Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Blood ; 143(24): 2490-2503, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38493481

RESUMO

ABSTRACT: Pegylated interferon alfa (pegIFN-α) can induce molecular remissions in patients with JAK2-V617F-positive myeloproliferative neoplasms (MPNs) by targeting long-term hematopoietic stem cells (LT-HSCs). Additional somatic mutations in genes regulating LT-HSC self-renewal, such as DNMT3A, have been reported to have poorer responses to pegIFN-α. We investigated whether DNMT3A loss leads to alterations in JAK2-V617F LT-HSC functions conferring resistance to pegIFN-α treatment in a mouse model of MPN and in hematopoietic progenitors from patients with MPN. Long-term treatment with pegIFN-α normalized blood parameters and reduced splenomegaly and JAK2-V617F chimerism in single-mutant JAK2-V617F (VF) mice. However, pegIFN-α in VF;Dnmt3aΔ/Δ (VF;DmΔ/Δ) mice worsened splenomegaly and failed to reduce JAK2-V617F chimerism. Furthermore, LT-HSCs from VF;DmΔ/Δ mice compared with VF were less prone to accumulate DNA damage and exit dormancy upon pegIFN-α treatment. RNA sequencing showed that IFN-α induced stronger upregulation of inflammatory pathways in LT-HSCs from VF;DmΔ/Δ than from VF mice, indicating that the resistance of VF;DmΔ/Δ LT-HSC was not due to failure in IFN-α signaling. Transplantations of bone marrow from pegIFN-α-treated VF;DmΔ/Δ mice gave rise to more aggressive disease in secondary and tertiary recipients. Liquid cultures of hematopoietic progenitors from patients with MPN with JAK2-V617F and DNMT3A mutation showed increased percentages of JAK2-V617F-positive colonies upon IFN-α exposure, whereas in patients with JAK2-V617F alone, the percentages of JAK2-V617F-positive colonies decreased or remained unchanged. PegIFN-α combined with 5-azacytidine only partially overcame resistance in VF;DmΔ/Δ mice. However, this combination strongly decreased the JAK2-mutant allele burden in mice carrying VF mutation only, showing potential to inflict substantial damage preferentially to the JAK2-mutant clone.


Assuntos
DNA (Citosina-5-)-Metiltransferases , DNA Metiltransferase 3A , Resistencia a Medicamentos Antineoplásicos , Células-Tronco Hematopoéticas , Interferon-alfa , Janus Quinase 2 , Transtornos Mieloproliferativos , Animais , DNA Metiltransferase 3A/genética , Janus Quinase 2/genética , Janus Quinase 2/metabolismo , DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , Interferon-alfa/farmacologia , Camundongos , Transtornos Mieloproliferativos/genética , Transtornos Mieloproliferativos/patologia , Transtornos Mieloproliferativos/tratamento farmacológico , Transtornos Mieloproliferativos/metabolismo , Humanos , Resistencia a Medicamentos Antineoplásicos/genética , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/patologia , Células-Tronco Hematopoéticas/efeitos dos fármacos , Autorrenovação Celular , Camundongos Endogâmicos C57BL , Polietilenoglicóis/farmacologia , Proteínas Recombinantes
2.
Proc Natl Acad Sci U S A ; 120(10): e2220131120, 2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36848575

RESUMO

Hydroperoxides are formed in the atmospheric oxidation of volatile organic compounds, in the combustion autoxidation of fuel, in the cold environment of the interstellar medium, and also in some catalytic reactions. They play crucial roles in the formation and aging of secondary organic aerosols and in fuel autoignition. However, the concentration of organic hydroperoxides is seldom measured, and typical estimates have large uncertainties. In this work, we developed a mild and environmental-friendly method for the synthesis of alkyl hydroperoxides (ROOH) with various structures, and we systematically measured the absolute photoionization cross-sections (PICSs) of the ROOHs using synchrotron vacuum ultraviolet-photoionization mass spectrometry (SVUV-PIMS). A chemical titration method was combined with an SVUV-PIMS measurement to obtain the PICS of 4-hydroperoxy-2-pentanone, a typical molecule for combustion and atmospheric autoxidation ketohydroperoxides (KHPs). We found that organic hydroperoxide cations are largely dissociated by loss of OOH. This fingerprint was used for the identification and accurate quantification of the organic peroxides, and it can therefore be used to improve models for autoxidation chemistry. The synthesis method and photoionization dataset for organic hydroperoxides are useful for studying the chemistry of hydroperoxides and the reaction kinetics of the hydroperoxy radicals and for developing and evaluating kinetic models for the atmospheric autoxidation and combustion autoxidation of the organic compounds.

3.
Phys Chem Chem Phys ; 26(13): 10357-10368, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38502092

RESUMO

We investigate the kinetics and report the time-resolved concentrations of key chemical species in the oxidation of tetrahydrofuran (THF) at 7500 torr and 450-675 K. Experiments are carried out using high-pressure multiplexed photoionization mass spectrometry (MPIMS) combined with tunable vacuum ultraviolet radiation from the Berkely Lab Advanced Light Source. Intermediates and products are quantified using reference photoionization (PI) cross sections, when available, and constrained by a global carbon balance tracking approach at all experimental temperatures simultaneously for the species without reference cross sections. From carbon balancing, we determine time-resolved concentrations for the ROO˙ and ˙OOQOOH radical intermediates, butanedial, and the combined concentration of ketohydroperoxide (KHP) and unsaturated hydroperoxide (UHP) products stemming from the ˙QOOH + O2 reaction. Furthermore, we quantify a product that we tentatively assign as fumaraldehyde, which arises from UHP decomposition via H2O or ˙OH + H loss. The experimentally derived species concentrations are compared with model predictions using the most recent literature THF oxidation mechanism of Fenard et al., (Combust. Flame, 2018, 191, 252-269). Our results indicate that the literature mechanism significantly overestimates THF consumption and the UHP + KHP concentration at our conditions. The model predictions are sensitive to the rate coefficient for the ROO˙ isomerization to ˙QOOH, which is the gateway for radical chain propagating and branching pathways. Comparisons with our recent results for cyclopentane (Demireva et al., Combust. Flame, 2023, 257, 112506) provide insights into the effect of the ether group on reactivity and highlight the need to determine accurate rate coefficients of ROO˙ isomerization and subsequent reactions.

4.
J Chem Phys ; 160(12)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38526109

RESUMO

Methoxymethanol (CH3OCH2OH) is a reactive C2 ether-alcohol that is formed by coupling events in both heterogeneous and homogeneous systems. It is found in complex reactive environments-for example those associated with catalytic reactors, combustion systems, and liquid-phase mixtures of oxygenates. Using tunable synchrotron-generated vacuum-ultraviolet photons between 10.0 and 11.5 eV, we report on the photoionization spectroscopy of methoxymethanol. We determine that the lowest-energy photoionization process is the dissociative ionization of methoxymethanol via H-atom loss to produce [C2H5O2]+, a fragment cation with a mass-to-charge ratio (m/z) = 61.029. We measure the appearance energy of this fragment ion to be 10.24 ± 0.05 eV. The parent cation is not detected in the energy range examined. To elucidate the origin of the m/z = 61.029 (C2H5O2) fragment, we used automated electronic structure calculations to identify key stationary points on the cation potential energy surface and compute conformer-specific microcanonical rate coefficients for the important unimolecular processes. The calculated H-atom dissociation pathway results in a [C2H5O2]+ fragment appearance at 10.21 eV, in excellent agreement with experimental results.

5.
Blood ; 137(16): 2139-2151, 2021 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-33667305

RESUMO

We studied a subset of hematopoietic stem cells (HSCs) that are defined by elevated expression of CD41 (CD41hi) and showed bias for differentiation toward megakaryocytes (Mks). Mouse models of myeloproliferative neoplasms (MPNs) expressing JAK2-V617F (VF) displayed increased frequencies and percentages of the CD41hi vs CD41lo HSCs compared with wild-type controls. An increase in CD41hi HSCs that correlated with JAK2-V617F mutant allele burden was also found in bone marrow from patients with MPN. CD41hi HSCs produced a higher number of Mk-colonies of HSCs in single-cell cultures in vitro, but showed reduced long-term reconstitution potential compared with CD41lo HSCs in competitive transplantations in vivo. RNA expression profiling showed an upregulated cell cycle, Myc, and oxidative phosphorylation gene signatures in CD41hi HSCs, whereas CD41lo HSCs showed higher gene expression of interferon and the JAK/STAT and TNFα/NFκB signaling pathways. Higher cell cycle activity and elevated levels of reactive oxygen species were confirmed in CD41hi HSCs by flow cytometry. Expression of Epcr, a marker for quiescent HSCs inversely correlated with expression of CD41 in mice, but did not show such reciprocal expression pattern in patients with MPN. Treatment with interferon-α further increased the frequency and percentage of CD41hi HSCs and reduced the number of JAK2-V617F+ HSCs in mice and patients with MPN. The shift toward the CD41hi subset of HSCs by interferon-α provides a possible mechanism of how interferon-α preferentially targets the JAK2 mutant clone.


Assuntos
Interferon-alfa/uso terapêutico , Janus Quinase 2/genética , Megacariócitos/metabolismo , Transtornos Mieloproliferativos/genética , Animais , Técnicas de Introdução de Genes , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Humanos , Megacariócitos/citologia , Camundongos , Camundongos Transgênicos , Transtornos Mieloproliferativos/tratamento farmacológico , Glicoproteína IIb da Membrana de Plaquetas/genética , Mutação Puntual/efeitos dos fármacos
6.
J Phys Chem A ; 127(3): 789-798, 2023 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36648424

RESUMO

The chemical reaction network of low-temperature plasma-assisted oxidation of methane (CH4) and ethylene (C2H4) with nickel oxide (NiO) was investigated in a heated plasma reactor through time-dependent species measurements by electron-ionization molecular beam mass spectrometry (EI-MBMS). Methane (ethylene) oxidation by NiO was explored in temperature ranges from 300-700 °C (300-500 °C) and 300-800 °C (300-600 °C) for the plasma and nonplasma conditions. Significant enhancement of methane oxidation was observed with plasma between 400 and 500 °C, where no oxidation was observed under nonplasma conditions. For the oxidation of methane at higher temperatures, three different oxidation stages were observed: (I) a period of complete oxidation, (II) a period of incomplete CO oxidation, and (III) a period of carbon buildup. For the C2H4 experiments, and unlike the CH4 experiments, the plasma resulted in a significant amount of new intermediate oxygenated species, such as CH2O, CH3OH, C2H4O, and C2H6O. Carbon deposits were observed under both methane and ethylene conditions and verified by X-ray photoelectron spectroscopy (XPS). ReaxFF (reactive force field) simulations were performed for the oxidation of CH4 and C2H4 in a nonplasma environment. The simulated intermediates and products largely agree with the species measured in the experiments, though the predicted intermediate oxygenated species such as CH2O and C2H6O were not observed in experiments under nonplasma conditions. A reaction pathway analysis for CH4 and C2H4 reacting with NiO was created based on the observed species from the MBMS spectra along with ReaxFF simulations.

7.
J Phys Chem A ; 127(1): 286-299, 2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36580040

RESUMO

Bio-hybrid fuels are a promising solution to accomplish a carbon-neutral and low-emission future for the transportation sector. Two potential candidates are the heterocyclic acetals 1,3-dioxane (C4H8O2) and 1,3-dioxolane (C3H6O2), which can be produced from the combination of biobased feedstocks, carbon dioxide, and renewable electricity. In this work, comprehensive experimental and numerical investigations of 1,3-dioxane and 1,3-dioxolane were performed to support their application in internal combustion engines. Ignition delay times and laminar flame speeds were measured to reveal the combustion chemistry on the macroscale, while speciation measurements in a jet-stirred reactor and ethylene-based counterflow diffusion flames provided insights into combustion chemistry and pollutant formation on the microscale. Comparing the experimental and numerical data using either available or proposed kinetic models revealed that the combustion chemistry and pollutant formation differ substantially between 1,3-dioxane and 1,3-dioxolane, although their molecular structures are similar. For example, 1,3-dioxane showed higher reactivity in the low-temperature regime (500-800 K), while 1,3-dioxolane addition to ethylene increased polycyclic aromatic hydrocarbons and soot formation in high-temperature (>800 K) counterflow diffusion flames. Reaction pathway analyses were performed to examine and explain the differences between these two bio-hybrid fuels, which originate from the chemical bond dissociation energies in their molecular structures.


Assuntos
Dioxolanos , Poluentes Ambientais , Hidrocarbonetos Policíclicos Aromáticos , Dioxolanos/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Dioxanos/análise
8.
Angew Chem Int Ed Engl ; 61(42): e202209168, 2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-35895936

RESUMO

A crucial chain-branching step in autoignition is the decomposition of ketohydroperoxides (KHP) to form an oxy radical and OH. Other pathways compete with chain-branching, such as "Korcek" dissociation of γ-KHP to a carbonyl and an acid. Here we characterize the formation of a γ-KHP and its decomposition to formic acid+acetone products from observations of n-butane oxidation in two complementary experiments. In jet-stirred reactor measurements, KHP is observed above 590 K. The KHP concentration decreases with increasing temperature, whereas formic acid and acetone products increase. Observation of characteristic isotopologs acetone-d3 and formic acid-d0 in the oxidation of CH3 CD2 CD2 CH3 is consistent with a Korcek mechanism. In laser-initiated oxidation experiments of n-butane, formic acid and acetone are produced on the timescale of KHP removal. Modelling the time-resolved production of formic acid provides an estimated upper limit of 2 s-1 for the rate coefficient of KHP decomposition to formic acid+acetone.

9.
J Am Chem Soc ; 143(7): 2751-2756, 2021 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-33577316

RESUMO

DNA-encoded small molecule libraries (DELs) have facilitated the discovery of novel modulators of many different therapeutic protein targets. We report the first successful screening of a multimillion membered DEL inside a living cell. We demonstrate a novel method using oocytes from the South African clawed frog Xenopus laevis. The large size of the oocytes of 1 µL, or 100 000 times bigger than a normal somatic cell, permits simple injection of DELs, thus resolving the fundamental problem of delivering DELs across cell membranes for in vivo screening. The target protein was expressed in the oocytes fused to a prey protein, to allow specific DNA labeling and hereby discriminate between DEL members binding to the target protein and the endogenous cell proteins. The 194 million member DEL was screened against three pharmaceutically relevant protein targets, p38α, ACSS2, and DOCK5. For all three targets multiple chemical clusters were identified. For p38α, validated hits with single digit nanomolar potencies were obtained. This work demonstrates a powerful new approach to DEL screening, which eliminates the need for highly purified active target protein and which performs the screening under physiological relevant conditions and thus is poised to increase the DEL amenable target space and reduce the attrition rates.


Assuntos
DNA/metabolismo , Bibliotecas de Moléculas Pequenas/metabolismo , Xenopus laevis/metabolismo , Acetato-CoA Ligase/química , Acetato-CoA Ligase/genética , Acetato-CoA Ligase/metabolismo , Animais , Humanos , Proteína Quinase 14 Ativada por Mitógeno/química , Proteína Quinase 14 Ativada por Mitógeno/genética , Proteína Quinase 14 Ativada por Mitógeno/metabolismo , Oócitos/metabolismo , Bibliotecas de Moléculas Pequenas/química , Xenopus laevis/crescimento & desenvolvimento
10.
Blood ; 134(21): 1832-1846, 2019 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-31511238

RESUMO

Increased energy requirement and metabolic reprogramming are hallmarks of cancer cells. We show that metabolic alterations in hematopoietic cells are fundamental to the pathogenesis of mutant JAK2-driven myeloproliferative neoplasms (MPNs). We found that expression of mutant JAK2 augmented and subverted metabolic activity of MPN cells, resulting in systemic metabolic changes in vivo, including hypoglycemia, adipose tissue atrophy, and early mortality. Hypoglycemia in MPN mouse models correlated with hyperactive erythropoiesis and was due to a combination of elevated glycolysis and increased oxidative phosphorylation. Modulating nutrient supply through high-fat diet improved survival, whereas high-glucose diet augmented the MPN phenotype. Transcriptomic and metabolomic analyses identified numerous metabolic nodes in JAK2-mutant hematopoietic stem and progenitor cells that were altered in comparison with wild-type controls. We studied the consequences of elevated levels of Pfkfb3, a key regulatory enzyme of glycolysis, and found that pharmacological inhibition of Pfkfb3 with the small molecule 3PO reversed hypoglycemia and reduced hematopoietic manifestations of MPNs. These effects were additive with the JAK1/2 inhibitor ruxolitinib in vivo and in vitro. Inhibition of glycolysis by 3PO altered the redox homeostasis, leading to accumulation of reactive oxygen species and augmented apoptosis rate. Our findings reveal the contribution of metabolic alterations to the pathogenesis of MPNs and suggest that metabolic dependencies of mutant cells represent vulnerabilities that can be targeted for treating MPNs.


Assuntos
Células-Tronco Hematopoéticas/metabolismo , Janus Quinase 2/genética , Transtornos Mieloproliferativos/genética , Transtornos Mieloproliferativos/metabolismo , Animais , Humanos , Camundongos , Mutação
11.
Phys Chem Chem Phys ; 23(41): 23554-23566, 2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34651147

RESUMO

Uni- and bi-molecular reactions involving Criegee intermediates (CIs) have been the focus of many studies due to the role these molecules play in atmospheric chemistry. The reactivity of CIs is known to strongly depend on their structure. The reaction network of the second simplest CI, acetaldehyde oxide (CH3CHOO), is investigated in this work in an atmospheric pressure jet-stirred reactor (JSR) during the ozonolysis of trans-2-butene to explore the kinetic pathways relevant to atmospheric chemistry and low-temperature combustion. The mole fraction profiles of reactants, intermediates, and final products are determined by means of molecular-beam mass spectrometry in conjunction with single-photon ionization employing tunable synchrotron-generated vacuum ultraviolet radiation. A network of CI reactions is identified in the temperature region below 600 K, characterized by CI addition to trans-2-butene, water, formaldehyde, formic acid, and methanol. No sequential additions of the CH3CHOO CI are observed, in contrast with the reactivity of the simplest CI (H2COO) and the earlier observation of an extensive reaction network with up to four H2COO sequential additions (Phys. Chem. Chem. Phys., 2019, 21, 7341-7357). Experimental photoionization efficiency scans recorded at 300 K and 425 K and ab initio threshold energy calculations lead to the identification and quantification of previously elusive intermediates, such as ketohydroperoxide and hydroperoxide species. Specifically, the C4H8 + O3 adduct is identified as a ketohydroperoxide (KHP, 3-hydroperoxybutan-2-one, CH3C(O)CH(CH3)OOH), while hydroxyacetaldehyde (glycolaldehyde, HCOCH2OH) formation is attributed to unimolecular isomerization of the CIs. Other hydroperoxide species such as methyl hydroperoxide (CH3OOH), ethyl hydroperoxide (C2H5OOH), butyl hydroperoxide (OOH), hydroperoxyl acetaldehyde (HOOCH2CHO), hydroxyethyl hydroperoxide (CH3CH(OH)OOH), but-1-enyl-3-hydroperoxide, and 4-hydroxy-3-methylpentan-2-one (HOCH(CH3)CH(CH3)C(O)CH3) are also identified. Detection of additional oxygenated species such as methanol, ethanol, ketene, and aldehydes suggests multiple active oxidation routes. These results provide additional evidence that CIs are key intermediates of the ozone-unsaturated hydrocarbon reactions providing critical inputs for improved kinetics models.

12.
J Phys Chem A ; 125(18): 3826-3840, 2021 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-33826842

RESUMO

This Perspective presents recent advances in our knowledge of the fundamental elementary mechanisms involved in the low- and high-temperature molecular mass growth processes to polycyclic aromatic hydrocarbons in combustion systems and in extraterrestrial environments (hydrocarbon-rich atmospheres of planets and their moons, cold molecular clouds, circumstellar envelopes). Molecular beam studies combined with electronic structure calculations extracted five key elementary mechanisms: Hydrogen Abstraction-Acetylene Addition, Hydrogen Abstraction-Vinylacetylene Addition, Phenyl Addition-DehydroCyclization, Radical-Radical Reactions, and Methylidyne Addition-Cyclization-Aromatization. These studies, summarized here, provide compelling evidence that key classes of aromatic molecules can be synthesized in extreme environments covering low temperatures in molecular clouds (10 K) and hydrocarbon-rich atmospheres of planets and their moons (35-150 K) to high-temperature environments like circumstellar envelopes of carbon-rich Asymptotic Giant Branch Stars stars and combustion systems at temperatures above 1400 K thus shedding light on the aromatic universe we live in.

13.
Angew Chem Int Ed Engl ; 60(52): 27230-27235, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34605134

RESUMO

Rapid molecular-weight growth of hydrocarbons occurs in flames, in industrial synthesis, and potentially in cold astrochemical environments. A variety of high- and low-temperature chemical mechanisms have been proposed and confirmed, but more facile pathways may be needed to explain observations. We provide laboratory confirmation in a controlled pyrolysis environment of a recently proposed mechanism, radical-radical chain reactions of resonance-stabilized species. The recombination reaction of phenyl (c-C6 H5 ) and benzyl (c-C6 H5 CH2 ) radicals produces both diphenylmethane and diphenylmethyl radicals, the concentration of the latter increasing with rising temperature. A second phenyl addition to the product radical forms both triphenylmethane and triphenylmethyl radicals, confirming the propagation of radical-radical chain reactions under the experimental conditions of high temperature (1100-1600 K) and low pressure (ca. 3 kPa). Similar chain reactions may contribute to particle growth in flames, the interstellar medium, and industrial reactors.

14.
Haematologica ; 105(8): 2095-2104, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-31582541

RESUMO

Aberrantly expressed cytokines in the bone marrow (BM) niche are increasingly recognized as critical mediators of survival and expansion of leukemic stem cells. To identify regulators of primitive chronic myeloid leukemia (CML) cells, we performed a high-content cytokine screen using primary CD34+ CD38low chronic phase CML cells. Out of the 313 unique human cytokines evaluated, 11 were found to expand cell numbers ≥2-fold in a 7-day culture. Focusing on novel positive regulators of primitive CML cells, the myostatin antagonist myostatin propeptide gave the largest increase in cell expansion and was chosen for further studies. Herein, we demonstrate that myostatin propeptide expands primitive CML and normal BM cells, as shown by increased colony-forming capacity. For primary CML samples, retention of CD34-expression was also seen after culture. Furthermore, we show expression of MSTN by CML mesenchymal stromal cells, and that myostatin propeptide has a direct and instant effect on CML cells, independent of myostatin, by demonstrating binding of myostatin propeptide to the cell surface and increased phosphorylation of STAT5 and SMAD2/3. In summary, we identify myostatin propeptide as a novel positive regulator of primitive CML cells and corresponding normal hematopoietic cells.


Assuntos
Células-Tronco Hematopoéticas , Leucemia Mielogênica Crônica BCR-ABL Positiva , Antígenos CD34 , Medula Óssea , Células Cultivadas , Citocinas , Humanos , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Miostatina/genética
15.
Prog Med Chem ; 59: 181-249, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32362328

RESUMO

DNA-encoded libraries (DELs) are collections of small molecules covalently attached to amplifiable DNA tags carrying unique information about the structure of each library member. A combinatorial approach is used to construct the libraries with iterative DNA encoding steps, facilitating tracking of the synthetic history of the attached compounds by DNA sequencing. Various screening protocols have been developed which allow protein target binders to be selected out of pools containing up to billions of different small molecules. The versatile methodology has allowed identification of numerous biologically active compounds and is now increasingly being adopted as a tool for lead discovery campaigns and identification of chemical probes. A great focus in recent years has been on developing DNA compatible chemistries that expand the structural diversity of the small molecule library members in DELs. This chapter provides an overview of the challenges and accomplishments in DEL technology, reviewing the technological aspects of producing and screening DELs with a perspective on opportunities, limitations, and future directions.


Assuntos
DNA/genética , Descoberta de Drogas , DNA/química , Biblioteca Gênica , Técnicas de Síntese em Fase Sólida
16.
Phys Chem Chem Phys ; 22(8): 4699-4714, 2020 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-32057058

RESUMO

Ring-enlargement reactions can provide a fast route towards the formation of six-membered single-ring or polycyclic aromatic hydrocarbons (PAHs). To investigate the participation of the cyclopentadienyl (C5H5) radical in ring-enlargement reactions in high-temperature environments, a mass-spectrometric study was conducted. Experimental access to the C5H5 high-temperature chemistry was provided by two counterflow diffusion flames. Cyclopentene was chosen as a primary fuel given the large amount of resonantly stabilized cyclopentadienyl radicals produced by its decomposition and its high tendency to form PAHs. In a second experiment, methane was added to the fuel stream to promote methyl addition pathways and to assess the importance of ring-enlargement reactions for PAH growth. The experimental dataset includes mole fraction profiles of small intermediate hydrocarbons and of several larger species featuring up to four condensed aromatic rings. Results show that, while the addition of methane enhances the production of methylcyclopentadiene and benzene, the concentration of larger polycyclic hydrocarbons is reduced. The increase of benzene is probably attributable to the interaction between the methyl and the cyclopentadienyl radicals. However, the formation of larger aromatics seems to be dominated only by the cyclopentadienyl driven molecular-growth routes which are hampered by the addition of methane. In addition to the experimental work, two chemical mechanisms were tested and newly calculated reaction rates for cyclopentadiene reactions were included. In an attempt to assess the impact of cyclopentadienyl ring-enlargement chemistry on the mechanisms' predictivity, pathways to form benzene, toluene, and ethylbenzene were investigated. Results show that the updated mechanism provides an improved agreement between the computed and measured aromatics concentrations. Nevertheless, a detailed study of the single reaction steps leading to toluene, styrene, and ethylbenzene would be certainly beneficial.

17.
J Phys Chem A ; 124(48): 9897-9914, 2020 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-33174431

RESUMO

The accelerating chemical effect of ozone addition on the oxidation chemistry of methyl hexanoate [CH3(CH2)4C(═O)OCH3] was investigated over a temperature range from 460 to 940 K. Using an externally heated jet-stirred reactor at p = 700 Torr (residence time τ = 1.3 s, stoichiometry φ = 0.5, 80% argon dilution), we explored the relevant chemical pathways by employing molecular-beam mass spectrometry with electron and single-photon ionization to trace the temperature dependencies of key intermediates, including many hydroperoxides. In the absence of ozone, reactivity is observed in the so-called low-temperature chemistry (LTC) regime between 550 and 700 K, which is governed by hydroperoxides formed from sequential O2 addition and isomerization reactions. At temperatures above 700 K, we observed the negative temperature coefficient (NTC) regime, in which the reactivity decreases with increasing temperatures, until near 800 K, where the reactivity increases again. Upon addition of ozone (1000 ppm), the overall reactivity of the system is dramatically changed due to the time scale of ozone decomposition in comparison to fuel oxidation time scales of the mixtures at different temperatures. While the LTC regime seems to be only slightly affected by the addition of ozone with respect to the identity and quantity of the observed intermediates, we observed an increased reactivity in the intermediate NTC temperature range. Furthermore, we observed experimental evidence for an additional oxidation regime in the range near 500 K, herein referred to as the extreme low-temperature chemistry (ELTC) regime. Experimental evidence and theoretical rate constant calculations indicate that this ELTC regime is likely to be initiated by H abstraction from methyl hexanoate via O atoms, which originate from thermal O3 decomposition. The theoretical calculations show that the rate constants for methyl ester initiation via abstraction by O atoms increase dramatically with the size of the methyl ester, suggesting that ELTC is likely not important for the smaller methyl esters. Experimental evidence is provided indicating that, similar to the LTC regime, the chemistry in the ELTC regime is dominated by hydroperoxide chemistry. However, mass spectra recorded at various reactor temperatures and at different photon energies provide experimental evidence of some differences in chemical species between the ELTC and the LTC temperature ranges.

18.
Lasers Surg Med ; 52(3): 228-234, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31067361

RESUMO

BACKGROUND AND OBJECTIVES: A picosecond infrared laser (PIRL) has recently been demonstrated to cut biological tissue without scar formation based on the minimal destructive action on the surrounding cells. During cutting with PIRL, the irradiated tissue is ablated by a cold vaporization process termed desorption by impulsive vibrational excitation. In the resulting aerosol, all molecules are dissolved in small droplets and even labile biomolecules like proteins remain intact after ablation. It is hypothesized that these properties enable the PIRL in combination with mass spectrometry as an intelligent laser scalpel for guided surgery. In this study, it was tested if PIRL-generated tissue aerosols are applicable for direct analysis with mass spectrometry, and if the acquired mass spectra can be used to discriminate different brain areas. MATERIALS AND METHODS: Brain tissues were irradiated with PIRL. The aerosols were collected and directly infused into a mass spectrometer via electrospray ionization without any sample preparation or lipid extraction. RESULTS: The laser produced clear cuts with no marks of burning. Lipids from five different classes were identified in the mass spectra of all samples. By principal component analysis the different brain areas were clearly distinguishable from each other. CONCLUSIONS: The results demonstrate the potential for real-time analysis of lipids with a PIRL-based laser scalpel, coupled to a mass spectrometer, for the discrimination of tissues during surgeries. Lasers Surg. Med. © 2019 Wiley Periodicals, Inc.


Assuntos
Aerossóis/química , Encéfalo/cirurgia , Terapia a Laser/métodos , Lipídeos/química , Animais , Espectrometria de Massas , Suínos , Porco Miniatura
19.
Proc Natl Acad Sci U S A ; 114(50): 13102-13107, 2017 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-29183984

RESUMO

Decades of research on the autooxidation of organic compounds have provided fundamental and practical insights into these processes; however, the structure of many key autooxidation intermediates and the reactions leading to their formation still remain unclear. This work provides additional experimental evidence that highly oxygenated intermediates with one or more hydroperoxy groups are prevalent in the autooxidation of various oxygenated (e.g., alcohol, aldehyde, keto compounds, ether, and ester) and nonoxygenated (e.g., normal alkane, branched alkane, and cycloalkane) organic compounds. These findings improve our understanding of autooxidation reaction mechanisms that are routinely used to predict fuel ignition and oxidative stability of liquid hydrocarbons, while also providing insights relevant to the formation mechanisms of tropospheric aerosol building blocks. The direct observation of highly oxygenated intermediates for the autooxidation of alkanes at 500-600 K builds upon prior observations made in atmospheric conditions for the autooxidation of terpenes and other unsaturated hydrocarbons; it shows that highly oxygenated intermediates are stable at conditions above room temperature. These results further reveal that highly oxygenated intermediates are not only accessible by chemical activation but also by thermal activation. Theoretical calculations on H-atom migration reactions are presented to rationalize the relationship between the organic compound's molecular structure (n-alkane, branched alkane, and cycloalkane) and its propensity to produce highly oxygenated intermediates via extensive autooxidation of hydroperoxyalkylperoxy radicals. Finally, detailed chemical kinetic simulations demonstrate the influence of these additional reaction pathways on the ignition of practical fuels.

20.
J Proteome Res ; 18(3): 1451-1457, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30669834

RESUMO

It was recently shown that sampling of tissues with a picosecond infrared laser (PIRL) for analysis with bottom-up proteomics is advantageous compared to mechanical homogenization. Because the cold ablation of tissues with PIRL irradiation is soft, proteins remain intact and even enzymatic activities are detectable in PIRL homogenates. In contrast, it was observed that irradiation of tissues with a microsecond infrared laser (MIRL) heats the tissue, thereby causing significant damage. In this study, we investigated the question if sampling of tissues with a MIRL for analysis of their proteomes via bottom-up proteomics is possible and how the results are different from sampling of tissues with a PIRL. Comparison of the proteomes of the MIRL and PIRL tissue homogenates showed that the yield of proteins identified by bottom-up proteomics was larger in PIRL homogenates of liver tissue, whereas the yield was higher in MIRL homogenates of muscle tissue, which has a significantly higher content of connective tissue than liver tissue. In the PIRL homogenate of renal tissue, enzymatic activities were detectable, whereas in the corresponding MIRL homogenate, enzymatic activities were absent. In conclusion, MIRL and PIRL pulses are suited for sampling tissues for bottom-up proteomics. If it is important for bottom-up proteomic investigations to inactivate enzymatic activities already in the tissue before its ablation, MIRL tissue sampling is an option, because the proteins in the tissues are denatured and inactivated by the heating of the tissue during irradiation with MIRL irradiation prior to the ablation of the tissue. This heating effect is absent during irradiation of tissue with a PIRL; therefore, sampling of tissues with a PIRL is a choice for purifying enzymes, because their activities are maintained.


Assuntos
Lasers , Proteínas/isolamento & purificação , Proteômica/métodos , Raios Infravermelhos , Terapia a Laser/métodos , Proteínas/química , Manejo de Espécimes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA