Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 24(30): 18004-18021, 2022 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-35861055

RESUMO

Methylammonium (MA+) lead halide perovskites (MAPbX3) have been widely investigated for photovoltaic applications, with the addition of Cs improving structural and thermal stability. This study reports the complete A site miscibility of Cs+ and MA+ cations in the lead chloride and lead bromide perovskites with nominal stoichiometric formulae (CsxMA1-x)Pb(Cl/Br)3 (x = 0, 0.13, 0.25, 0.37, 0.50, 0.63, 0.75, 0.87, 1). These suites of materials were synthesized mechanochemically as a simple, cost-effective synthesis technique to produce highly ordered, single phase particles. In contrast to previous studies using conventional synthetic routes that have reported significant solubility gaps, this solvent-free approach induces complete miscibility within the dual cation Cs+/MA+ system, with the resultant structures exhibiting high short-range and long-range atomic ordering across the entire compositional range that are devoid of solvent inclusions and disorder. The subtle structural evolution from cubic to orthorhombic symmetry reflecting PbX6 octahedral tilting was studied using complementary high resolution TEM, powder XRD, multinuclear 133Cs/207Pb/1H MAS NMR, DSC, XPS and UV/vis approaches. The phase purity and exceptional structural order were reflected in the very high resolution HRTEM images presented from particles with crystallite sizes in the ∼80-170 nm range, and the stability and long lifetimes of the Br series (10-20 min) and the Cl series (∼30 s-1 min) under the 200 kV/146 µA e- beam. Rietveld refinements associated with the room temperature PXRD study demonstrated that each system converged towards single phase compositions that were very close to the intended target stoichiometries, thus indicating the complete miscibility within these dual cation Cs+/MA+ solid solution systems. The multinuclear MAS NMR data showed a distinct sensitivity to the changing solid solution compositions across the MAPbX3-CsPbX3 partition. In particular, the 133Cs shifts demonstrated a sensitivity to the cubic-orthorhombic phase transition while the 133Cs T1s exhibited a pronounced sensitivity to the variable Cs+ cation mobility across the compositional range. Variable temperature PXRD studies facilitated the production of phase diagrams mapping the Cs+/MA+ compositional space for the (CsxMA1-x)PbCl3 and (CsxMA1-x)PbBr3 solid solution series, while Tauc plots of the UV/vis data exhibited reducing bandgaps with increasing MA+ incorporation through ranges of cubic phases where octahedral tilting was absent.

2.
Inorg Chem ; 60(1): 195-205, 2021 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-33315376

RESUMO

Struvite-K (MgKPO4·6H2O) is a magnesium potassium phosphate mineral with naturally cementitious properties, which is finding increasing usage as an inorganic cement for niche applications including nuclear waste management and rapid road repair. Struvite-K is also of interest in sustainable phosphate recovery from wastewater and, as such, a detailed knowledge of the crystal chemistry and high-temperature behavior is required to support further laboratory investigations and industrial applications. In this study, the local chemical environments of synthetic struvite-K were investigated using high-field solid-state 25Mg and 39K MAS NMR techniques, alongside 31P MAS NMR and thermal analysis. A single resonance was present in each of the 25Mg and 39K MAS NMR spectra, reported here for the first time alongside the experimental and calculated isotropic chemical shifts, which were comparable to the available data for isostructural struvite (MgNH4PO4·6H2O). An in situ high-temperature XRD analysis of struvite-K revealed the presence of a crystalline-amorphous-crystalline transition that occurred between 30 and 350 °C, following the single dehydration step of struvite-K. Between 50 and 300 °C, struvite-K dehydration yielded a transient disordered (amorphous) phase identified here for the first time, denoted δ-MgKPO4. At 350 °C, recrystallization was observed, yielding ß-MgKPO4, commensurate with an endothermic DTA event. A subsequent phase transition to γ-MgKPO4 was observed on further heating, which reversed on cooling, resulting in the α-MgKPO4 structure stabilized at room temperature. This behavior was dissimilar from that of struvite exposed to high temperature, where NH4 liberation occurs at temperatures >50 °C, indicating that struvite-K could potentially withstand high temperatures via a transition to MgKPO4.

3.
Angew Chem Int Ed Engl ; 60(44): 23878-23884, 2021 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-34464506

RESUMO

A combination of charge density studies and solid state nuclear magnetic resonance (NMR) 1 JNC coupling measurements supported by periodic density functional theory (DFT) calculations is used to characterise the transition from an n-π* interaction to bond formation between a nucleophilic nitrogen atom and an electrophilic sp2 carbon atom in a series of crystalline peri-substituted naphthalenes. As the N⋅⋅⋅C distance reduces there is a sharp decrease in the Laplacian derived from increasing charge density between the two groups at ca. N⋅⋅⋅C = 1.8 Å, with the periodic DFT calculations predicting, and heteronuclear spin-echo NMR measurements confirming, the 1 JNC couplings of ≈3-6 Hz for long C-N bonds (1.60-1.65 Å), and 1 JNC couplings of <1 Hz for N⋅⋅⋅C >2.1 Å.

4.
Phys Chem Chem Phys ; 22(6): 3400-3413, 2020 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-31984388

RESUMO

A combined multinuclear solid state NMR and gauge included projected augmented wave, density functional theory (GIPAW DFT) computational approach is evaluated to determine the four heteronuclear 1J(13C,17O) couplings in solid 17O enriched naphthalaldehydic acid. Direct multi-field 17O magic angle spinning (MAS), triple quantum MAS (3QMAS) and double rotation (DOR) experiments are initially utilised to evaluate the accuracy of the DFT approximations used in the calculation of the isotropic chemical shifts (δiso), quadrupole coupling constants (CQ) and asymmetry (ηQ) parameters. These combined approaches give δiso values of 313, 200 and 66 ppm for the carbonyl (C[double bond, length as m-dash]O), ether (-O-) and hydroxyl (-OH) environments, respectively, with the corresponding measured quadrupole products (PQ) being 8.2, 9.0 and 10.6 MHz. The geometry optimised DFT structure derived using the CASTEP code gives firm agreement with the shifts observed for the ether (δiso = 223, PQ = 9.4 MHz) and hydroxyl (δiso = 62, PQ = 10.5 MHz) environments but the unoptimised experimental XRD structure has better agreement for the carbonyl group (δiso = 320, PQ = 8.3 MHz). The determined δiso and ηQ values are shown to be consistent with bond lengths closer to 1.222 Å (experimental length) rather than the geometry optimised length of 1.238 Å. The geometry optimised DFT 1J(13C,17O) coupling to the hydroxyl is calculated as 20 Hz and the couplings to the ether were calculated to be 37 (O-C[double bond, length as m-dash]O) and 32 (O-C-OH) Hz. The scalar coupling parameters for the unoptimised experimental carbonyl group predict a 1J(13C,17O) value of 28 Hz, whilst optimisation gives a value of 27 Hz. These calculated 1J(13C,17O) couplings, together with estimations of the probability of each O environment being isotopically labelled (determined by electrospray ionisation mass spectrometry) and the measured refocussable transverse dephasing (T2') behaviour, are combined to simulate the experimental decay behaviour. Good agreement between the measured and calculated decay behaviour is observed.

5.
J Am Chem Soc ; 141(7): 2894-2899, 2019 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-30726071

RESUMO

We describe a new class of inorganic polymeric materials featuring a main chain consisting of PV-O bonds and aryl side groups, which was obtained with >70 repeat units by ring-opening polymerization of cyclic phosphonates. This monomer-polymer system was found to be dynamic in solution enabling selective depolymerization under dilute conditions, which can be tuned by varying the substituents. The polymers show high thermal stability to weight loss and can be easily fabricated into self-standing thin films. Structural characterizations of the cyclic 6- and 12-membered ring precursors are also described.

6.
J Am Chem Soc ; 141(50): 19616-19624, 2019 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-31747756

RESUMO

It is well-established that the inclusion of small atomic species such as boron (B) in powder metal catalysts can subtly modify catalytic properties, and the associated changes in the metal lattice imply that the B atoms are located in the interstitial sites. However, there is no compelling evidence for the occurrence of interstitial B atoms, and there is a concomitant lack of detailed structural information describing the nature of this occupancy and its effects on the metal host. In this work, we use an innovative combination of high-resolution 11B magic-angle-spinning (MAS) and 105Pd static solid-state NMR nuclear magnetic resonance (NMR), synchrotron X-ray diffraction (SXRD), in situ X-ray pair distribution function (XPDF), scanning transmission electron microscopy-annular dark field imaging (STEM-ADF), electron ptychography, and electron energy loss spectroscopy (EELS) to investigate the B atom positions, properties, and structural modifications to the palladium lattice of an industrial type interstitial boron doped palladium nanoparticle catalyst system (Pd-intB/C NPs). In this study, we report that upon B incorporation into the Pd lattice, the overall face centered cubic (FCC) lattice is maintained; however, short-range disorder is introduced. The 105Pd static solid-state NMR illustrates how different types (and levels) of structural strain and disorder are introduced in the nanoparticle history. These structural distortions can lead to the appearance of small amounts of local hexagonal close packed (HCP) structured material in localized regions. The short-range lattice tailoring of the Pd framework to accommodate interstitial B dopants in the octahedral sites of the distorted FCC structure can be imaged by electron ptychography. This study describes new toolsets that enable the characterization of industrial metal nanocatalysts across length scales from macro- to microanalysis, which gives important guidance to the structure-activity relationship of the system.

7.
Chemphyschem ; 19(1): 40-44, 2018 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-29105304

RESUMO

We demonstrate that non-equilibrium nuclear spin order survives precipitation from solution and redissolution. The effect is demonstrated on 13 C- and 2 H-labeled sodium fumarate, with precipitation and dissolution achieved by altering the pH. The lifetime of the spin magnetization in the precipitate suspension is found to be much longer than in solution. Our preliminary results show an extension of the effective relaxation time T1 for the metabolite fumarate by a factor of ≈6. We show that when the free radical agent TEMPO is present in the solution, it is not incorporated into the precipitate, suggesting that this procedure may provide a means to store and transport agents polarized by dynamic nuclear polarization. Although the relaxation time, T1 , of the precipitate suspension is longer than that of the same molecules in solution, it is significantly shorter than that observed in the immobilized solid state.

8.
Chemphyschem ; 19(14): 1722-1732, 2018 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-29667743

RESUMO

Multinuclear (1 H, 13 C, 25 Mg) solid-state NMR data is reported for a series of magnesium acetate phases Mg(CH3 COO)2 ⋅ nH2 O (n=0 (two polymorphs), 1, 4). The central focus here is 25 Mg as this set of compounds provides an expanded range of local magnesium coordinations compared to what has previously been reported in the literature using NMR. These four compounds provide 10 distinct magnesium sites with varying NMR interaction parameters. One of the anhydrous crystal structures (α) has an MgO7 site which is reported, to the best of our knowledge, for the first time. For those phases with a single crystal structure, a combination of magic angle spinning (MAS) NMR at high magnetic field (20 T) and first principles density functional theory (DFT) calculations demonstrates the value of including 25 Mg in NMR crystallography approaches. For the second anhydrate phase (ß), where no single crystal structure exists, the multinuclear NMR data clearly show the multiplicity of sites for the different elements, with 25 Mg satellite transition (ST) MAS NMR revealing four inequivalent magnesium environments, which is new information constraining future refinement of the structure. This study highlights the sensitivity of 25 Mg NMR to the local environment, an observation important for several sub-disciplines of chemistry where the structural chemistry of magnesium is likely to be crucial.

9.
Inorg Chem ; 57(15): 9122-9132, 2018 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-30010324

RESUMO

Vanadate ellestadites Ca10(SiO4) x(VO4)6-2 x(SO4) xCl2, serving as prototype crystalline matrices for the fixation of pentavalent toxic metals (V, Cr, As), were synthesized and characterized by powder X-ray and neutron diffraction (PXRD and PND), electron probe microanalysis (EPMA), Fourier transform infrared spectroscopy (FTIR), and solid-state nuclear magnetic resonance (SS-NMR). The ellestadites 0.19 < x < 3 adopt the P63/ m structure, while the vanadate endmember Ca10(VO4)6Cl2 is triclinic with space group P1̅. A miscibility gap exists for 0.77 < x < 2.44. The deficiency of Cl in the structure leads to short-range disorder in the tunnel. Toxicity characteristic leaching testing (TCLP) showed the incorporation of vanadium increases ellestadite solubility, and defined a waste loading limit that should not exceed 25 atom % V to ensure small release levels.

10.
Phys Chem Chem Phys ; 20(41): 26734-26743, 2018 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-30324213

RESUMO

The ability to clearly relate local structure to function is desirable for many catalytically relevant Pd-containing systems. This report represents the first direct 105Pd solid state NMR measurements of diamagnetic inorganic (K2Pd(iv)Cl6, (NH4)2Pd(iv)Cl6 and K2Pd(iv)Br6) complexes, and micron- and nano-sized Pd metal particles at room temperature, thereby introducing effective 105Pd chemical shift and Knight shift ranges in the solid state. The very large 105Pd quadrupole moment (Q) makes the quadrupole parameters (CQ, ηQ) extremely sensitive to small structural distortions. Despite the well-defined high symmetry octahedral positions describing the immediate Pd coordination environment, 105Pd NMR measurements can detect longer range disorder and anisotropic motion in the interstitial positions. The approach adopted here combines high resolution X-ray pair distribution function (PDF) analyses with 105Pd, 39K and 35Cl MAS NMR, and shows solid state NMR to be a very sensitive probe of short range structural perturbations. Solid state 105Pd NMR observations of ∼44-149 µm Pd sponge, ∼20-150 nm Pd black nanoparticles, highly monodisperse 16 ± 3 nm PVP-stabilised Pd nanoparticles, and highly polydisperse ∼2-1100 nm biomineralized Pd nanoparticles (bio-Pd) on pyrolysed amorphous carbon detect physical differences between these systems based on relative bulk:surface ratios and monodispersity/size homogeneity. This introduces the possibility of utilizing solid state NMR to help elucidate the structure-function properties of commercial Pd-based catalyst systems.

11.
J Am Chem Soc ; 139(36): 12670-12680, 2017 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-28806077

RESUMO

Hydrated niobium oxides are used as strong solid acids with a wide variety of catalytic applications, yet the correlations between structure and acidity remain unclear. New insights into the structural features giving rise to Lewis and Brønsted acid sites are presently achieved. It appears that Lewis acid sites can arise from lower coordinate NbO5 and in some cases NbO4 sites, which are due to the formation of oxygen vacancies in thin and flexible NbO6 systems. Such structural flexibility of Nb-O systems is particularly pronounced in high surface area nanostructured materials, including few-layer to monolayer or mesoporous Nb2O5·nH2O synthesized in the presence of stabilizers. Bulk materials on the other hand only possess a few acid sites due to lower surface areas and structural rigidity: small numbers of Brønsted acid sites on HNb3O8 arise from a protonic structure due to the water content, whereas no acid sites are detected for anhydrous crystalline H-Nb2O5.

12.
Inorg Chem ; 56(5): 2653-2661, 2017 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-28186741

RESUMO

The structure of Ba3Nb2O8 has been investigated using high resolution neutron powder diffraction. Our results show that, while the structure has some features in common with the 9R perovskite and palmierite structures, it is a new and distinct structure. It is shown to follow a (chh)(hhc)(chh) sequence with BaO3-δ packing layers and is a cation- and anion-deficient 9H perovskite polytype. Nb atoms occupy octahedral sites with vacancies between hexagonal close-packed layers. Isolated, corner-sharing and face-sharing Nb-O octahedra all occur within the unit cell. The identification of purely octahedral Nb is supported by solid-state 93Nb wideline NMR measurements. A two-component line shape was detected: a narrow featureless resonance with an isotropic chemical shift of δiso -928 ± 5 ppm consistent with regular Nb octahedra, and a much broader featureless resonance with an approximate isotropic chemical shift in the range δiso ∼ -944 to -937 ± 10 ppm consistent with Nb octahedra influenced by O vacancies. These are both characteristic of 6-fold oxo-coordinated Nb environments. The highly distorted octahedral environments in Ba3Nb2O8 make it a potential candidate for dielectric and photocatalytic applications.

13.
Inorg Chem ; 56(16): 10078-10089, 2017 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-28776991

RESUMO

This paper discusses the fluorination characteristics of phases related to FeSb2O4, by reporting the results of a detailed study of Mg0.50Fe0.50Sb2O4 and Co0.50Fe0.50Sb2O4. Reaction with fluorine gas at low temperatures (typically 230 °C) results in topotactic insertion of fluorine into the channels, which are an inherent feature of the structure. Neutron powder diffraction and solid state NMR studies show that the interstitial fluoride ions are bonded to antimony within the channel walls to form Sb-F-Sb bridges. To date, these reactions have been observed only when Fe2+ ions are present within the chains of edge-linked octahedra (FeO6 in FeSb2O4) that form the structural channels. Oxidation of Fe2+ to Fe3+ is primarily responsible for balancing the increased negative charge associated with the presence of the fluoride ions within the channels. For the two phases studied, the creation of Fe3+ ions within the chains of octahedra modify the magnetic exchange interactions to change the ground-state magnetic symmetry to C-type magnetic order in contrast to the A-type order observed for the unfluorinated oxide parents.

14.
Inorg Chem ; 56(1): 594-607, 2017 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-27977159

RESUMO

The structure of the mineral schafarzikite, FeSb2O4, has one-dimensional channels with walls comprising Sb3+ cations; the channels are separated by edge-linked FeO6 octahedra that form infinite chains parallel to the channels. Although this structure provides interest with respect to the magnetic and electrical properties associated with the chains and the possibility of chemistry that could occur within the channels, materials in this structural class have received very little attention. Here we show, for the first time, that heating selected phases in oxygen-rich atmospheres can result in relatively large oxygen uptakes (up to ∼2% by mass) at low temperatures (ca. 350 °C) while retaining the parent structure. Using a variety of structural and spectroscopic techniques, it is shown that oxygen is inserted into the channels to provide a structure with the potential to show high one-dimensional oxide ion conductivity. This is the first report of oxygen-excess phases derived from this structure. The oxygen insertion is accompanied not only by oxidation of Fe2+ to Fe3+ within the octahedral chains but also Sb3+ to Sb5+ in the channel walls. The formation of a defect cluster comprising one 5-coordinate Sb5+ ion (which is very rare in an oxide environment), two interstitial O2- ions, and two 4-coordinate Sb3+ ions is suggested and is consistent with all experimental observations. To the best of our knowledge, this is the first example of an oxidation process where the local energetics of the product dictate that simultaneous oxidation of two different cations must occur. This reaction, together with a wide range of cation substitutions that are possible on the transition metal sites, presents opportunities to explore the schafarzikite structure more extensively for a range of catalytic and electrocatalytic applications.

15.
Inorg Chem ; 55(12): 5946-56, 2016 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-27245403

RESUMO

This work determines the potential of solid-state NMR techniques to probe proton, alkali, and niobium environments in Lindqvist salts. Na7HNb6O19·15H2O (1), K8Nb6O19·16H2O (2), and Na8Ta6O19·24.5H2O (3) have been studied by solid-state static and magic angle spinning (MAS) NMR at high and ultrahigh magnetic field (16.4 and 19.9 T). (1)H MAS NMR was found to be a convenient and straightforward tool to discriminate between protonated and nonprotonated clusters AxH8-xM6O19·nH2O (A = alkali ion; M = Nb, Ta). (93)Nb MAS NMR studies at different fields and MAS rotation frequencies have been performed on 1. For the first time, the contributions of NbO5Oµ2H sites were clearly distinguished from those assigned to NbO6 sites in the hexaniobate cluster. The strong broadening of the resonances obtained under MAS was interpreted by combining chemical shift anisotropy (CSA) with quadrupolar effects and by using extensive fitting of the line shapes. In order to obtain the highest accuracy for all NMR parameters (CSA and quadrupolar), (93)Nb WURST QCPMG spectra in the static mode were recorded at 16.4 T for sample 1. The (93)Nb NMR spectra were interpreted in connection with the XRD data available in the literature (i.e., fractional occupancies of the NbO5Oµ2H sites). 1D (23)Na MAS and 2D (23)Na 3QMAS NMR studies of 1 revealed several distinct sodium sites. The multiplicity of the sites was again compared to structural details previously obtained by single-crystal X-ray diffraction (XRD) studies. The (23)Na MAS NMR study of 3 confirmed the presence of a much larger distribution of sodium sites in accordance with the 10 sodium sites predicted by XRD. Finally, the effect of Nb/Ta substitutions in 1 was also probed by multinuclear MAS NMR ((1)H, (23)Na, and (93)Nb).

16.
Inorg Chem ; 55(18): 9306-15, 2016 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-27598036

RESUMO

Bayerite was treated under hydrothermal conditions (120, 130, 140, and 150 °C) to prepare a series of layered double hydroxides (LDHs) with an ideal composition of ZnAl4(OH)12(SO4)0.5·nH2O (ZnAl4-LDHs). These products were investigated by both bulk techniques (powder X-ray diffraction (PXRD), transmission electron microscopy, and elemental analysis) and atomic-level techniques ((1)H and (27)Al solid-state NMR, IR, and Raman spectroscopy) to gain a detailed insight into the structure of ZnAl4-LDHs and sample composition. Four structural models (one stoichiometric and three different defect models) were investigated by Rietveld refinement of the PXRD data. These were assessed using the information obtained from other characterization techniques, which favored the ideal (nondefect) structural model for ZnAl4-LDH, as, for example, (27)Al magic-angle spinning NMR showed that excess Al was present as amorphous bayerite (Al(OH)3) and pseudoboehmite (AlOOH). Moreover, no evidence of cation mixing, that is, partial substitution of Zn(II) onto any of four Al sites, was observed. Altogether this study highlights the challenges involved to synthesize pure ZnAl4-LDHs and the necessity to use complementary techniques such as PXRD, elemental analysis, and solid-state NMR for the characterization of the local and extended structure of ZnAl4-LDHs.

17.
J Phys Chem A ; 120(42): 8326-8338, 2016 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-27687143

RESUMO

Polycrystalline bis(dialkyldithiophosphato)Pt(II) complexes of the form [Pt{S2P(OR)2}2] (R = ethyl, iso-propyl, iso-butyl, sec-butyl or cyclo-hexyl group) were studied using solid-state 31P and 195Pt NMR spectroscopy, to determine the influence of R to the structure of the central chromophore. The measured anisotropic chemical shift (CS) parameters for 31P and 195Pt afford more detailed chemical and structural information, as compared to isotropic CS and J couplings alone. Advanced theoretical modeling at the hybrid DFT level, including both crystal lattice and the important relativistic spin-orbit effects qualitatively reproduced the measured CS tensors, supported the experimental analysis, and provided extensive orientational information. A particular correction model for the non-negligible lattice effects was adopted, allowing one to avoid a severe deterioration of the 195Pt anisotropic parameters due to the high requirements posed on the pseudopotential quality in such calculations. Though negligible differences were found between the 195Pt CS tensors with different substituents R, the 31P CS parameters differed significantly between the complexes, implying the potential to distinguish between them. The presented approach enables good resolution and a detailed analysis of heavy-element compounds by solid-state NMR, thus widening the understanding of such systems.

18.
Phys Chem Chem Phys ; 17(4): 2540-9, 2015 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-25494341

RESUMO

Disordered sol-gel prepared calcium silicate biomaterials show significant, composition dependent ability to bond with bone. Bone bonding is attributed to rapid hydroxycarbonate apatite (HCA) formation on the glass surface after immersion in body fluid (or implantation). Atomic scale details of the development of the structure of (CaO)x(SiO2)1-x (x = 0.2, 0.3 and 0.5) under heat treatment and subsequent dissolution in simulated body fluid (SBF) are revealed through a multinuclear solid state NMR approach using one-dimensional (17)O, (29)Si, (31)P and (1)H. Central to this study is the combination of conventional static and magic angle spinning (MAS) and two-dimensional (2D) triple quantum (3Q) (17)O NMR experiments that can readily distinguish and quantify the bridging (BOs) and non-bridging (NBOs) oxygens in the silicate network. Although soluble calcium is present in the sol, the (17)O NMR results reveal that the sol-gel produced network structure is initially dominated by BOs after gelation, aging and drying (e.g. at 120 °C), indicating a nanoscale mixture of the calcium salt and a predominantly silicate network. Only once the calcium salt is decomposed at elevated temperatures do the Ca(2+) ions become available to break BO. Apatite forming ability in SBF depends strongly on the surface OH and calcium content. The presence of calcium aids HCA formation via promotion of surface hydration and the ready availability of Ca(2+) ions. (17)O NMR shows the rapid loss of NBOs charge balanced by calcium as it is leached into the SBF. The formation of nanocrystalline, partially ordered HCA can be detected via(31)P NMR. This data indicates the importance of achieving the right balance of BO/NBO for optimal biochemical response and network properties.


Assuntos
Materiais Biocompatíveis/química , Compostos de Cálcio/química , Silicatos/química , Durapatita/química , Géis , Temperatura Alta , Espectroscopia de Ressonância Magnética , Óxidos/química , Dióxido de Silício/química
19.
Phys Chem Chem Phys ; 17(43): 29124-33, 2015 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-26464180

RESUMO

Sol-gel hybrids are inorganic/organic co-networks with nanoscale interactions between the components leading to unique synergistic mechanical properties, which can be tailored, via a selection of the organic moiety. Methacrylate based polymers present several benefits for class II hybrids (which exhibit formal covalent bonding between the networks) as they introduce great versatility and can be designed with a variety of chemical side-groups, structures and morphologies. In this study, the effect of high cross-linking density polymers on the structure-property relationships of hybrids generated using poly(3-trimethoxysilylpropyl methacrylate) (pTMSPMA) and tetraethyl orthosilicate (TEOS) was investigated. The complexity and fine scale of the co-network interactions requires the development of new analytical methods to understand how network evolution dictates the wide-ranging mechanical properties. Within this work we developed data manipulation techniques of acoustic-AFM and solid state NMR output that provide new approaches to understand the influence of the network structure on the macroscopic elasticity. The concentration of pTMSPMA in the silica sol affected the gelation time, ranging from 2 h for a hybrid made with 75 wt% inorganic with pTMSPMA at 2.5 kDa, to 1 minute for pTMSPMA with molecular weight of 30 kDa without any TEOS. A new mechanism of gelation was proposed based on the different morphologies derived by AC-AFM observations. We established that the volumetric density of bridging oxygen bonds is an important parameter in structure/property relationships in SiO2 hybrids and developed a method for determining it from solid state NMR data. The variation in the elasticity of pTMSPMA/SiO2 hybrids originated from pTMSPMA acting as a molecular spacer, thus decreasing the volumetric density of bridging oxygen bonds as the inorganic to organic ratio decreased.


Assuntos
Géis/química , Metacrilatos/química , Dióxido de Silício/química , Difusão Dinâmica da Luz , Módulo de Elasticidade , Espectroscopia de Ressonância Magnética , Microscopia de Força Atômica , Transição de Fase , Polímeros/química , Termogravimetria
20.
Chemistry ; 20(26): 8149-60, 2014 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-24838668

RESUMO

Current materials used for bone regeneration are usually bioactive ceramics or glasses. Although they bond to bone, they are brittle. There is a need for new materials that can combine bioactivity with toughness and controlled biodegradation. Sol-gel hybrids have the potential to do this through their nanoscale interpenetrating networks (IPN) of inorganic and organic components. Poly(γ-glutamic acid) (γ-PGA) was introduced into the sol-gel process to produce a hybrid of γ-PGA and bioactive silica. Calcium is an important element for bone regeneration but calcium sources that are used traditionally in the sol-gel process, such as Ca salts, do not allow Ca incorporation into the silicate network during low-temperature processing. The hypothesis for this study was that using calcium methoxyethoxide (CME) as the Ca source would allow Ca incorporation into the silicate component of the hybrid at room temperature. The produced hybrids would have improved mechanical properties and controlled degradation compared with hybrids of calcium chloride (CaCl2 ), in which the Ca is not incorporated into the silicate network. Class II hybrids, with covalent bonds between the inorganic and organic species, were synthesised by using organosilane. Calcium incorporation in both the organic and inorganic IPNs of the hybrid was improved when CME was used. This was clearly observed by using FTIR and solid-state NMR spectroscopy, which showed ionic cross-linking of γ-PGA by Ca and a lower degree of condensation of the Si species compared with the hybrids made with CaCl2 as the Ca source. The ionic cross-linking of γ-PGA by Ca resulted in excellent compressive strength and reduced elastic modulus as measured by compressive testing and nanoindentation, respectively. All hybrids showed bioactivity as hydroxyapatite (HA) was formed after immersion in simulated body fluid (SBF).


Assuntos
Materiais Biocompatíveis/química , Cálcio/química , Ácido Poliglutâmico/análogos & derivados , Dióxido de Silício/química , Ácido Poliglutâmico/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA