Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Plant Physiol ; 174(2): 1051-1066, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28400496

RESUMO

The adhesion of plant cells is vital for support and protection of the plant body and is maintained by a variety of molecular associations between cell wall components. In some specialized cases, though, plant cells are programmed to detach, and root cap-derived border cells are examples of this. Border cells (in some species known as border-like cells) provide an expendable barrier between roots and the environment. Their maturation and release is an important but poorly characterized cell separation event. To gain a deeper insight into the complex cellular dynamics underlying this process, we undertook a systematic, detailed analysis of pea (Pisum sativum) root tip cell walls. Our study included immunocarbohydrate microarray profiling, monosaccharide composition determination, Fourier-transformed infrared microspectroscopy, quantitative reverse transcription-PCR of cell wall biosynthetic genes, analysis of hydrolytic activities, transmission electron microscopy, and immunolocalization of cell wall components. Using this integrated glycobiology approach, we identified multiple novel modes of cell wall structural and compositional rearrangement during root cap growth and the release of border cells. Our findings provide a new level of detail about border cell maturation and enable us to develop a model of the separation process. We propose that loss of adhesion by the dissolution of homogalacturonan in the middle lamellae is augmented by an active biophysical process of cell curvature driven by the polarized distribution of xyloglucan and extensin epitopes.


Assuntos
Parede Celular/metabolismo , Pisum sativum/citologia , Pisum sativum/metabolismo , Células Vegetais/metabolismo , Vias Biossintéticas/genética , Parede Celular/genética , Epitopos/metabolismo , Esterificação , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Glicosilação , Meristema/citologia , Meristema/metabolismo , Meristema/ultraestrutura , Análise em Microsséries , Modelos Biológicos , Monossacarídeos/análise , Pisum sativum/genética , Células Vegetais/ultraestrutura , Polissacarídeos/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier , Transcrição Gênica
2.
Carbohydr Polym ; 251: 117056, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33142608

RESUMO

We describe a method for permitting efficient modification by transglucosidase (TGA), from glycoside hydrolase family 31 (GH31), sequentially after the pre-treatment by maltogenic α-amylases (MA) from GH13. TGA treatment without MA pre-treatment had negligible effects on native starch, while TGA treatment with MA pre-treatment resulted in porous granules and increased permeability to enzymes. MA→TGA treatments lead to decreased molecular size of amylopectin molecules, increased α-1,6 branching, and increased amounts of amylopectin chains with the degree of polymerization (DP)<10 and decreased amounts of DP 10-28 after debranching. Wide-angle X-ray scattering (WAXS) data showed a general decrease in crystallinity except for a long term (20 h) TGA post-treatment which increased the relative crystallinity back to normal. MA→TGA treatment significantly lowered the starch retrogradation of starch and retarded the increase of storage- and loss moduli during storage. This work demonstrates the potential of sequential addition of starch active enzymes to obtain granular starch with improved functionality.


Assuntos
Glucosidases/química , Glicosídeo Hidrolases/química , Amido/química , Zea mays/química , Amilopectina/química , Glucosidases/metabolismo , Glicosídeo Hidrolases/metabolismo , Hidrólise , Porosidade , Difração de Raios X/métodos
3.
Carbohydr Polym ; 247: 116741, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-32829860

RESUMO

Effects of different pre-treatments of granular rice starch using ethanol (ET) and maltogenic α-amylase (MA), separately or combined sequentially ET→MA, were performed to enable efficient subsequent modification with branching enzyme (BE). The pre-treated samples were characterized with respect to morphology, molecular structure, physicochemical properties and the rate of digestion to amylolytic enzymes. MA produced pores and also eroded the granular surface whereas ET caused coapted granules, noticeable swelling but no pores. Crystallinity and enthalpy of gelatinization dramatically decreased with ET and ET→MA. Subsequent BE catalysis increased the specific surface area, crystallinity, α-1,6-glucosidic linkage ratio and enthalpy. BE catalyzed branching resulted in more intact granules, less swelling capacity, solubility and granular separation as compared to their control. These effects were related to reduced amylolytic susceptibility. Pre-treatment prior to BE catalysis offers an efficient alternative way to modify granular starch with different structure and properties depending on the pre-treatment protocol.


Assuntos
Amilose/química , Etanol/química , Glicosídeo Hidrolases/metabolismo , Oryza/química , Amido/química , Catálise , Estrutura Molecular
4.
Carbohydr Polym ; 230: 115611, 2020 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-31887905

RESUMO

Porous starch is attractive by providing high surface area for many applications. In this study amyloglucosidase (AMG) and maltogenic α-amylase (MA) were investigated in direct comparison to elucidate potential effects in producing porous starch using high amylose rice starch as a substrate. Both enzymes generated pores at the surface as illustrated by Scanning Electron Microscopy (SEM). The enzyme-treated granules had higher relative crystallinity as deduced from Wide Angle X-ray Scattering (WAXS). MA treatment increased the number of short amylopectin chains and decreased the molecular weight with extended incubation time. The MA-treated starch had higher solubility whereas swelling capacity, amylose content, peak viscosity, final viscosity, breakdown and setback of both treatments were decreased compared to the control. Enzymatic treatments produced starch with delayed gelatinization temperature and increased the enthalpy. The results demonstrate that porous rice starch can provide different functionalities depending on the enzyme mechanisms, extending the range of applications.


Assuntos
Amilose/química , Glucana 1,4-alfa-Glucosidase/metabolismo , Oryza/química , alfa-Amilases/metabolismo , Biocatálise , Interações Hidrofóbicas e Hidrofílicas , Maltose/química , Porosidade , Viscosidade
5.
Int J Biol Macromol ; 145: 100-107, 2020 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-31862366

RESUMO

The effects of multicycle ultrasound-assisted ice recrystallization (US+IR) combined with amyloglucosidase (AMG) or maltogenic α-amylase (MA) catalyzed hydrolysis on structure were investigated. Scanning electron microscopy (SEM) showed that the US+IR produced shallow indentations and grooves on the exterior of granules while the combination US+IR and enzyme hydrolysis created additional pores on starch granules. MA displayed a higher number of pores than AMG. The highest values of specific surface area (SBET) and the total pore volume were obtained for US+IR→MA (1.96 m2 g-1 and 7.26 × 10-3 cm3 g-1, respectively). The US+IR treatment significantly decreased the relative crystallinity, amylose content and swelling capacity. Those parameters were further efficiently decreased following enzymatic hydrolysis. The combined treatments generated products with higher initial gelatinization temperature (Ti) compared to the corresponding controls. The US+IR increased the digestion rate constant (k-value) compared to native starch. However, the combined treatment, US+IR→AMG, significantly decreased the k-value from 2.97 × 10-3 to 2.50 × 10-3 min-1 compared to its control. Our study demonstrates that US+IR treatment in combination with enzyme hydrolysis is a useful method to produce specifically functionalized porous rice starch that can be used as e.g. absorbents and for further chemical modifications.


Assuntos
Enzimas/química , Enzimas/metabolismo , Oryza/química , Oryza/metabolismo , Amido/química , Amido/metabolismo , Amilose/química , Amilose/metabolismo , Cristalização/métodos , Glucana 1,4-alfa-Glucosidase/química , Glucana 1,4-alfa-Glucosidase/metabolismo , Hidrólise , Porosidade , Temperatura , alfa-Amilases/química , alfa-Amilases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA