Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Acta Oncol ; 59(5): 558-564, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31833432

RESUMO

Introduction: To find the optimal dose prescription strategy for liver SBRT, this study investigated the tradeoffs between achievable target dose and healthy liver dose for a range of isotoxic uniform and non-uniform prescription level strategies.Material and methods: Nine patients received ten liver SBRT courses with intrafraction motion monitoring during treatment. After treatment, five VMAT treatment plans were made for each treatment course. The PTV margin was 5 mm (left-right, anterior-posterior) and 10 mm (cranio-caudal). All plans had a mean CTV dose of 56.25 Gy in three fractions, while the PTV was covered by 50%, 67%, 67 s% (steep dose gradient outside CTV), 80%, and 95% of this dose, respectively. The 50%, 67 s%, 80%, and 95% plans were then renormalized to be isotoxic with the standard 67% plan according to a Lyman-Kutcher-Burman normal tissue complication probability model for radiation induced liver disease. The CTV D98 and mean dose of the iso-toxic plans were calculated both without and with the observed intrafraction motion, using a validated method for motion-including dose reconstruction.Results: Under isotoxic conditions, the average [range] mean CTV dose per fraction decreased gradually from 21.2 [20.5-22.7] Gy to 15.5 [15.0-16.6] Gy and the D98 dose per fraction decreased from 20.4 [19.7-21.7] Gy to 15.0 [14.5-15.5] Gy, as the prescription level to the PTV rim was increased from 50% to 95%. With inclusion of target motion the mean CTV dose was 20.5 [16.5-22.5] Gy (50% PTV rim dose) and 15.4 [13.9-16.7] Gy (95% rim dose) while D98 was 17.8 [7.4-20.6] Gy (50% rim dose) and 14.6 [8.8-15.7] Gy (95% rim dose).Conclusion: Requirements of a uniform PTV dose come at the price of excess normal tissue dose. A non-uniform PTV dose allows increased CTV mean dose at the cost of robustness toward intrafraction motion. The increase in planned CTV dose by non-uniform prescription outbalanced the dose deterioration caused by motion.


Assuntos
Neoplasias Hepáticas/radioterapia , Radiocirurgia/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos , Simulação por Computador , Humanos , Fígado/diagnóstico por imagem , Fígado/efeitos da radiação , Neoplasias Hepáticas/diagnóstico por imagem , Movimento , Radiocirurgia/estatística & dados numéricos , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/estatística & dados numéricos , Radioterapia de Intensidade Modulada/estatística & dados numéricos
2.
Acta Oncol ; 52(7): 1437-44, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23879645

RESUMO

PURPOSE: To investigate the stability of target motion amplitude and motion directionality throughout full stereotactic body radiotherapy (SBRT) treatments of tumors in the liver. MATERIAL AND METHODS: Ten patients with gold markers implanted in the liver received 11 courses of 3-fraction SBRT on a conventional linear accelerator. A four-dimensional computed tomography (4DCT) scan was obtained for treatment planning. The time-resolved marker motion was determined throughout full treatment field delivery using the kV and MV imagers of the accelerator. The motion amplitude and motion directionality of all individual respiratory cycles were determined using principal component analysis (PCA). The variations in motion amplitude and directionality within the treatment courses and the difference from the motion in the 4DCT scan were determined. RESULTS: The patient mean (± 1 standard deviation) peak-to-peak 3D motion amplitude of individual respiratory cycles during a treatment course was 7.9 ± 4.1 mm and its difference from the 4DCT scan was -0.8 ± 2.5 mm (max, 6.6 mm). The mean standard deviation of 3D respiratory cycle amplitude within a treatment course was 2.0 ± 1.6 mm. The motion directionality of individual respiratory cycles on average deviated 4.6 ± 1.6° from the treatment course mean directionality. The treatment course mean motion directionality on average deviated 7.6 ± 6.5° from the directionality in the 4DCT scan. A single patient-specific oblique direction in space explained 97.7 ± 1.7% and 88.3 ± 10.1% of all positional variance (motion) throughout the treatment courses, excluding and including baseline shifts between treatment fields, respectively. CONCLUSION: Due to variable breathing amplitudes a single 4DCT scan was not always representative of the mean motion amplitude during treatment. However, the motion was highly directional with a fairly stable direction throughout treatment, indicating a potential for more optimal individualized motion margins aligned to the preferred direction of motion.


Assuntos
Tomografia Computadorizada Quadridimensional , Neoplasias Hepáticas/patologia , Radiocirurgia , Respiração , Marcadores Fiduciais , Humanos , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/cirurgia , Movimento (Física) , Estadiamento de Neoplasias , Aceleradores de Partículas , Prognóstico
4.
Artigo em Inglês | MEDLINE | ID: mdl-34977366

RESUMO

INTRODUCTION: Total body irradiation (TBI) is an important treatment modality that is used in combination with chemotherapy in many stem cell transplantation protocols. Therefore, the quality of the irradiation is important. Two techniques for planning and delivering TBI are presented and compared. METHODS AND MATERIALS: The technique named ExIMRT is a combination of manually shaped conventional fields from an extended SSD and isocentric IMRT fields. The technique named ExVMAT is a combination of conventional and IMRT fields from an extended SSD and isocentric VMAT fields. Dosimetric data from 32 patients who were planned and treated according to one of the two techniques were compared. RESULTS: When comparing the two techniques, it is determined that the ExVMAT technique is able to significantly reduce the mean total volume overdosed by 120% from 408 to 12 cm3. The dose covering 98% of the total lung volume is significantly increased by this technique from a mean of 9.7 Gy to 10.3 Gy. Additionally, the dose covering 2% of the total kidney volume is significantly decreased from a mean of 12.8 to 12.5 Gy. Furthermore, the population-based variance of the median dose to the total lung volume, the heart and the volume of the body prescribed to 12.5 Gy is significantly reduced. The results are obtained without compromising overall treatment quality as treatment time or dose rate to the lungs. CONCLUSION: Using the ExVMAT technique, a superior dose distribution can be delivered both from a patient and a population perspective compared to the ExIMRT technique.

5.
Acta Oncol ; 50(6): 823-8, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21767180

RESUMO

BACKGROUND: Stereotactic body radiotherapy (SBRT) is often the preferred treatment for the advanced liver tumours which owing to tumour distribution, size and multi-focality are out of range of surgical resection or radiofrequency ablation. However, only a minority of patients with liver tumours may be candidates for conventional SBRT because of the limited radiation tolerance of normal liver, intestine and other normal tissues. Due to the favourable depth-dose characteristics of protons, intensity-modulated proton therapy (IMPT) may be a superior alternative to photon-based SBRT. The purpose of this treatment planning study was therefore to investigate the potential sparing of normal liver by IMPT compared to photon-based intensity-modulated radiotherapy (IMRT) for solitary liver tumours. MATERIAL AND METHODS: Ten patients with solitary liver metastasis treated at our institution with multi-field SBRT were retrospectively re-planned with IMRT and proton pencil beam scanning techniques. For the proton plans, two to three coplanar fields were used in contrast to five to six coplanar and non-coplanar photon fields. The same planning objectives were used for both techniques. A risk adapted dose prescription to the PTV surface of 12.5-16.75 Gy × 3 was used. RESULTS: The spared liver volume for IMPT was higher compared to IMRT in all 10 patients. At the highest prescription dose level, the median liver volume receiving less than 15 Gy was 1411 cm(3) for IMPT and 955 cm(3) for IMRT (p < 0.005); also the mean liver dose was lower with IMPT compared to IMRT (median 9.1 Gy vs. 20.0 Gy; p < 0.005). All IMPT and IMRT plans met the V(D < 15 Gy) > 700 cm(3) constraint. For the D(mean) ≤ 15 Gy constraint, nine of 10 cases could be treated at the highest dose level using IMPT whereas with IMRT, only two cases met this constraint at the highest dose level and six at the lowest dose level. CONCLUSION: A considerable sparing of normal liver tissue can be obtained using proton-based SBRT for solitary liver tumours.


Assuntos
Neoplasias Hepáticas/radioterapia , Neoplasias Hepáticas/cirurgia , Fígado/efeitos da radiação , Tratamentos com Preservação do Órgão , Terapia com Prótons , Radiocirurgia , Radioterapia de Intensidade Modulada , Relação Dose-Resposta à Radiação , Raios gama , Humanos , Neoplasias Hepáticas/secundário , Órgãos em Risco , Planejamento da Radioterapia Assistida por Computador , Tomografia Computadorizada por Raios X
6.
Acta Oncol ; 49(7): 1177-83, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20590367

RESUMO

BACKGROUND: Localisation errors in cone-beam CT (CBCT) guided stereotactic body radiation therapy (SBRT) were evaluated and compared to positioning using the external coordinates of a stereotactic body frame (SBF) alone. Possible correlations to patient- or treatment-specific factors such as body mass index (BMI), planning time, treatment delivery time, and distance between tumour and spinal cord were explored to determine whether they influenced on the benefit of image-guidance. MATERIAL AND METHODS: A total of 34 patients received SBRT (3 fractions) for tumours in the liver (15 patients) or the lung (19 patients). Immobilisation and positioning was obtained with a SBF. Pre- and post-treatment CBCT scans were registered with the bony anatomy of the planning CT to find inter- and intrafractional patient positioning errors (PPE). For lung tumour patients, matching was also performed on the tumours to find the tumour positioning errors (TPE) and baseline shifts relative to bony anatomy. RESULTS: The mean inter- and intrafractional 3D vector PPE was 4.5 ± 2.7 mm (average ± SD) and 1.5 ± 0.6 mm, respectively, for the combined group of patients. For lung tumours, the interfractional misalignment was 5.6 ± 1.8 mm. The baseline shift was 3.9 ± 2.0 mm. Intrafractional TPE and baseline shifts were 2.1 ± 0.7 mm and 1.9 ± 0.6 mm, respectively. The magnitude of interfractional baseline shift was closely correlated with the distance between the tumour and the spinal cord. Intrafractional errors were independent of patient BMI, age or gender. CONCLUSION: Image-guidance reduced setup errors considerably. The study demonstrated the benefit of CBCT-guidance regardless of patient specific factors such as BMI, age or gender. Protection of the spinal cord was facilitated by the correlation between the tumour position relative to the spinal cord and the magnitude of baseline shift.


Assuntos
Tomografia Computadorizada de Feixe Cônico/métodos , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Pulmonares/diagnóstico por imagem , Radiocirurgia/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Neoplasias dos Ductos Biliares/diagnóstico por imagem , Neoplasias dos Ductos Biliares/patologia , Neoplasias dos Ductos Biliares/secundário , Neoplasias dos Ductos Biliares/cirurgia , Ductos Biliares Intra-Hepáticos/diagnóstico por imagem , Ductos Biliares Intra-Hepáticos/patologia , Carcinoma Pulmonar de Células não Pequenas/diagnóstico por imagem , Carcinoma Pulmonar de Células não Pequenas/cirurgia , Colangiocarcinoma/diagnóstico por imagem , Colangiocarcinoma/patologia , Colangiocarcinoma/secundário , Colangiocarcinoma/cirurgia , Estudos de Coortes , Tomografia Computadorizada de Feixe Cônico/normas , Erros de Diagnóstico , Fracionamento da Dose de Radiação , Feminino , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/secundário , Neoplasias Hepáticas/cirurgia , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/secundário , Neoplasias Pulmonares/cirurgia , Masculino , Carga Tumoral/efeitos da radiação
7.
Phys Med Biol ; 53(2): 353-60, 2008 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-18184991

RESUMO

The possible use of silver as a material for in vivo dosimetry in radiotherapy was investigated. The investigation was carried out using a positron emission tomography (PET) scanner, two clinical accelerators and a phantom with silver implants. The phantom was irradiated several times to doses between 6 and 45 Gy. The resulting activity of positron-emitting isotopes produced in the silver by photonuclear processes was measured. It was found that the two therapeutic beams with energies of 15 MV and 18 MV would produce approximately 8344 and 7013 atoms of the radioactive isotope (106)Ag per Gy of absorbed dose per gram of silver. This demonstrates that it is possible to derive absorbed doses from the radioactivity induced in silver by radiation when measured with the PET scanner. Even though the physical basis for this method is found to be sound, its application, for instance to perform quality assurance of stereotactic radiotherapy, needs further study.


Assuntos
Tomografia por Emissão de Pósitrons/métodos , Radiometria/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia Conformacional/métodos , Prata , Estudos de Viabilidade , Humanos , Imagens de Fantasmas , Tomografia por Emissão de Pósitrons/instrumentação , Dosagem Radioterapêutica , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
8.
Radiother Oncol ; 121(1): 75-78, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27555229

RESUMO

To minimize the risk of marker migration in fiducial marker guided liver SBRT it is common to add a delay of a week between marker implantation and planning CT. This study found that such a delay is unnecessary and could be avoided to minimize the treatment preparation time.


Assuntos
Marcadores Fiduciais , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/radioterapia , Radiocirurgia/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Humanos , Fatores de Tempo , Tomografia Computadorizada por Raios X/métodos
9.
Med Dosim ; 40(4): 296-303, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26002123

RESUMO

When standard conformal x-ray technique for craniospinal irradiation is used, it is a challenge to achieve satisfactory dose coverage of the target including the area of the cribriform plate, while sparing organs at risk. We present a new intensity-modulated radiation therapy (IMRT), noncoplanar technique, for delivering irradiation to the cranial part and compare it with 3 other techniques and previously published results. A total of 13 patients who had previously received craniospinal irradiation with standard conformal x-ray technique were reviewed. New treatment plans were generated for each patient using the noncoplanar IMRT-based technique, a coplanar IMRT-based technique, and a coplanar volumetric-modulated arch therapy (VMAT) technique. Dosimetry data for all patients were compared with the corresponding data from the conventional treatment plans. The new noncoplanar IMRT technique substantially reduced the mean dose to organs at risk compared with the standard radiation technique. The 2 other coplanar techniques also reduced the mean dose to some of the critical organs. However, this reduction was not as substantial as the reduction obtained by the noncoplanar technique. Furthermore, compared with the standard technique, the IMRT techniques reduced the total calculated radiation dose that was delivered to the normal tissue, whereas the VMAT technique increased this dose. Additionally, the coverage of the target was significantly improved by the noncoplanar IMRT technique. Compared with the standard technique, the coplanar IMRT and the VMAT technique did not improve the coverage of the target significantly. All the new planning techniques increased the number of monitor units (MU) used-the noncoplanar IMRT technique by 99%, the coplanar IMRT technique by 122%, and the VMAT technique by 26%-causing concern for leak radiation. The noncoplanar IMRT technique covered the target better and decreased doses to organs at risk compared with the other techniques. All the new techniques increased the number of MU compared with the standard technique.


Assuntos
Neoplasias Cerebelares/radioterapia , Meduloblastoma/radioterapia , Radioterapia de Intensidade Modulada/métodos , Adolescente , Adulto , Criança , Pré-Escolar , Humanos , Pessoa de Meia-Idade , Adulto Jovem
10.
Acta Oncol ; 45(7): 948-52, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16982562

RESUMO

The aim of this study was to evaluate the uncertainty of patient immobilization within the Elekta body frame (SBF) used for stereotactic body radiotherapy (SBRT) and to suggest margins sufficient to ensure dose coverage to the gross target volume (GTV). The study was based on the evaluation of repeated CT-scans of 30 patients treated by SBRT. The overall uncertainty was divided between uncertainty related to internal movement of the tumor and uncertainty in the patient set-up. Standard deviations of the overall tumor displacement were 2 mm, 3 mm and 4 mm in medial-lateral (m-l), anterior-posterior (a-p), and cranio-caudal (c-c) directions, respectively. In a model based on the data, an ellipsoid planned target volume (PTV) corresponding to the standard deviations in the orthogonal directions and a scaling factor, K defined a 3-dimentional (3-D) probability density. According to the model, a 90% probability of full dose coverage of the GTV was secured using margins of 9 mm (m-l), 9 mm (a-p) and 13 mm (c-c), respectively. The overall uncertainty was dominated by internal tumor movements whereas the set-up uncertainty of the patient in the SBF was less pronounced. It was concluded that the Elekta SBF is useful for immobilisation of patients for SBRT. However, due to internal movement conventional margins of 5 mm in m-l and a-p and 10 mm in the c-c directions may be insufficient for full dose coverage.


Assuntos
Movimento/fisiologia , Radiocirurgia/instrumentação , Radiocirurgia/métodos , Carcinoma/cirurgia , Humanos , Neoplasias Hepáticas/cirurgia , Neoplasias Pulmonares/cirurgia , Modelos Estatísticos , Restrição Física
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA