Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Anal Chem ; 94(3): 1626-1636, 2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35025203

RESUMO

(Mi)RNAs are important biomarkers for cancers diagnosis and pandemic diseases, which require fast, ultrasensitive, and economical detection strategies to quantitatively detect exact (mi)RNAs expression levels. The novel coronavirus disease (SARS-CoV-2) has been breaking out globally, and RNA detection is the most effective way to identify the SARS-CoV-2 virus. Here, we developed an ultrasensitive poly-l-lysine (PLL)-functionalized graphene field-effect transistor (PGFET) biosensor for breast cancer miRNAs and viral RNA detection. PLL is functionalized on the channel surface of GFET to immobilize DNA probes by the electrostatic force. The results show that PGFET biosensors can achieve a (mi)RNA detection range of five orders with a detection limit of 1 fM and an entire detection time within 20 min using 2 µL of human serum and throat swab samples, which exhibits more than 113% enhancement in terms of sensitivity compared to that of GFET biosensors. The performance enhancement mechanisms of PGFET biosensors were comprehensively studied based on an electrical biosensor theoretical model and experimental results. In addition, the PGFET biosensor was applied for the breast cancer miRNA detection in actual serum samples and SARS-CoV-2 RNA detection in throat swab samples, providing a promising approach for rapid cancer diagnosis and virus screening.


Assuntos
Técnicas Biossensoriais , Neoplasias da Mama , COVID-19 , Grafite , MicroRNAs , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/genética , COVID-19/diagnóstico , Feminino , Humanos , Polilisina , RNA Viral/genética , SARS-CoV-2
2.
Anal Chem ; 93(12): 5129-5136, 2021 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-33720706

RESUMO

Non-invasive early diagnosis is of great significance in disease pathologic development and subsequent medical treatments, and microRNA (miRNA) detection has attracted critical attention in early cancer screening and diagnosis. High-throughput, sensitive, economic, and fast miRNA sensing platforms are necessary to realize the low-concentration miRNA detection in clinical diagnosis and biological studies. Here, we developed an attomolar-level ultrasensitive, rapid, and multiple-miRNA simultaneous detection platform enabled by nanomaterial locally assembled microfluidic biochips. This platform presents a large linear detection regime of 1 aM-10 nM, an ultralow detection limit of 0.146 aM with no amplification, a short detection time of 35 min with multiplex miRNA sensing capability, and a small sample volume consumption of 2 µL. The detection results of five miRNAs in real samples from breast cancer patients and healthy humans indicate its excellent capacity for practical applications in early cancer diagnosis. The proposed ultrasensitive, rapid, and multiple-miRNA detection microfluidic biochip platform is a universal miRNA detection approach and an important and valuable tool in early cancer screening and diagnosis as well as biological studies.


Assuntos
Técnicas Biossensoriais , Neoplasias da Mama , MicroRNAs , Nanoestruturas , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/genética , Feminino , Humanos , Limite de Detecção , MicroRNAs/genética , Microfluídica
3.
J Colloid Interface Sci ; 673: 735-745, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38901363

RESUMO

Coffee rings formed by evaporation of analyte-containing droplets are widely observed in micropatterning, bio-arrays, and trace detection. The coffee-ring effect caused by contact line pinning significantly affects the detection uniformity and sensitivity. Here, we propose a simple and operable method to effectively suppress coffee rings through controllable nanoparticles aggregation by superhydrophobicity-enabled dynamic evaporation. The gold nanoparticles (AuNPs) deposition footprint formed after dynamic evaporation on an integrated superhydrophobic surface was reduced by ∼3 orders of magnitude compared to that of non-interventional evaporation. Detailed experiments, numerical simulations, and theoretical studies have revealed that substrate wettability, temperature and droplet motion behaviors play significant roles in suppressing coffee-ring effect. More critically, based on the force mechanism of AuNPs at the interface/contact line, universal mathematical models and regime maps were established to classify the different deposition modes for AuNPs under different evaporation conditions by introducing dimensionless parameter G, revealing the enrichment mechanism of AuNPs in droplets under superhydrophobicity-enabled dynamic evaporation. The accuracy of the theoretical model and enrichment mechanism was demonstrated through the single-molecule detection of rhodamine 6G with excellent sensitivity (10-17 M, enhancement factor ∼1013) and perfect uniformity (relative standard deviation ∼5.57 %), which provides a valuable guide for research and applications of nanoparticle aggregation.

4.
Food Chem ; 402: 134241, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36126581

RESUMO

A simple, ultra-sensitive, and super-stable hydrophobic SERS platform for detection of melamine in milk is developed. The hydrophobic SERS platform was constructed via directly growing hydrophobic carbon/silver nanoparticles on glass by in-situ one-step carbonization using hexadecylpyridinium chloride monohydrate as stabilizer and reducing agent. The performances of SERS platform are systematically studied by using Rhodamine 6G (R6G) as a model, which achieves detection level of 10-13 M and enhancement factor of 3.4 × 1010 for R6G detection with good uniformity and reproducibility, as well as 110 days stability in air. The FDTD simulation was used to confirm SERS enhancement mechanism. More importantly, SERS platform delivers good linear property in the range from 0.01 to 100 ppm, and low limit detection of 9 ppb for melamine detection in milk through direct drop on the platform. The SERS platform could have great applications in food safety, environmental monitoring, biomedicine and other fields.


Assuntos
Nanopartículas Metálicas , Prata , Animais , Prata/química , Nanopartículas Metálicas/química , Leite/química , Análise Espectral Raman , Substâncias Redutoras/análise , Reprodutibilidade dos Testes , Cetilpiridínio/análise , Cloretos/análise , Limite de Detecção , Carbono/análise
5.
Small Methods ; 6(4): e2200096, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35199498

RESUMO

The fabrication and applications of superhydrophobic surfaces (contact angle >150°, sliding angle <10°) have attracted worldwide interest with respect to materials and devices. In this work, the laser-induced graphene (LIG) superhydrophobic surface transition from pinning to rolling via an extremely simple solvent treatment of LIG in air is reported. By adding a certain solvent (e.g., ethanol) to the surface, the LIG superhydrophobic surface changes from pinning (sliding angle = 180°) to rolling (sliding angle <6°), which is attributed to the chemically changed surface properties and surface morphology of LIG. Three applications are demonstrated with the developed superhydrophobic LIG, including surface-enhanced Raman spectroscopy, water-oil separation, and anti-icing.

6.
ACS Appl Mater Interfaces ; 14(2): 3504-3514, 2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-34985257

RESUMO

Surface-enhanced Raman scattering (SERS) is widely used for low-concentration molecular detection; however, challenges related to detection uniformity and repeatability are bottlenecks for practical application, especially as regards ultrasensitive detection. Here, through the coupling of bionics and fluid mechanics, a lotus-leaf effect and rose-petal effect (LLE-RPE)-integrated superhydrophobic chip is facilely developed using laser-induced graphene (LIG) fabricated on a polyimide film. Dense and uniform aggregation of gold nanoparticles (AuNPs) in droplets is realized through a constant contact angle (CCA) evaporation mode in the dynamic enrichment process, facilitating reliable ultrasensitive detection. The detection chip consists of two components: an LLE zone containing an ethanol-treated LIG superhydrophobic surface with a low-adhesive property, which functions as an AuNP-controllable aggregation zone, and an RPE zone containing an as-fabricated LIG superhydrophobic surface with water-solution pinning ability, which functions as a droplet solvent evaporation and a AuNP blending zone. AuNPs realize uniform aggregation during rolling on the LLE zone, and then get immobilized on the RPE zone to complete evaporation of the solvent, followed by Raman detection. Here, based on dense and uniform AuNP aggregation, the detection system achieves high-efficiency (242 s/18 µL) and ultralow-concentration (10-17 M) detection of a target analyte (rhodamine 6G). The proposed system constitutes a simple approach toward high-performance detection for chemical analysis, environmental monitoring, biological analysis, and medical diagnosis.

7.
Talanta ; 240: 123197, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-34996016

RESUMO

The current outbreaking of the coronavirus SARS-CoV-2 pandemic threatens global health and has caused serious concern. Currently there is no specific drug against SARS-CoV-2, therefore, a fast and accurate diagnosis method is an urgent need for the diagnosis, timely treatment and infection control of COVID-19 pandemic. In this work, we developed a field effect transistor (FET) biosensor based on graphene oxide-graphene (GO/Gr) van der Waals heterostructure for selective and ultrasensitive SARS-CoV-2 proteins detection. The GO/Gr van der Waals heterostructure was in-situ formed in the microfluidic channel through π-π stacking. The developed biosensor is capable of SARS-CoV-2 proteins detection within 20 min in the large dynamic range from 10 fg/mL to 100 pg/mL with the limit of detection of as low as ∼8 fg/mL, which shows ∼3 × sensitivity enhancement compared with Gr-FET biosensor. The performance enhancement mechanism was studied based on the transistor-based biosensing theory and experimental results, which is mainly attributed to the enhanced SARS-CoV-2 capture antibody immobilization density due to the introduction of the GO layer on the graphene surface. The spiked SARS-CoV-2 protein samples in throat swab buffer solution were tested to confirm the practical application of the biosensor for SARS-CoV-2 proteins detection. The results indicated that the developed GO/Gr van der Waals heterostructure FET biosensor has strong selectivity and high sensitivity, providing a potential method for SARS-CoV-2 fast and accurate detection.


Assuntos
Técnicas Biossensoriais , COVID-19 , Grafite , Humanos , Pandemias , SARS-CoV-2
8.
Adv Healthc Mater ; 11(13): e2102800, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35368151

RESUMO

Secreted proteins provide abundant functional information on living cells and can be used as important tumor diagnostic markers, of which profiling at the single-cell level is helpful for accurate tumor cell classification. Currently, achieving living single-cell multi-index, high-sensitivity, and quantitative secretion biomarker profiling remains a great challenge. Here, a high-throughput living single-cell multi-index secreted biomarker profiling platform is proposed, combined with machine learning, to achieve accurate tumor cell classification. A single-cell culture microfluidic chip with self-assembled graphene oxide quantum dots (GOQDs) enables high-activity single-cell culture, ensuring normal secretion of biomarkers and high-throughput single-cell separation, providing sufficient statistical data for machine learning. At the same time, the antibody barcode chip with self-assembled GOQDs performs multi-index, highly sensitive, and quantitative detection of secreted biomarkers, in which each cell culture chamber covers a whole barcode array. Importantly, by combining the K-means strategy with machine learning, thousands of single tumor cell secretion data are analyzed, enabling tumor cell classification with a recognition accuracy of 95.0%. In addition, further profiling of the grouping results reveals the unique secretion characteristics of subgroups. This work provides an intelligent platform for high-throughput living single-cell multiple secretion biomarker profiling, which has broad implications for cancer investigation and biomedical research.


Assuntos
Microfluídica , Neoplasias , Biomarcadores Tumorais/metabolismo , Separação Celular , Humanos , Aprendizado de Máquina , Microfluídica/métodos , Neoplasias/diagnóstico
9.
Micromachines (Basel) ; 13(10)2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36296112

RESUMO

Harmful algal blooms (HABs) are common disastrous ecological anomalies in coastal waters. An effective algae monitoring approach is important for natural disaster warning and environmental governance. However, conducting rapid and sensitive detection of multiple algae is still challenging. Here, we designed an ultrasensitive, rapid and portable double-layer microfluidic biochip for the simultaneous quantitative detection of six species of algae. Specific DNA probes based on the 18S ribosomal DNA (18S rDNA) gene fragments of HABs were designed and labeled with the fluorescent molecule cyanine-3 (Cy3). The biochip had multiple graphene oxide (GO) nanosheets-based reaction units, in which GO nanosheets were applied to transfer target DNA to the fluorescence signal through a photoluminescence detection system. The entire detection process of multiple algae was completed within 45 min with the linear range of fluorescence recovery of 0.1 fM-100 nM, and the detection limit reached 108 aM. The proposed approach has a simple detection process and high detection performance and is feasible to conduct accurate detection with matched portable detection equipment. It will have promising applications in marine natural disaster monitoring and environmental care.

10.
Anal Chim Acta ; 1178: 338791, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34482866

RESUMO

Biomarkers play an important role in disease diagnosis and prognosis, which demand reliable, sensitive, rapid, and economic detection platform to conduct simultaneous multiple-biomarkers analysis in serum or body liquid. Here, we developed a universal biosensing platform through integrating the advantages of unique nanostructure and biochemistry properties of graphene oxide quantum dots and high throughput and low cost of microfluidic chip for reliable and simultaneous detection of multiple cancer antigen and antibody biomarkers. The performance of the proposed biosensing platform is validated through the representative cancer biomarkers including carcino-embryonic antigen (CEA), carbohydrate antigen 125 (CA125), α-fetoprotein (AFP), carbohydrate antigen 199 (CA199) and carbohydrate antigen 153 (CA153). It has a large linear quantification detection regime of 5-6 orders of magnitude and an ultralow detection limit of 1 pg/mL or 0.01 U/mL. Moreover, the proposed biosensing chip is capable of conducting 5-20 kinds of biomarkers from at least 60 persons simultaneously in 40 min with only 2 µL serum of each patient, which essentially reduces the detection cost and time to at least 1/60 of current popular methods. Clinical breast cancer and healthy samples detection results indicated its promising perspective in practical applications including cancer early diagnosis, prognosis, and disease pathogenesis study.


Assuntos
Técnicas Biossensoriais , Neoplasias da Mama , Grafite , Pontos Quânticos , Biomarcadores Tumorais , Neoplasias da Mama/diagnóstico , Feminino , Humanos , Limite de Detecção , Microfluídica
11.
Anal Chim Acta ; 1154: 338330, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33736792

RESUMO

The recent outbreak of coronavirus disease 2019 (COVID-19) is highly infectious, which threatens human health and has received increasing attention. So far, there is no specific drug or vaccine for COVID-19. Therefore, it is urgent to establish a rapid and sensitive early diagnosis platform, which is of great significance for physical separation of infected persons after rapid diagnosis. Here, we propose a colorimetric/SERS/fluorescence triple-mode biosensor based on AuNPs for the fast selective detection of viral RNA in 40 min. AuNPs with average size of 17 nm were synthesized, and colorimetric, surface enhanced Raman scattering (SERS), and fluorescence signals of sensors are simultaneously detected based on their basic aggregation property and affinity energy to different bio-molecules. The sensor achieves a limit detection of femtomole level in all triple modes, which is 160 fM in absorbance mode, 259 fM in fluorescence mode, and 395 fM in SERS mode. The triple-mode signals of the sensor are verified with each other to make the experimental results more accurate, and the capacity to recognize single-base mismatch in each working mode minimizes the false negative/positive reading of SARS-CoV-2. The proposed sensing platform provides a new way for the fast, sensitive, and selective detection of COVID-19 and other diseases.


Assuntos
Técnicas Biossensoriais/métodos , COVID-19/diagnóstico , Nanopartículas Metálicas/química , RNA Viral/análise , SARS-CoV-2/genética , COVID-19/virologia , Ouro/química , Humanos , Limite de Detecção , Tamanho da Partícula , RNA Viral/química , SARS-CoV-2/isolamento & purificação , Análise Espectral Raman , Glicoproteína da Espícula de Coronavírus/genética
12.
RSC Adv ; 10(26): 15293-15298, 2020 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-35495459

RESUMO

Saxitoxin (STX) is one of the most important marine toxins which affects the safety of domestic water. Rapid, sensitive and selective recognition of STX is crucial in environment monitoring. Here, we demonstrate a facile and ultrasensitive colorimetric sensor based on gold nanoparticles (Au NPs) and aptamer (Au NPs-aptamer biosensor) for specific and quantitative detection of STX. The aptamer reacts specifically with STX, resulting in the aggregation of Au NPs and the color change of the Au NP solution. The lowest detection concentration of the colorimetric sensor is 10 fM (3 fg mL-1), and a good linear relationship (R 2 = 0.9852) between the absorbance ratio and STX concentrations (10 fM to 0.1 µM) indicates that our Au NPs-aptamer biosensor can be used for quantitative sensing of STX. The detection time of STX is 30 minutes, and the sensor is successfully applied in the specific detection of STX in seawater. The Au NP-aptamer biosensor shows great potential in practical applications to monitor environmental pollution, marine aquaculture pollution, and seafood safety.

13.
Nanoscale ; 12(35): 18356-18362, 2020 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-32870216

RESUMO

Indium selenide (InSe) photodetection devices attract significant research interest. However, InSe is unstable and degrades rapidly in ambient conditions, thus it is still a challenge to fabricate stable optoelectronic devices. In this work, multilayer InSe FETs are fabricated, and their photoresponse properties are investigated. Both positive and negative photoconductivities are observed for the first time in the same InSe FET in a wide spectral range from 450 nm to 660 nm, which can be tuned through changing either the gate bias or the source-drain bias. A physical mechanism is proposed to explain the dual-photoresponse phenomenon in our devices. Based on the proposed physical mechanism, as a proof of concept, a facile and simple approach is used to eliminate the negative photoconductivity of the InSe FET. Our results will offer valuable strategies for stable multilayer InSe optoelectronic device design, and a practical scheme for improving the performance of other transition metal dichalcogenide devices as well.

14.
Mar Biotechnol (NY) ; 22(4): 498-510, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32358654

RESUMO

Gene detection has important applications in biology, biomedical engineering, clinical, environmental, and marine fields. Rapid, sensitive, and selective recognition of specific genes is essential in practical applications. In this study, we describe a facile and sensitive DNA sensing platform for specific and quantitative detection of Heterosigma akashiwo, which is one of the causative agents of red tides. Fast and sensitive detection is achieved by using chemically synthesized graphene oxide (GO) nanosheets. Probe DNA is designed according to the specific DNA fragments of harmful algae and labeled with fluorescent molecules FAM (fluorescein-based dye). GO nanosheet solution is made, in which the strong interaction between FAM-labeled probe and GO nanosheets keeps them in close proximity, facilitating the fluorescence quenching of the fluorophore by GO nanosheets. In the presence of a complementary target DNA, the FAM-labeled DNA probe and the target DNA hybridize and desorb from the surface of GO nanosheets, resulting in restoration of fluorophore fluorescence. The concentration of target DNA fragments is analyzed by the fluorescence intensity at ~ 520 nm with emission wavelength of 480 nm. The sensitive detecting platform achieved stable measurement of 1 pM specific genes from Heterosigma akashiwo. Our GO nanosheet-based DNA-sensing platform performs fast and sensitive detection of trace amount of DNA, and enables quantitative recognition of harmful algae, which has promising applications in real-time monitoring in the marine environment of red tide generative dynamics, allowing effective control, particularly in relation to marine aquaculture.


Assuntos
DNA de Algas/análise , Proliferação Nociva de Algas , Estramenópilas/genética , Estramenópilas/isolamento & purificação , Monitoramento Ambiental/métodos , Fluorescência , Grafite/química , Nanoestruturas , Espectrometria de Fluorescência/métodos
15.
RSC Adv ; 10(39): 23341-23349, 2020 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-35520320

RESUMO

Highly reflective and conductive distributed Bragg reflectors (DBRs) are the key for high-performance III-nitride optoelectronic devices, such as vertical cavity surface emitting lasers (VCSELs), but they still suffer from lack of lattice-matched conductive DBR and uncontrollable processes. In this work, nanostructured GaN-based DBRs were fabricated and optimized both experimentally and simulatively using electrochemical etching (EC) in different electrolytes using the transfer-matrix method (TMM) to obtain uniform wafer scale, highly reflective and conductive reflectors for the application of GaN-based optoelectronics. The results revealed that a nanostructured GaN-based DBR with high reflectivity (>93%) and broad stopband (∼80 nm) could be achieved in neutral sodium nitrate by EC, and the nanostructured GaN DBR with a full visible spectrum range could be designed by tuning the thickness of the nanostructured GaN DBR layers. The photoluminescence (PL) and light-out power enhancements of the GaN-based micro-LED by incorporating the fabricated nanostructured GaN-based DBR were 6 times and 150% without the degradation of electrical performance, respectively, which contributed to strong light scattering from the DBR layers. We believe that this work will pave a way to obtain high-performance GaN-based optoelectronic devices and guide the applications in the field of flexible devices and biomedical sensors.

16.
Sci Rep ; 9(1): 8087, 2019 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-31147583

RESUMO

Due to the antibacterial resistance crisis, developing new antibacterials is of particular interest. In this study, we combined the antifungal drug amphotericin B with 50,520 different small molecule compounds obtained from the Chinese National Compound Library in an attempt to improve its efficacy against Candida albicans persister cells. To systematically study the antifungal effect of each compound, we utilized custom-designed high-throughput microfluidic chips. Our microfluidic chips contained microchannels ranging from 3 µm to 5 µm in width to allow Candida albicans cells to line up one-by-one to facilitate fluorescence-microscope viewing. After screening, we were left with 10 small molecule compounds that improved the antifungal effects of amphotericin B more than 30% against Candida albicans persister cells.


Assuntos
Antifúngicos/farmacologia , Candidíase/tratamento farmacológico , Farmacorresistência Fúngica/efeitos dos fármacos , Ensaios de Triagem em Larga Escala/métodos , Técnicas Analíticas Microfluídicas/métodos , Anfotericina B/química , Anfotericina B/farmacologia , Anfotericina B/uso terapêutico , Antifúngicos/química , Antifúngicos/uso terapêutico , Candida albicans/efeitos dos fármacos , Candida albicans/genética , Candida albicans/fisiologia , Candidíase/microbiologia , Avaliação Pré-Clínica de Medicamentos/instrumentação , Avaliação Pré-Clínica de Medicamentos/métodos , Farmacorresistência Fúngica/genética , Sinergismo Farmacológico , Proteínas Fúngicas/genética , Ensaios de Triagem em Larga Escala/instrumentação , Humanos , Dispositivos Lab-On-A-Chip , Testes de Sensibilidade Microbiana/instrumentação , Testes de Sensibilidade Microbiana/métodos , Técnicas Analíticas Microfluídicas/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA