RESUMO
The thermophysical properties of Al2O3/TiO2 nanolaminates deposited by atomic layer deposition (ALD) are studied as a function of bilayer thickness and relative TiO2 content (0%-100%) while the total nominal thickness of the nanolaminates was kept at 100 nm. Cross-plane thermal conductivity of the nanolaminates is measured at room temperature using the nanosecond transient thermoreflectance method. Based on the measurements, the nanolaminates have reduced thermal conductivity as compared to the pure amorphous thin films, suggesting that interfaces have a non-negligible effect on thermal transport in amorphous nanolaminates. For a fixed number of interfaces, we find that approximately equal material content of Al2O3 and TiO2 produces the lowest value of thermal conductivity. The thermal conductivity reduces with increasing interface density up to 0.4 nm(-1), above which the thermal conductivity is found to be constant. The value of thermal interface resistance approximated by the use of diffuse mismatch model was found to be 0.45 m(2) K GW(-1), and a comparative study employing this value supports the interpretation of non-negligible interface resistance affecting the overall thermal conductivity also in the amorphous limit. Finally, no clear trend in thermal conductivity values was found for nanolaminates grown at different deposition temperatures, suggesting that the temperature in the ALD process has a non-trivial while modest effect on the overall thermal conductivity in amorphous nanolaminates.
RESUMO
A non-equiatomic AlCoCr0.75Cu0.5FeNi alloy has been identified as a potential high strength alloy, whose microstructure and consequently properties can be widely varied. In this research, the phase structure, hardness, and magnetic properties of AlCoCr0.75Cu0.5FeNi alloy fabricated by laser powder bed fusion (LPBF) are investigated. The results demonstrate that laser power, scanning speed, and volumetric energy density (VED) contribute to different aspects in the formation of microstructure thus introducing alterations in the properties. Despite the different input parameters studied, all the as-built specimens exhibit the body-centered cubic (BCC) phase structure, with the homogeneous elemental distribution at the micron scale. A microhardness of up to 604.6 ± 6.8 HV0.05 is achieved owing to the rapidly solidified microstructure. Soft magnetic behavior is determined in all as-printed samples. The saturation magnetization (Ms) is dependent on the degree of spinodal decomposition, i.e., the higher degree of decomposition into A2 and B2 structure results in a larger Ms. The results introduce the possibility to control the degree of spinodal decomposition and thus the degree of magnetization by altering the input parameters of the LPBF process. The disclosed application potentiality of LPBF could benefit the development of new functional materials.
RESUMO
A cobalt-free equiatomic CrFeNiMn multicomponent alloy was fabricated from gas-atomized powder using laser powder bed fusion (L-PBF), also known as selective laser melting (SLM). The as-built specimens had a single face-centered cubic (FCC) structure, relative density of 98%, and hardness up to 248 HV0.5 for both the scanning speeds applied. In this work, we report the hierarchical microstructural features observed in the as-built specimens. These are comprised of melt pools, grains, cell structures including dendritic cells, elongated cells, equiaxed cells (~500 nm), and sub-cells (150-300 nm). The cell and sub-cell walls are composed of a notably high density of dislocations. In addition, segregation of Mn and Ni was detected at the cell walls, but only occasionally at the sub-cell walls. SLM exhibits the capability to produce FCC-structured equiatomic CrFeNiMn multicomponent alloy with the refined and hierarchical microstructure.
RESUMO
The paper presents a statistical study of nanoindentation results obtained in seven European laboratories which have joined a round robin exercise to assess methods for the evaluation of indentation size effects. The study focuses on the characterization of ferritic/martensitic steels T91 and Eurofer97, envisaged as structural materials for nuclear fission and fusion applications, respectively. Depth-controlled single cycle measurements at various final indentation depths, force-controlled single cycle and force-controlled progressive multi-cycle measurements using Berkovich indenters at room temperature have been combined to calculate the indentation hardness and the elastic modulus as a function of depth applying the Oliver and Pharr method. Intra- and inter-laboratory variabilities have been evaluated. Elastic modulus corrections have been applied to the hardness data to compensate for materials related systematic errors, like pile-up behaviour, which is not accounted for by the Oliver and Pharr theory, and other sources of instrumental or methodological bias. The correction modifies the statistical hardness profiles and allows determining more reliable indentation size effects.
RESUMO
Atmospheric pCO2 has increased since the industrial revolution leading to a lowering of the ocean surface water pH, a phenomenon called ocean acidification (OA). OA is claimed to be a major threat for marine organisms and ecosystems and, particularly, for Polar regions. We explored the impact of OA on the shell mechanical properties of the Antarctic scallop Adamussium colbecki exposed for one month to acidified (pH 7.6) and natural conditions (unmanipulated littoral water), by performing Scanning Electron Microscopy, nanoindentation and Vickers indentation on the scallop shell. No effect of pH could be detected either in crystal deposition or in the mechanical properties. A. colbecki shell was found to be resistant to OA, which suggests this species to be able to face a climate change scenario that may threat the persistence of the endemic Antarctic species. Further investigation should be carried out in order to elucidate the destiny of this key species in light of global change.
Assuntos
Exoesqueleto , Concentração de Íons de Hidrogênio , Pectinidae , Água do Mar/química , Exoesqueleto/ultraestrutura , Animais , Regiões Antárticas , Organismos Aquáticos , Mudança Climática , Microscopia Eletrônica de Varredura , Pectinidae/ultraestruturaRESUMO
Titania nanotubes (TNTs) with different morphology and crystal structure are prepared by chemical processing and rapid breakdown anodization (RBA) methods. The nanotubes are studied in terms of thermal conductivity. The TNTs with variable wall thickness below 30 nm have significantly reduced thermal conductivity than bulk titania, due to the phonon confinement, smaller phonon mean free path, and enhanced phonon boundary scattering. The amorphous nanotubes (TNTAmor) have comparatively thicker walls than both crystalline nanotubes. The TNTAmor has a thermal conductivity of 0.98 W m-1 K-1, which is slightly less than the thermal conductivity of crystalline anatase nanotubes (TNTA; 1.07 W m-1 K-1). However, the titania nanotubes with mixed structure (TNTA,T) and the smallest dimensions have the lowest thermal conductivity of 0.75 W m-1 K-1, probably due to the phonon confinement. The experimental results are compared with the theoretical study considering the size confinement effect with different wall dimensions of TNTs and surface scattering. The results agree well with the surface roughness factor (p) of 0.26 for TNTA,T, 0.18 for TNTA, and 0.65 for TNTAmor, indicating diffusive phonon scattering and rougher surfaces for TNTA. Interestingly, the present results together with those presented in literature suggest that thermal conductivity reduction with respect to the wall thickness occurs also for the amorphous nanotubes. This is ascribed to the role of propagons in the thermal transport of disordered structures.
RESUMO
Tunable core-shell Ag@Mesoporous SiO2 spheres were synthesized via an in situ modified Stöber approach by varying the amount of ethanol (EtOH) expanding their potentials in many applications. Mesoporous silica was generated by adding tetraethyl orthosilicate (TEOS) to the mixture of colloidal Ag particles prepared by reducing silver nitrate (AgNO3) with L-ascorbic acid and using hexadecyltrimethylammonium bromide (CTAB) as a template at the presence of ethanol and sodium hydroxide (NaOH) at pH 10 as a catalyst. The average sizes of the Ag cores at the three increasing volumes of ethanol were ~47 ± 6, 36 ± 4, and 11 ± 5 nm, while the silica particle size and the thickness of the silica shells increased, resulting in a blueshift of localized surface plasmon resonances (LSPR) of the Ag NPs. The corresponding specific surface areas of silica particles were 356 ± 10, 419 ± 20 and 490 ± 25 m² g-1, and average pore diameters varied from 5.7, 5.0 to 3.3 nm according to BET and BJH analyses. TEM studies confirmed the core-shell structure, pore sizes and shapes of mesoporous shells. The dissolution tests demonstrated that the release of Ag from the powder samples is pH-sensitive and time-dependent.
RESUMO
Titania nanotube (TNT) powder was prepared by rapid breakdown anodization (RBA) in a perchloric acid electrolyte. The photocatalytic efficiency of the as-prepared and powders annealed at temperatures between 250 and 550 °C was tested under UV and natural sunlight irradiation by decolorization of both anionic and cationic organic dyes, i.e., methyl orange (MO) and rhodamine B (RhB), as model pollutants. The tubular structure of the nanotubes was retained up to 250 °C, while at 350 °C and above, the nanotubes transformed into nanorods and nanoparticles. Depending on the annealing temperature, the TNTs consist of anatase, mixed anatase/brookite, or anatase/rutile phases. The bandgap of the as-prepared nanotubes is 3.04 eV, and it shifts towards the visible light region upon annealing. The X-ray photoelectron spectroscopy (XPS) results show the presence of titania and impurities including chlorine on the surface of the TNTs. The atomic ratio of Ti/O remains unchanged for the annealed TNTs, but the concentration of chlorine decreases with temperature. The photoluminescence (PL) indicate high electron-hole recombination for the as-prepared TNTs, probably due to the residual impurities, low crystallinity, and vacancies in the structure, while the highest photocurrent was observed for the TNT sample annealed at 450 °C. The TNTs induce a small degradation of the dyes under UV light; however, contrary to previous reports, complete decolorization of dyes is observed under sunlight. All TNT samples showed higher decolorization rates under sunlight irradiation than under UV light. The highest reaction rate for the TNT samples was obtained for the as-prepared TNT powder sample under sunlight using RhB (κ1 = 1.29 h-1). This is attributed to the bandgap, specific surface area and the crystal structure of the nanotubes. The as-prepared TNTs performed most efficiently for decolorization of RhB and outperformed the reference anatase powder under sunlight irradiation. This could be attributed to the abundance of reactive sites, higher specific surface area, and degradation mechanism of RhB. These RBA TNT photocatalyst powders demonstrate a more efficient use of the sunlight spectrum, making them viable for environmental remediation.
RESUMO
The growth of silver nanoparticles, the activation energy for silver particle growth, and the release of silver species in heat treated SiO 2 -Ag composite powders are investigated. The silver particle growth is controlled by heat treatment for 75 min of the as-synthesized SiO 2 -Ag composite powder at 300-800 °C. During heat treatment the mean size of the Ag particles increases from 10 nm up to 61 nm with increasing temperature, however, the particle size distribution widens and the mean size increases with increasing heat treatment temperature. Based on X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM) studies, silver particles are crystalline and in a metallic state after annealing in all SiO 2 -Ag composite powders. The growth of Ag particles is suggested to take place via diffusion and Ostwald ripening. The activation energy for particle growth was determined as 0.14 eV. The dissolution of silver in aqueous solutions from the SiO 2 -Ag composites heat treated, at 300 °C, 600 °C, and 700 °C, was investigated by varying pH and temperature. The dissolution was reduced in all conditions with increasing silver particle size, i.e., when the total surface area of Ag particles is reduced. It is suggested that the dissolution of silver from the composite powders can conveniently be adjusted by controlling the Ag particle size by the heat treatment of the composite powder.
RESUMO
In the published article "Control of the Size of Silver Nanoparticles and Release of Silver in Heat Treated SiO2-Ag Composite Powders" [1] a reference was omitted in the caption of Figure 4b. [...].
RESUMO
INTRODUCTION: In recent years, there has been an increasing interest in silica (SiO2) nanoparticles (NPs) as drug delivery systems. This interest is mainly attributed to the ease of their surface functionalization for drug loading. In orthopedic applications, gentamicin-loaded SiO2 NPs (nanohybrids) are frequently utilized for their prolonged antibacterial effects. Therefore, the possible adverse effects of SiO2-gentamicin nanohybrids on osteogenesis of bone-related cells should be thoroughly investigated to ensure safe applications. MATERIALS AND METHODS: The effects of SiO2-gentamicin nanohybrids on the cell viability and osteogenic differentiation of human osteoblast-like SaOS-2 cells were investigated, together with native SiO2 NPs and free gentamicin. RESULTS: The results of Cell Count Kit-8 (CCK-8) assay show that both SiO2-gentamicin nanohybrids and native SiO2 NPs reduce cell viability of SaOS-2 cells in a dose-dependent manner. Regarding osteogenesis, SiO2-gentamicin nanohybrids and native SiO2 NPs at the concentration range of 31.25-125 µg/mL do not influence the osteogenic differentiation capacity of SaOS-2 cells. At a high concentration (250 µg/mL), both materials induce a lower expression of alkaline phosphatase (ALP) but an enhanced mineralization. Free gentamicin at concentrations of 6.26 and 9.65 µg/mL does not significantly influence the cell viability and osteogenic differentiation capacity of SaOS-2 cells. CONCLUSIONS: The results of this study suggest that both SiO2-gentamicin nanohybrids and SiO2 NPs show cytotoxic effects to SaOS-2 cells. Further investigation on the effects of SiO2-gentamicin nanohybrids on the behaviors of stem cells or other regular osteoblasts should be conducted to make a full evaluation of the safety of SiO2-gentamicin nanohybrids in orthopedic applications.
Assuntos
Diferenciação Celular/efeitos dos fármacos , Gentamicinas/farmacologia , Nanopartículas/química , Osteoblastos/citologia , Osteogênese/efeitos dos fármacos , Dióxido de Silício/farmacologia , Fosfatase Alcalina/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Colágeno/metabolismo , Matriz Extracelular/metabolismo , Humanos , Nanopartículas/ultraestrutura , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Osteocalcina/metabolismo , Osteopontina/metabolismo , Tamanho da Partícula , Espectroscopia de Infravermelho com Transformada de Fourier , TermogravimetriaRESUMO
INTRODUCTION: Antibiotic resistance is a growing concern in health care. Methicillin-resistant Staphylococcus aureus (MRSA), forming biofilms, is a common cause of resistant orthopedic implant infections. Gentamicin is a crucial antibiotic preventing orthopedic infections. Silica-gentamicin (SiO2-G) delivery systems have attracted significant interest in preventing the formation of biofilms. However, compelling scientific evidence addressing their efficacy against planktonic MRSA and MRSA biofilms is still lacking, and their safety has not extensively been studied. MATERIALS AND METHODS: In this work, we have investigated the effects of SiO2-G nanohybrids against planktonic MRSA as well as MRSA and Escherichia coli biofilms and then evaluated their toxicity in zebrafish embryos, which are an excellent model for assessing the toxicity of nanotherapeutics. RESULTS: SiO2-G nanohybrids inhibited the growth and killed planktonic MRSA at a minimum concentration of 500 µg/mL. SiO2-G nanohybrids entirely eradicated E. coli cells in biofilms at a minimum concentration of 250 µg/mL and utterly deformed their ultrastructure through the deterioration of bacterial shapes and wrinkling of their cell walls. Zebrafish embryos exposed to SiO2-G nanohybrids (500 and 1,000 µg/mL) showed a nonsignificant increase in mortality rates, 13.4±9.4 and 15%±7.1%, respectively, mainly detected 24 hours post fertilization (hpf). Frequencies of malformations were significantly different from the control group only 24 hpf at the higher exposure concentration. CONCLUSION: Collectively, this work provides the first comprehensive in vivo assessment of SiO2-G nanohybrids as a biocompatible drug delivery system and describes the efficacy of SiO2-G nanohybrids in combating planktonic MRSA cells and eradicating E. coli biofilms.
Assuntos
Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Farmacorresistência Bacteriana/efeitos dos fármacos , Gentamicinas/farmacologia , Nanopartículas/toxicidade , Dióxido de Silício/química , Testes de Toxicidade , Animais , Embrião não Mamífero/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Humanos , Larva/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Nanopartículas/química , Nanopartículas/ultraestrutura , Peixe-Zebra/embriologiaRESUMO
Infected superficial wounds were traditionally controlled by topical antibiotics until the emergence of antibiotic-resistant bacteria. Silver (Ag) is a kernel for alternative antibacterial agents to fight this resistance quandary. The present study demonstrates a method for immobilizing small-sized (~5 nm) silver nanoparticles on silica matrix to form a nanosilver-silica (Ag-SiO₂) composite and shows the prolonged antibacterial effects of the composite in vitro. The composite exhibited a rapid initial Ag release after 24 h and a slower leaching after 48 and 72 h and was effective against both methicillin-resistant Staphylococcus aureus (MRSA) and Escherichia coli ( E . coli ). Ultraviolet (UV)-irradiation was superior to filter-sterilization in retaining the antibacterial effects of the composite, through the higher remaining Ag concentration. A gauze, impregnated with the Ag-SiO₂ composite, showed higher antibacterial effects against MRSA and E . coli than a commercial Ag-containing dressing, indicating a potential for the management and infection control of superficial wounds. Transmission and scanning transmission electron microscope analyses of the composite-treated MRSA revealed an interaction of the released silver ions with the bacterial cytoplasmic constituents, causing ultimately the loss of bacterial membranes. The present results indicate that the Ag-SiO₂ composite, with prolonged antibacterial effects, is a promising candidate for wound dressing applications.
RESUMO
Orthopedic applications commonly require the administration of systemic antibiotics. Gentamicin is one of the most commonly used aminoglycosides in the treatment and prophylaxis of infections associated with orthopedic applications, but gentamicin has a short half-life. However, silica nanoparticles (SiO2 NPs) can be used as elegant carriers for antibiotics to prolong their release. Our goal is the preparation and characterization of SiO2-gentamicin nanohybrids for their potential antimicrobial administration in orthopedic applications. In vitro gentamicin release profile from the nanohybrids (gentamicin-conjugated SiO2 NPs) prepared by the base-catalyzed precipitation exhibited fast release (21.4%) during the first 24 h and further extension with 43.9% release during the five-day experiment. Antimicrobial studies of the SiO2-gentamicin nanohybrids versus native SiO2 NPs and free gentamicin were performed against Bacillus subtilis (B. subtilis), Pseudomonas fluorescens (P. fluorescens) and Escherichia coli (E. coli). SiO2-gentamicin nanohybrids were most effective against B. subtilis. SiO2 NPs play no antimicrobial role. Parallel antimicrobial studies for the filter-sterilized gentamicin were performed to assess the effect of ultraviolet (UV)-irradiation on gentamicin. In summary, the initial fast gentamicin release fits the need for high concentration of antibiotics after orthopedic surgical interventions. Moreover, the extended release justifies the promising antimicrobial administration of the nanohybrids in bone applications.