress by reprograming global gene expressions. Results from physiological data combined with RNA-Seq suggested that the supply of Phi not only was essential for the better plant performance, but also improved thermotolerance of the plants by alleviating oxidative stress and DNA damage, and improved biosynthesis of osmolytes and defense metabolites when exposed to unfavorable thermal conditions. This is the first study to explore the role of Phi in thermotolerance in plants, and the work can be applied to other crops under the challenging environment.


Assuntos
Fosfitos/farmacologia , Solanum tuberosum/efeitos dos fármacos , Termotolerância/efeitos dos fármacos , Dano ao DNA , Resposta ao Choque Térmico/efeitos dos fármacos , Estresse Oxidativo , Fotossíntese/efeitos dos fármacos , Complexo de Proteína do Fotossistema II/metabolismo , RNA-Seq , Plântula/efeitos dos fármacos , Plântula/genética , Plântula/imunologia , Plântula/metabolismo , Solanum tuberosum/genética , Solanum tuberosum/imunologia , Solanum tuberosum/metabolismo
8.
BMC Genomics ; 20(1): 269, 2019 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-30947685

RESUMO

BACKGROUND: Chinese kale (Brassica alboglabra) contains high nutritional elements and functional molecules, especially anticarcinogenic and antioxidant glucosinolates (GS), which was highly affected by environment temperature. To investigate the link of GS biosynthesis with heat stress response in Chinese kale, global transcription profiles of high-GS line (HG), low-GS line (LG), high-GS line under heat stress (HGT) and low-GS line under heat stress (LGT) were analyzed. RESULTS: Based on three biological replicates of each RNA sequencing data, 3901, 4062 and 2396 differentially expressed genes in HG vs HGT, LG vs LGT and HGT vs LGT were obtained, respectively. GO annotation, KEGG pathway analysis and a comprehensive analysis of DEGs showed a strong correlation between the GS biosynthesis and heat stress response. It was noticed that 11 differentially expressed genes tied to the GS biosynthesis were down-regulated, 23 heat shock transcription factors and 61 heat shock proteins were up-regulated upon the heat treatment. Another two Chinese kale varieties Cuibao and Shunbao with high- and low- GS content respectively, were used to validate the relationship of GS content and heat-response, and the results showed that high-GS content variety were more thermotolerant than the low-GS content one although GS significantly decreased in both varieties under heat stress. In addition, HSP100/ClpB, HSP90, HSP70 and sHSPs were differentially expressed in high- and low-GS varieties. Notably, HSP90 and sHSPs showed an obviously early response to heat stress than other related genes. CONCLUSION: The higher heat resistance of high-GS Chinese kale and the sharp decrease of glucosinolate content under heat stress indicated a strong relationship of GS accumulation and heat stress response. Combined with the previous report on the low expression of HSP90 at elevated temperatures in GS-deficient mutant TU8 of Arabidopsis, the differential expression pattern of HSP90 in high- and low- GS varieties and its early heat response implied it might be a key regulator in GS metabolism and heat-resistance in Chinese kale.


Assuntos
Brassica/genética , Regulação da Expressão Gênica de Plantas , Resposta ao Choque Térmico , Plântula/química , Transcriptoma , Antioxidantes/metabolismo , Brassica/fisiologia , Perfilação da Expressão Gênica , Glucosinolatos/metabolismo , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , RNA de Plantas/genética
9.
J Cell Biochem ; 120(11): 18608-18617, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31353686

RESUMO

Pre-eclampsia (PE), whose pathophysiology and etiology remain undefined, represents a leading consequence of fetal and maternal mortality and morbidity. Oxidative stress (OS) is recognized to involve in this disorder. In this study, we hypothesized that neural cell adhesion molecule 1 (NCAM1) gene silencing would suppress the OS in the pregnancy complicated by PE. Initially, clinical samples were collected for determination of NCAM1 expression in placental tissues and levels of OS products in blood. To assess the regulatory mechanism of NCAM1 knockdown on OS, we used small interfering RNA (siRNA) to silence NCAM1 expression in human umbilical vein endothelial cells (HUVECs). Next, cells were treated with or without hypoxia/reoxygenation to observe the level changes of OS products and p38 mitogen-activated protein kinase (p38MAPK) pathway-related genes. Finally, an evaluation of HUVEC migration and invasion abilities was conducted by wound-healing and transwell assays. Placenta of pregnancy with PE presented significantly increased NCAM1 expression in comparison to placenta of normal pregnancy. Meanwhile, enhanced OS in blood of pregnant women with PE was observed relative to women with normal pregnancy. siRNA-mediated knockdown of NCAM1 gene could inhibit the p38MAPK signaling pathway, repress OS, and promote cell migration and invasion in HUVECs, indicating that NCAM1 inhibition could reduce the influence of PE. Importantly, blocking the p38MAPK signaling pathway reversed the inhibitory role of NCAM1 gene silencing on PE. Collectively, this study defines potential role of NCAM1 gene silencing as a therapeutic target in PE through inhibiting OS and enhancing HUVEC migration and invasion by disrupting the p38MAPK signaling pathway.


Assuntos
Antígeno CD56/genética , Sistema de Sinalização das MAP Quinases , Estresse Oxidativo , Pré-Eclâmpsia/genética , Interferência de RNA , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Antígeno CD56/metabolismo , Hipóxia Celular , Movimento Celular/genética , Células Cultivadas , Feminino , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Placenta/metabolismo , Pré-Eclâmpsia/metabolismo , Pré-Eclâmpsia/fisiopatologia , Gravidez , RNA Interferente Pequeno/genética
10.
BMC Endocr Disord ; 19(1): 98, 2019 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-31601203

RESUMO

BACKGROUND: To investigate the prevalence of cardiovascular disease (CVD) risk factors and assess the 10-year risk of CVD in non-menopausal and postmenopausal women with type 2 diabetes mellitus (T2DM). METHODS: A total of 569 patients with T2DM at a Chinese tertiary hospital were investigated using the Framingham Risk Score (FRS). We evaluated the 10-year risk of CVD, clinical and menopause characteristics in all subjects. RESULTS: Among the 569 diabetic patients, the incidence of smoking, dyslipidemia, hypertension, overweight or obesity, and nonalcoholic fatty liver disease (NAFLD) was 0.7, 36.2, 38.1 56.6 and 58.2%, respectively. The usage rate of hypoglycemic agents, antihypertensive agents, lipid modulators and antithrombotic drugs was 88.6, 78.3, 50.0 and 27.1%, respectively. However, only 1.2% of inpatients achieved the three target goals for the control of blood glucose (HbA1c < 7%), blood pressure (systolic blood pressure < 130 mmHg, diastolic blood pressure < 80 mmHg), and blood lipids (total cholesterol < 174 mg/dL). The 10-year risk of CVD was (1.6 ± 1.5%) and tended to increase along with age (F = 27.726, P <  0.001). For all subjects (n = 569), multiple linear regression analysis showed that menopause (ß = 0.275, P <  0.001), low-density lipoprotein cholesterol (LDL-C) (ß = 0.212, P <  0.001), fasting plasma glucose (FPG) (ß = 0.093, P = 0.018) and waist-to-hip-ratio (ß = - 0.078, P = 0.047) were risk factors of 10-year risk of CVD, which may explain the variance of 14.3%. In the postmenopausal group (n = 397), LDL-C (ß = 0.227, P <  0.001), FPG (ß = 0.139, P = 0.003) and time since menopause (ß = 0.230, P <  0.001) were found to be associated with CVD, which may explain the variance of 14.6%. CONCLUSION: The incidence of dyslipidmia, hypertension, overweight or obesity and NAFLD is high. The level of control of blood glucose, blood pressure, and blood lipids was found to be extremely low and the treatment status was not ideal. Besides menopause, LDL-C, FPG and time since menopause were found to be independent risk factors for the 10-year risk of CVD. Therefore, it is necessary to focus on comprehensive control of multiple risk factors, such as plasma glucose, blood pressure and serum lipid.


Assuntos
Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/etiologia , Diabetes Mellitus Tipo 2/complicações , Pós-Menopausa , Pré-Menopausa , Adulto , Biomarcadores/análise , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/patologia , China/epidemiologia , Estudos Transversais , Feminino , Seguimentos , Humanos , Pessoa de Meia-Idade , Prevalência , Prognóstico , Fatores de Risco
11.
Fungal Genet Biol ; 115: 41-51, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29655909

RESUMO

Carbon catabolite repression (CCR) is a very important mechanism employed in the utilization of carbon as an energy source, required for the regulation of growth, development and secondary metabolite production in fungi. Despite the wide study of this mechanism in fungi, little is known about the major CCR gene creA in A. flavus. Hence, we report identification of A. flavus carbon catabolite repression gene creA, which is responsible for the repression of secondary carbon sources. Gene deletion and over-expression was employed to explicate the role of creA in the morphology, pathogenicity, and secondary metabolite production in A. flavus. We investigated these factors using three carbon sources including glucose, sucrose and maltose. Gene deletion mutant (ΔcreA) had a significant growth defect on complete medium and minimal medium containing maltose. Conidia production in ΔcreA was significantly impaired irrespective of the carbon source available, while sclerotia production was significantly increased, compared to wild type (WT) and over-expression strain (OE::creA). Importantly, ΔcreA produced insignificant amount of aflatoxin in complete medium, and its ability to colonize hosts was also impaired. Concisely, we showed that creA played an important role in the morphology, pathogenicity and secondary metabolite production of A. flavus.


Assuntos
Aflatoxinas/biossíntese , Aspergillus flavus/genética , Repressão Catabólica/genética , Ureo-Hidrolases/genética , Aflatoxinas/genética , Aspergillus flavus/patogenicidade , Proteínas Fúngicas/genética , Deleção de Genes , Regulação Fúngica da Expressão Gênica , Virulência/genética
12.
Int J Mol Sci ; 19(6)2018 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-29857490

RESUMO

Chemical injury is partly due to free radical lipid peroxidation, which can induce oxidative stress and produce a large number of reactive oxygen species (ROS). Oxaloacetic acid is an important intermediary in the tricarboxylic acid cycle (TCA cycle) and participates in metabolism and energy production. In our study, we found that oxaloacetate (OA) effectively alleviated liver injury which was induced by hydrogen peroxide (H2O2) in vitro and carbon tetrachloride (CCl4) in vivo. OA scavenged ROS, prevented oxidative damage and maintained the normal structure of mitochondria. We further confirmed that OA increased adenosine triphosphate (ATP) by promoting the TCA production cycle and oxidative phosphorylation (OXPHOS). Finally, OA inhibited the mitogen-activated protein kinase (MAPK) and apoptotic pathways by suppressing tumor necrosis factor-α (TNF-α). Our findings reveal a mechanism for OA ameliorating chemical liver injury and suggest a possible implementation for preventing the chemical liver injury.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Metabolismo Energético/efeitos dos fármacos , Ácido Oxaloacético/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Animais , Antioxidantes/farmacologia , Tetracloreto de Carbono/efeitos adversos , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Ciclo do Ácido Cítrico/efeitos dos fármacos , Modelos Animais de Doenças , Glicólise , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Peróxido de Hidrogênio/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Camundongos , Mitocôndrias/metabolismo , Modelos Biológicos , Fosforilação Oxidativa/efeitos dos fármacos , Substâncias Protetoras/farmacologia
13.
Gynecol Oncol ; 134(2): 346-55, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24880141

RESUMO

OBJECTIVE: Our goal was to evaluate the effects of simvastatin on endometrial cancer cell lines and primary cultures of endometrial cancer cells. METHODS: Cell proliferation in the ECC-1 and Ishikawa endometrial cancer cell lines and primary cultures of endometrial cancer cells was assessed by MTT assay. Apoptosis and cell cycle were detected by Annexin V assay and propidium iodide staining, respectively. Reactive oxygen species and cell adhesion were assessed using ELISA assays. Invasion was analyzed using a transwell invasion assay. Mitochondrial DNA damage was confirmed using qPCR. The effects of simvastatin on the AKT/mTOR and MAPK pathways were determined by Western blotting. RESULTS: Simvastatin inhibited cell proliferation in a dose-dependent manner in both endometrial cancer cell lines and 5/8 primary cultures of endometrial cancer cells. Simvastatin treatment resulted in G1 cell cycle arrest, a reduction in the enzymatic activity of HMG-CoA, induction of apoptosis as well as DNA damage and cellular stress. Treatment with simvastatin resulted in inhibition of the MAPK pathway and exhibited differential effects on the AKT/mTOR pathway in the ECC-1 and Ishikawa cells. Minimal change in AKT phosphorylation was seen in both cell lines. An increase in phosphorylated S6 was seen in ECC-1 and a decrease was seen in Ishikawa. Treatment with simvastatin reduced cell adhesion and invasion (p<0.01) in both cell lines. CONCLUSION: Simvastatin had significant anti-proliferative and anti-metastatic effects in endometrial cancer cells, possibly through modulation of the MAPK and AKT/mTOR pathways, suggesting that statins may be a promising treatment strategy for endometrial cancer.


Assuntos
Neoplasias do Endométrio/tratamento farmacológico , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Sinvastatina/uso terapêutico , Apoptose/efeitos dos fármacos , Adesão Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Neoplasias do Endométrio/patologia , Feminino , Humanos , Invasividade Neoplásica , Metástase Neoplásica/tratamento farmacológico , Células Tumorais Cultivadas
14.
Zhonghua Zhong Liu Za Zhi ; 36(6): 457-60, 2014 Jun.
Artigo em Zh | MEDLINE | ID: mdl-25241790

RESUMO

OBJECTIVE: The distal external iliac lymph nodes are located along the external iliac artery between the deep circumflex iliac vein and the inguinal canal. Our study aimed to investigate the incidence of metastasis in distal external iliac lymph nodes and its association with clinicopathological factors in patients with early stage cervical cancer, and to determine the role of distal external iliac lymph nodes dissection in the surgery. METHODS: Five hundred and twenty-four patients with early stage cervical cancer underwent radical hysterectomy and bilateral pelvic lymphadenectomy in the Shandong Province Cancer Hospital between June 1995 and December 2011, and their clinicopathological features were analyzed retrospectively. RESULTS: Of the 524 patients, 124 (23.7%) had pelvic lymph node metastasis. The metastasis rates were 16.2% (85 of 524 patients) in the obturator lymph nodes, 12.2% (64 of 524 patients) in the internal and external iliac lymph nodes, 2.9% (15 of 524 patients) in the common iliac lymph nodes, 2.1% (11 of 524 patients) in the distal external iliac lymph nodes, and 1.7% (9 of 524 patients) in the para-aortic nodes. The incidence of isolated positive distal external iliac lymph nodes was 0.2%. Univariate analysis showed that lymphovascular space invasion, pelvic lymph node metastases (excluding distal external iliac lymph nodes) were significantly associated with distal external iliac lymph node metastasis (P < 0.05). Logistic regression analysis showed that pelvic lymph node metastasis (excluding distal external iliac lymph nodes) was the independent risk factor for metastasis to distal external iliac lymph nodes. CONCLUSIONS: In early stage cervical cancer, distal external iliac lymph node metastasis is rare, especially in cases with stage IA or without pelvic lymph node metastasis. Less extensive pelvic lymphadenectomy may be considered in these patients in order to reduce operative complications and improve patients' quality of life. The deep circumflex iliac vein may be an appropriate landmark for the caudal limit of external iliac lymphadenectomy. However, if pelvic lymph node metastasis (excluding distal external iliac lymph nodes) is found by intraoperative rapid pathological diagnosis, systematic pelvic lymphadenectomy including removal of the distal external iliac lymph nodes should be performed in order to reduce the risk of distant metastasis.


Assuntos
Metástase Linfática/diagnóstico , Neoplasias do Colo do Útero/epidemiologia , Feminino , Humanos , Histerectomia , Artéria Ilíaca , Veia Ilíaca , Incidência , Excisão de Linfonodo , Linfonodos , Estadiamento de Neoplasias , Segunda Neoplasia Primária , Pelve , Qualidade de Vida , Estudos Retrospectivos
15.
J Hazard Mater ; 474: 134729, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38805811

RESUMO

Climate change and human activities escalate the frequency and intensity of wildfires, threatening amphibian habitats and survival; yet, research on these impacts remains limited. Wildfire ash alters water quality, introduces contaminants, and may disrupt microbial communities, impacting gut and skin microbiota; however, the effects on gut and skin microbiota remain unclear. Rana dybowskii were exposed to five concentrations (0 g L-1, 1.25 g L-1, 2.5 g L-1, 5 g L-1, and 10 g L-1) of aqueous extracts of wildfire ashes (AEAs) for 30 days to assess AEAs' metal content, survival, and microbiota diversity via Illumina sequencing. Our results showed that the major elements in ash were Ca > K > Mg > Al > Fe > Na > Mn, while in AEA they were K > Ca > Na > Mg > As > Al > Cu. A significant decrease in amphibian survival rates with increased AEA concentration was shown. The beta diversity analysis revealed distinct shifts in microbiota composition. Notably, bacterial genera associated with potential health risks showed increased abundance in skin microbiota, emphasising the potential for ash exposure to affect amphibian health. Functional prediction analyses revealed significant shifts in metabolic pathways related to health and disease, indicating that wildfire ash exposure may influence amphibian health through changes in microbial functions. This study highlights the urgent need for strategies to mitigate wildfire ash impacts on amphibians, as it significantly alters microbiota and affects their survival and health.


Assuntos
Microbioma Gastrointestinal , Ranidae , Pele , Incêndios Florestais , Animais , Pele/efeitos dos fármacos , Pele/microbiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Ranidae/microbiologia , Microbiota/efeitos dos fármacos , Bactérias/genética , Bactérias/classificação , Bactérias/efeitos dos fármacos , Bactérias/metabolismo , Metais/toxicidade
16.
Sci Total Environ ; 926: 171651, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38490417

RESUMO

Rice straw is burned as a result of agricultural practices and technical limitations, generating significant volumes of ash that might have environmental and ecological consequences; however, the effects on organisms have not been researched. Amphibians depend on their gut and skin microbiomes. Ash exposure may cause inflammation and changes in microbial diversity and function in frogs' skin and gut microbiota due to its chemical composition and physical presence, but the implications remain unclear. Rana dybowskii were exposed to five aqueous extracts of ashes (AEA) concentrations for 30 days to study survival, metal concentrations, and microbial diversity, analyzing the microbiota of the cutaneous and gut microbiota using Illumina sequencing. Dominant elements in ash: K > Ca > Mg > Na > Al > Fe. In AEA, K > Na > Ca > Mg > As > Cu. Increased AEA concentrations significantly reduced frog survival. Skin microbiota alpha diversity varied significantly among all treatment groups, but not gut microbiota. Skin microbiota differed significantly across treatments via Bray-Curtis and weighted UniFrac; gut microbiota was only affected by Bray-Curtis. Skin microbiota varied significantly with AEA levels in Proteobacteria, Bacteroidetes, Actinobacteria, and Firmicutes, while the gut microbiota's dominant phyla, Firmicutes, Bacteroidetes, and Proteobacteria, remained consistent across all groups. Lastly, the functional prediction showed that the skin microbiota had big differences in how it worked and looked, which were linked to different health and environmental adaptation pathways. The gut microbiota, on the other hand, had smaller differences. In conclusion, AEA exposure affects R. dybowskii survival and skin microbiota diversity, indicating potential health and ecological impacts, with less effect on gut microbiota.


Assuntos
Microbioma Gastrointestinal , Microbiota , Oryza , Animais , Anuros , Bactérias
17.
J Exp Clin Cancer Res ; 43(1): 50, 2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38365726

RESUMO

BACKGROUND: Phosphatase and tensin homolog deleted on chromosome ten (PTEN) serves as a powerful tumor suppressor, and has been found to be downregulated in human bladder cancer (BC) tissues. Despite this observation, the mechanisms contributing to PTEN's downregulation have remained elusive. METHODS: We established targeted genes' knockdown or overexpressed cell lines to explore the mechanism how it drove the malignant transformation of urothelial cells or promoted anchorageindependent growth of human basal muscle invasive BC (BMIBC) cells. The mice model was used to validate the conclusion in vivo. The important findings were also extended to human studies. RESULTS: In this study, we discovered that mice exposed to N-butyl-N-(4-hydroxybu-tyl)nitrosamine (BBN), a specific bladder chemical carcinogen, exhibited primary BMIBC accompanied by a pronounced reduction in PTEN protein expression in vivo. Utilizing a lncRNA deep sequencing high-throughput platform, along with gain- and loss-of-function analyses, we identified small nucleolar RNA host gene 1 (SNHG1) as a critical lncRNA that might drive the formation of primary BMIBCs in BBN-treated mice. Cell culture results further demonstrated that BBN exposure significantly induced SNHG1 in normal human bladder urothelial cell UROtsa. Notably, the ectopic expression of SNHG1 alone was sufficient to induce malignant transformation in human urothelial cells, while SNHG1 knockdown effectively inhibited anchorage-independent growth of human BMIBCs. Our detailed investigation revealed that SNHG1 overexpression led to PTEN protein degradation through its direct interaction with HUR. This interaction reduced HUR binding to ubiquitin-specific peptidase 8 (USP8) mRNA, causing degradation of USP8 mRNA and a subsequent decrease in USP8 protein expression. The downregulation of USP8, in turn, increased PTEN polyubiquitination and degradation, culminating in cell malignant transformation and BMIBC anchorageindependent growth. In vivo studies confirmed the downregulation of PTEN and USP8, as well as their positive correlations in both BBN-treated mouse bladder urothelium and tumor tissues of bladder cancer in nude mice. CONCLUSIONS: Our findings, for the first time, demonstrate that overexpressed SNHG1 competes with USP8 for binding to HUR. This competition attenuates USP8 mRNA stability and protein expression, leading to PTEN protein degradation, consequently, this process drives urothelial cell malignant transformation and fosters BMIBC growth and primary BMIBC formation.


Assuntos
RNA Longo não Codificante , Neoplasias da Bexiga Urinária , Animais , Humanos , Camundongos , Carcinogênese/genética , Proliferação de Células , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Camundongos Nus , Músculos/metabolismo , Músculos/patologia , Proteólise , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , RNA Longo não Codificante/genética , RNA Mensageiro/metabolismo , Regulação para Cima , Neoplasias da Bexiga Urinária/induzido quimicamente , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/metabolismo
18.
J Int Med Res ; 51(3): 3000605231161214, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36994856

RESUMO

OBJECTIVE: To evaluate the effectiveness and safety of flexible ureteroscopy in the treatment of kidney and upper ureteral calculi under double-J stent free mode. METHODS: Data from patients who underwent flexible ureteroscopy and laser lithotripsy between February 2018 and September 2021 were retrospectively and analysed. Cases were grouped according to pre- or postoperative use of the double-J stent (6 Fr): Post-F group (preoperative double-J stent but no postoperative double-J stent); Pre-F group (no preoperative stenting but with postoperative double-J stent); and Routine group (preoperative and postoperative double-J stenting). RESULTS: A total of 554 patients (390 male and 164 female) were included. The mean operation time was similar between the three groups, with no statistically significant difference. Incidence of grade 0-1 ureteral injury was significantly higher in the Pre-F group versus other groups, but there were no significant between-group differences in other operation-related complications. During follow-up, stent-associated complications were observed in the Pre-F and Routine groups, but not in the Post-F group. Stone clearance rates were similar between all groups at 1, 3 and 6 months following surgery. CONCLUSIONS: Flexible ureteroscopy using double-J stent free mode was found to be safe, feasible and effective in treating renal and upper ureteral calculi.


Assuntos
Litotripsia a Laser , Ureter , Cálculos Ureterais , Humanos , Masculino , Feminino , Cálculos Ureterais/cirurgia , Litotripsia a Laser/efeitos adversos , Ureteroscopia/efeitos adversos , Estudos Retrospectivos , Ureter/cirurgia , Resultado do Tratamento
19.
Front Microbiol ; 14: 1057398, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37206336

RESUMO

Season has been suggested to contribute to variation in the gut microbiota of animals. The complicated relationships between amphibians and their gut microbiota and how they change throughout the year require more research. Short-term and long-term hypothermic fasting of amphibians may affect gut microbiota differently; however, these changes have not been explored. In this study, the composition and characteristics of the gut microbiota of Rana amurensis and Rana dybowskii during summer, autumn (short-term fasting) and winter (long-term fasting) were studied by high-throughput Illumina sequencing. Both frog species had higher gut microbiota alpha diversity in summer than autumn and winter, but no significant variations between autumn and spring. The summer, autumn, and spring gut microbiotas of both species differed, as did the autumn and winter microbiomes. In summer, autumn and winter, the dominant phyla in the gut microbiota of both species were Firmicutes, Proteobacteria, Bacteroidetes, and Actinobacteria. All animals have 10 OTUs (>90% of all 52 frogs). Both species had 23 OTUs (>90% of all 28 frogs) in winter, accounting for 47.49 ± 3.84% and 63.17 ± 3.69% of their relative abundance, respectively. PICRUSt2 analysis showed that the predominant functions of the gut microbiota in these two Rana were focused on carbohydrate metabolism, Global and overview maps, Glycan biosynthesis metabolism, membrane transport, and replication and repair, translation. The BugBase analysis estimated that among the seasons in the R. amurensis group, Facultatively_Anaerobic, Forms_Biofilms, Gram_Negative, Gram_Positive, Potentially_Pathogenic were significantly different. However, there was no difference for R. dybowskii. The research will reveal how the gut microbiota of amphibians adapts to environmental changes during hibernation, aid in the conservation of endangered amphibians, particularly those that hibernate, and advance microbiota research by elucidating the role of microbiota under various physiological states and environmental conditions.

20.
Front Psychol ; 13: 990545, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36275242

RESUMO

Affected by COVID-19, there is a growing trend toward healthy lifestyles and organic food consumption. The literature on organic foods focuses on the factors that influence buying behavior. A thriving organic business requires both sustained consumption and consumer contributions beyond the purchase-customer engagement behavior. The purpose of this study is to examine the factors that may drive member customers to engage with organic grocerants. This study surveyed 280 Chinese member customers of an organic grocerant to explore how to drive customer engagement behavior. Based on value co-creation theory and the customer engagement literature, this study proposed a "value acquisition-value co-creation" framework to explore the relationship between perceived value, brand trust, and customer engagement behavior. The results show that emotional and social value can directly and effectively motivate customer engagement behavior in organic grocerants. However, consumers' perceived quality value and price value will not directly affect customer engagement behavior but instead indirectly affect it through brand trust. Furthermore, improving the perceived value of emotion, quality and price can strengthen brand trust in organic grocerants. The study confirms that brand trust is critical to organic grocerant and customer engagement. Our findings provide a new perspective for understanding the relationship between the value customers receive from organic food consumption and value co-creation through customer engagement behavior.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA