Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Faraday Discuss ; 243(0): 354-377, 2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37078168

RESUMO

Efficient artificial photosynthesis systems are currently realized as catalyst- and surface-functionalized photovoltaic tandem-and triple-junction devices, enabling photoelectrochemical (PEC) water oxidation while simultaneously recycling CO2 and generating hydrogen as a solar fuel for storable renewable energy. Although PEC systems also bear advantages for the activation of dinitrogen - such as a high system tunability with respect to the electrocatalyst integration and a directly controllable electron flux to the anchoring catalyst through the adjustability of incoming irradiation - only a few PEC devices have been developed and investigated for this purpose. We have developed a series of photoelectrodeposition procedures to deposit mixed-metal electrocatalyst nanostructures directly on the semiconductor surface for light-assisted dinitrogen activation. These electrocatalyst compositions containing Co, Mo and Ru in different atomic ratios follow previously made recommendations of metal compositions for dinitrogen reduction and exhibit different physical properties. XPS studies of the photoelectrode surfaces reveal that our electrocatalyst films are to a large degree nitrogen-free after their fabrication, which is generally difficult to achieve with traditional magnetron sputtering or e-beam evaporation techniques. Initial chronoamperometric measurements of the p-InP photoelectrode coated with the Co-Mo alloy electrocatalyst show higher photocurrent densities in the presence of N2(g) than in the presence of Ar at -0.09 V vs. RHE. Indications of successful dinitrogen activation have also been found in consecutive XPS studies, where both N 1s and Mo 3d spectra reveal evidence of nitrogen-metal interactions.

2.
Langmuir ; 38(7): 2257-2266, 2022 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35133847

RESUMO

The variation in pore size in mesoporous films produced by electrochemically assisted self-assembly (EASA) with the surfactant chain length is described. EASA produces a hexagonal array of pores perpendicular to the substrate surface by using an applied potential to organize cationic surfactants and the resultant current to drive condensation in a silica sol. Here, we show that a range of pore sizes between 2 and 5 nm in diameter is available with surfactants of the form [Me3NCnH2n+1]Br, with alkyl chain lengths between C14 and C24. The film quality, pore order, pore size, and pore accessibility are probed with a range of techniques.

3.
Phys Status Solidi B Basic Solid State Phys ; 252(5): 1104-1108, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-26212392

RESUMO

We report on the growth of semi-polar GaN (11[Formula: see text]2) templates on patterned Si (113) substrates. Trenches were etched in Si (113) using KOH to expose Si {111} sidewalls. Subsequently an AlN layer to prevent meltback etching, an AlGaN layer for stress management, and finally two GaN layers were deposited. Total thicknesses up to 5 [Formula: see text]m were realised without cracks in the layer. Transmission electron microscopy showed that most dislocations propagate along [0001] direction and hence can be covered by overgrowth from the next trench. The defect densities were below [Formula: see text] and stacking fault densities less than 100 cm [Formula: see text]. These numbers are similar to reports on patterned r-plane sapphire. Typical X-ray full width at half maximum (FHWM) were 500" for the asymmetric (00.6) and 450" for the (11.2) reflection. These FHWMs were 50 % broader than reported for patterned r-plane sapphire which is attributed to different defect structures and total thicknesses. The surface roughness shows strong variation on templates. For the final surface roughness the roughness of the sidewalls of the GaN ridges at the time of coalescence are critical.

4.
Materials (Basel) ; 17(10)2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38793341

RESUMO

Nanostructures synthesised by hard-templating assisted methods are advantageous as they retain the size and morphology of the host templates which are vital characteristics for their intended applications. A number of techniques have been employed to deposit materials inside porous templates, such as electrodeposition, vapour deposition, lithography, melt and solution filling, but most of these efforts have been applied with pore sizes higher in the mesoporous regime or even larger. Here, we explore atomic layer deposition (ALD) as a method for nanostructure deposition into mesoporous hard templates consisting of mesoporous silica films with sub-5 nm pore diameters. The zinc oxide deposited into the films was characterised by small-angle X-ray scattering, X-ray diffraction and energy-dispersive X-ray analysis.

5.
Sci Rep ; 14(1): 14008, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38890324

RESUMO

Integrating resistive memory or neuromorphic memristors into mainstream silicon technology can be substantially facilitated if the memories are built in the back-end-of-line (BEOL) and stacked directly above the logic circuitries. Here we report a promising memristor employing a plasma-enhanced chemical vapour deposition (PECVD) bilayer of amorphous SiC/Si as device layer and Cu as an active electrode. Its endurance exceeds one billion cycles with an ON/OFF ratio of ca. two orders of magnitude. Resistance drift is observed in the first 200 million cycles, after which the devices settle with a coefficient of variation of ca. 10% for both the low and high resistance states. Ohmic conduction in the low resistance state is attributed to the formation of Cu conductive filaments inside the bilayer structure, where the nanoscale grain boundaries in the Si layer provide the pre-defined pathway for Cu ion migration. Rupture of the conductive filament leads to current conduction dominated by reverse bias Schottky emission. Multistate switching is achieved by precisely controlling the pulse conditions for potential neuromorphic computing applications. The PECVD deposition method employed here has been frequently used to deposit typical BEOL SiOC low-k interlayer dielectrics. This makes it a unique memristor system with great potential for integration.

6.
Chem Sci ; 15(12): 4416-4426, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38516087

RESUMO

We report for the first time a reversible addition-fragmentation chain transfer polymerisation-induced self-assembly (RAFT-PISA) formulation in ionic liquid (IL) that yields worm gels. A series of poly(2-hydroxyethyl methacrylate)-b-poly(benzyl methacrylate) (PHEMA-b-PBzMA) block copolymer nanoparticles were synthesised via RAFT dispersion polymerisation of benzyl methacrylate in the hydrophilic IL 1-ethyl-3-methyl imidazolium dicyanamide, [EMIM][DCA]. This RAFT-PISA formulation can be controlled to afford spherical, worm-like and vesicular nano-objects, with free-standing gels being obtained over a broad range of PBzMA core-forming degrees of polymerisation (DPs). High monomer conversions (≥96%) were obtained within 2 hours for all PISA syntheses as determined by 1H NMR spectroscopy, and good control over molar mass was confirmed by gel permeation chromatography (GPC). Nanoparticle morphologies were identified using small-angle X-ray scattering (SAXS) and transmission electron microscopy (TEM), and further detailed characterisation was conducted to monitor rheological, electrochemical and thermal characteristics of the nanoparticle dispersions to assess their potential in future electronic applications. Most importantly, this new PISA formulation in IL facilitates the in situ formation of worm ionogel electrolyte materials at copolymer concentrations >4% w/w via efficient and convenient synthesis routes without the need for organic co-solvents or post-polymerisation processing/purification. Moreover, we demonstrate that the worm ionogels developed in this work exhibit comparable electrochemical properties and thermal stability to that of the IL alone, showcasing their potential as gel electrolytes.

7.
Nanoscale Adv ; 6(7): 1837-1846, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38545290

RESUMO

The 16e square-planar bis-thiolato-Au(iii) complexes [AuIII(1,2-dicarba-closo-dodecarborane-1,2-dithiolato)2][NBu4] (Au-1) and [AuIII(4-methyl-1,2-benzenedithiolato)2][NBu4] (Au-2) have been synthesized and fully characterized. Au-1 and Au-2 were encapsulated in the symmetrical triblock copolymer poloxamer (Pluronic®) P123 containing blocks of poly(ethylene oxide) and poly(propylene oxide), giving micelles AuMs-1 and AuMs-2. High electron flux in scanning transmission electron microscopy (STEM) was used to generate single gold atoms and gold nanocrystals on B/S-doped graphitic surfaces, or S-doped amorphous carbon surfaces from AuMs-1 and AuMs-2, respectively. Electron energy loss spectroscopy (EELS) data suggested strong interactions of gold atoms/nanocrystals with boron in the B/S-doped graphitic matrix. Density-functional theory (DFT) calculations, also supported the experimental findings, pointing towards strong Au-B bonds, depending on the charge on the Au-(B-graphene) fragment and the presence of further defects in the graphene lattice.

8.
Nat Commun ; 15(1): 909, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38291342

RESUMO

Low temperature ionic conducting materials such as OH- and H+ ionic conductors are important electrolytes for electrochemical devices. Here we show the discovery of mixed OH-/H+ conduction in ceramic materials. SrZr0.8Y0.2O3-δ exhibits a high ionic conductivity of approximately 0.01 S cm-1 at 90 °C in both water and wet air, which has been demonstrated by direct ammonia fuel cells. Neutron diffraction confirms the presence of OD bonds in the lattice of deuterated SrZr0.8Y0.2O3-δ. The OH- ionic conduction of CaZr0.8Y0.2O3-δ in water was demonstrated by electrolysis of both H218O and D2O. The ionic conductivity of CaZr0.8Y0.2O3-δ in 6 M KOH solution is around 0.1 S cm-1 at 90 °C, 100 times higher than that in pure water, indicating increased OH- ionic conductivity with a higher concentration of feed OH- ions. Density functional theory calculations suggest the diffusion of OH- ions relies on oxygen vacancies and temporarily formed hydrogen bonds. This opens a window to discovering new ceramic ionic conducting materials for near ambient temperature fuel cells, electrolysers and other electrochemical devices.

9.
Nanoscale ; 16(8): 4197-4204, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38324330

RESUMO

The process of electrochemically assisted surfactant assembly was followed in real time by grazing incidence small angle X-ray scattering with the aim to deconvolute the formation of mesoporous silica film and unwanted porous particles. The X-ray technique proved to be useful for the characterisation of this process, as it takes place at a very dynamic, solid/liquid interface. This paper shows the electrochemically driven onset and evolution of silica/surfactant structures. Additional control experiments indicate the formation of vertically aligned structures without the use of an electric field, although it seems to be beneficial for increased pore ordering.

10.
Adv Sci (Weinh) ; 10(24): e2301497, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37326499

RESUMO

An effective approach is reported to enhance the stability of inverted organo-tin halide perovskite photovoltaics based on capping the cathode with a thin layer of bismuth. Using this simple approach, unencapsulated devices retain up to 70% of their peak power conversion efficiency after up to 100 h testing under continuous one sun solar illumination in ambient air and under electrical load, which is exceptional stability for an unencapsulated organo-tin halide perovskite photovoltaic device tested in ambient air. The bismuth capping layer is shown to have two functions: First, it blocks corrosion of the metal cathode by iodine gas formed when those parts of the perovskite layer not protected by the cathode degrade. Second, it sequesters iodine gas by seeding its deposition on top of the bismuth capping layer, thereby keeping it away from the electro-active parts of the device. The high affinity of iodine for bismuth is shown to correlate with the high polarizability of bismuth and the prevalence of the (012) crystal face at its surface. Bismuth is ideal for this purpose, because it is environmentally benign, non-toxic, stable, cheap, and can be deposited by simple thermal evaporation at low temperature immediately after deposition of the cathode.

11.
Nanoscale Adv ; 5(12): 3316-3325, 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37325528

RESUMO

Production of mesoporous silica films with vertically oriented pores has been a challenge since interest in such systems developed in the 1990s. Vertical orientation can be achieved by the electrochemically assisted surfactant assembly (EASA) method using cationic surfactants such as cetyltrimethylammonium bromide (C16TAB). The synthesis of porous silicas using a series of surfactants with increasing head sizes is described, from octadecyltrimethylammonium bromide (C18TAB) to octadecyltriethylammonium bromide (C18TEAB). These increase pore size, but the degree of hexagonal order in the vertically aligned pores reduces as the number of ethyl groups increases. Pore accessibility is also reduced with the larger head groups.

12.
Nanoscale Adv ; 4(22): 4798-4808, 2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36545395

RESUMO

Metallic nanostructures have widespread applications in fields including materials science, electronics and catalysis. Mesoporous silica films synthesised by evaporation induced self-assembly and electrochemically assisted self-assembly with pores below 10 nm were used as hard templates for the electrodeposition of Au nanostructures. Electrodeposition conditions were optimised based on pore orientation and size. The growth of nanostructures was initiated at the electrode surface as confirmed by microscopy. The hard templates and Au electrodeposits were characterised electrochemically as well as with X-ray diffraction, small angle scattering and transmission electron microscopy. Finally, mesoporous silica hard templates were removed by hydrofluoric acid etching and stable Au nanoparticles on different electrode surfaces were achieved.

13.
Nanoscale ; 14(14): 5404-5411, 2022 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-35320330

RESUMO

Silica thin films with vertical nanopores are useful to control access to electrode surfaces and may act as templates for growth of nanomaterials. The most effective method to produce these films, electrochemically assisted surfactant assembly, also produces aggregates of silica particles. This paper shows that growth with an AC signal superimposed onto the potential avoids the aggregates and only very small numbers of single particles are found. This finding is linked to better control of the diffusion field of hydroxide ions that are responsible for particle growth. The resultant films are smooth, with very well-ordered hexagonal pore structures.

14.
ACS Meas Sci Au ; 2(5): 439-448, 2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36281293

RESUMO

The majority of carbon based transmission electron microscopy (TEM) platforms (grids) have a significant sp2 carbon component. Here, we report a top down fabrication technique for producing freestanding, robust, electron beam transparent and conductive sp3 carbon substrates from boron doped diamond (BDD) using an ion milling/polishing process. X-ray photoelectron spectroscopy and electrochemical measurements reveal the sp3 carbon character and advantageous electrochemical properties of a BDD electrode are retained during the milling process. TEM diffraction studies show a dominant (110) crystallographic orientation. Compared with conventional carbon TEM films on metal supports, the BDD-TEM electrodes offer superior thermal, mechanical and electrochemical stability properties. For the latter, no carbon loss is observed over a wide electrochemical potential range (up to 1.80 V vs RHE) under prolonged testing times (5 h) in acid (comparable with accelerated stress testing protocols). This result also highlights the use of BDD as a corrosion free electrocatalyst TEM support for fundamental studies, and in practical energy conversion applications. High magnification TEM imaging demonstrates resolution of isolated, single atoms on the BDD-TEM electrode during electrodeposition, due to the low background electron scattering of the BDD surface. Given the high thermal conductivity and stability of the BDD-TEM electrodes, in situ monitoring of thermally induced morphological changes is also possible, shown here for the thermally induced crystallization of amorphous electrodeposited manganese oxide to the electrochemically active γ-phase.

15.
Nanoscale ; 14(46): 17170-17181, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36380717

RESUMO

Memristors are emerging as promising candidates for practical application in reservoir computing systems that are capable of temporal information processing. Here, we experimentally implement a physical reservoir computing system using resistive memristors based on three-dimensional (3D)-structured mesoporous silica (mSiO2) thin films fabricated by a low cost, fast and vacuum-free sol-gel technique. The in situ learning capability and a classification accuracy of 100% on a standard machine learning dataset are experimentally demonstrated. The volatile (temporal) resistive switching in diffusive memristors arises from the formation and subsequent spontaneous rupture of conductive filaments via diffusion of Ag species within the 3D-structured nanopores of the mSiO2 thin film. Besides volatile switching, the devices also exhibit a bipolar non-volatile resistive switching behavior when the devices are operated at a higher compliance current level. The implementation of mSiO2 thin films opens the route to fabricate a simple and low cost dynamic memristor with a temporal information process functionality, which is essential for neuromorphic computing applications.

16.
Nanoscale Adv ; 3(5): 1413-1421, 2021 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36132855

RESUMO

Josephson junctions based on InAs semiconducting nanowires and Nb superconducting electrodes are fabricated in situ by a special shadow evaporation scheme for the superconductor electrode. Compared to other metallic superconductors such as Al, Nb has the advantage of a larger superconducting gap which allows operation at higher temperatures and magnetic fields. Our junctions are fabricated by shadow evaporation of Nb on pairs of InAs nanowires grown selectively on two adjacent tilted Si (111) facets and crossing each other at a small distance. The upper wire relative to the deposition source acts as a shadow mask determining the gap of the superconducting electrodes on the lower nanowire. Electron microscopy measurements show that the fully in situ fabrication method gives a clean InAs/Nb interface. A clear Josephson supercurrent is observed in the current-voltage characteristics, which can be controlled by a bottom gate. The large excess current indicates a high junction transparency. Under microwave radiation, pronounced integer Shapiro steps are observed suggesting a sinusoidal current-phase relation. Owing to the large critical field of Nb, the Josephson supercurrent can be maintained to magnetic fields exceeding 1 T. Our results show that in situ prepared Nb/InAs nanowire contacts are very interesting candidates for superconducting quantum circuits requiring large magnetic fields.

17.
Chem Sci ; 11(20): 5257-5266, 2020 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-34122982

RESUMO

Rapidly self-deoxygenating Cu-RDRP in aqueous media is investigated. The disproportionation of Cu(i)/Me6Tren in water towards Cu(ii) and highly reactive Cu(0) leads to O2-free reaction environments within the first seconds of the reaction, even when the reaction takes place in the open-air. By leveraging this significantly fast O2-reducing activity of the disproportionation reaction, a range of well-defined water-soluble polymers with narrow dispersity are attained in a few minutes or less. This methodology provides the ability to prepare block copolymers via sequential monomer addition with little evidence for chain termination over the lifetime of the polymerization and allows for the synthesis of star-shaped polymers with the use of multi-functional initiators. The mechanism of self-deoxygenation is elucidated with the use of various characterization tools, and the species that participate in the rapid oxygen consumption is identified and discussed in detail.

18.
Nanoscale ; 12(33): 17332-17341, 2020 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-32789341

RESUMO

Chemical treatments play an essential role in the formation of high quality interfaces between materials, including in semiconductor devices, and in the functionalisation of surfaces. We have investigated the effects of hydrogen and fluorine termination of (100)-orientation silicon surfaces over a range of length scales. At the centimetre scale, lifetime measurements show clean silicon surfaces can be temporarily passivated by a short treatment in both HF(2%) : HCl(2%) and HF(50%) solutions. The lifetime, and hence surface passivation, becomes better with immersion time in the former, and worse with immersion time in the latter. At the nanometre scale, X-ray photoelectron spectroscopy and atomic force microscopy show treatment with strong HF solutions results in a roughened fluorine-terminated surface. Subsequent superacid-derived surface passivation on different chemically treated surfaces shows considerably better passivation on surfaces treated with HF(2%) : HCl(2%) compared to HF. Lifetime data are modelled to understand the termination in terms of chemical and field effect passivation at the centimetre scale. Surfaces passivated with Al2O3 grown by atomic layer deposition behave similarly when either HF(2%) : HCl(2%) or HF(50%) are used as a pre-treatment, possibly because of the thin silicon dioxide interlayer which subsequently forms. Our study highlights that chemical pre-treatments can be extremely important in the creation of high quality functionalised surfaces.

19.
ACS Appl Mater Interfaces ; 12(44): 49786-49794, 2020 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-33079533

RESUMO

Heterostructures involving two-dimensional (2D) transition metal dichalcogenides and other materials such as graphene have a strong potential to be the fundamental building block of many electronic and optoelectronic applications. The integration and scalable fabrication of such heterostructures are of the essence in unleashing the potential of these materials in new technologies. For the first time, we demonstrate the growth of few-layer MoS2 films on graphene via nonaqueous electrodeposition. Through methods such as scanning and transmission electron microscopy, atomic force microscopy, Raman spectroscopy, energy- and wavelength-dispersive X-ray spectroscopies, and X-ray photoelectron spectroscopy, we show that this deposition method can produce large-area MoS2 films with high quality and uniformity over graphene. We reveal the potential of these heterostructures by measuring the photoinduced current through the film. These results pave the way toward developing the electrodeposition method for the large-scale growth of heterostructures consisting of varying 2D materials for many applications.

20.
Dalton Trans ; 48(26): 9564-9569, 2019 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-30951079

RESUMO

Iron oxide nano-crystals 0.1-1.1 µm in diameter were generated on sulfur-doped amorphous carbon surfaces by electron beam irradiation of the novel 13e- high-spin complex [Fe(4-methyl-1,2-benzenedithiolate)2][NHEt3] encapsulated in a triblock copolymer. Possible relevance to iron nano-mineralization from Fe-S ferredoxin proteins and iron dysregulation in neurological disorders is discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA