Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
J Biol Chem ; 300(9): 107631, 2024 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-39098525

RESUMO

The ability for cells to localize and activate peripheral membrane-binding proteins is critical for signal transduction. Ubiquitously important in these signaling processes are phosphatidylinositol phosphate (PIP) lipids, which are dynamically phosphorylated by PIP lipid kinases on intracellular membranes. Functioning primarily at the plasma membrane, phosphatidylinositol-4-phosphate 5-kinases (PIP5K) catalyzes the phosphorylation of PI(4)P to generate most of the PI(4,5)P2 lipids found in eukaryotic plasma membranes. Recently, we determined that PIP5K displays a positive feedback loop based on membrane-mediated dimerization and cooperative binding to its product, PI(4,5)P2. Here, we examine how two motifs contribute to PI(4,5)P2 recognition to control membrane association and catalysis of PIP5K. Using a combination of single molecule TIRF microscopy and kinetic analysis of PI(4)P lipid phosphorylation, we map the sequence of steps that allow PIP5K to cooperatively engage PI(4,5)P2. We find that the specificity loop regulates the rate of PIP5K membrane association and helps orient the kinase to more effectively bind PI(4,5)P2 lipids. After correctly orienting on the membrane, PIP5K transitions to binding PI(4,5)P2 lipids near the active site through a motif previously referred to as the substrate or PIP-binding motif (PIPBM). The PIPBM has broad specificity for anionic lipids and serves a role in regulating membrane association in vitro and in vivo. Overall, our data supports a two-step membrane-binding model where the specificity loop and PIPBM act in concert to help PIP5K orient and productively engage anionic lipids to drive the positive feedback during PI(4,5)P2 production.

2.
J Cell Sci ; 136(16)2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37534432

RESUMO

The lipid molecule phosphatidylinositol (4,5)-bisphosphate [PI(4,5)P2] controls all aspects of plasma membrane (PM) function in animal cells, from its selective permeability to the attachment of the cytoskeleton. Although disruption of PI(4,5)P2 is associated with a wide range of diseases, it remains unclear how cells sense and maintain PI(4,5)P2 levels to support various cell functions. Here, we show that the PIP4K family of enzymes, which synthesize PI(4,5)P2 via a minor pathway, also function as sensors of tonic PI(4,5)P2 levels. PIP4Ks are recruited to the PM by elevated PI(4,5)P2 levels, where they inhibit the major PI(4,5)P2-synthesizing PIP5Ks. Perturbation of this simple homeostatic mechanism reveals differential sensitivity of PI(4,5)P2-dependent signaling to elevated PI(4,5)P2 levels. These findings reveal that a subset of PI(4,5)P2-driven functions might drive disease associated with disrupted PI(4,5)P2 homeostasis.


Assuntos
Fosfatidilinositol 4,5-Difosfato , Transdução de Sinais , Animais , Fosfatidilinositol 4,5-Difosfato/metabolismo , Transdução de Sinais/fisiologia , Membrana Celular/metabolismo , Fosfatidilinositóis/metabolismo , Homeostase
3.
J Biol Chem ; 299(8): 105022, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37423304

RESUMO

Signal transduction downstream of growth factor and immune receptor activation relies on the production of phosphatidylinositol-(3,4,5)-trisphosphate (PI(3,4,5)P3) lipids by PI3K. Regulating the strength and duration of PI3K signaling in immune cells, Src homology 2 domain-containing inositol 5-phosphatase 1 (SHIP1) controls the dephosphorylation of PI(3,4,5)P3 to generate phosphatidylinositol-(3,4)-bisphosphate. Although SHIP1 has been shown to regulate neutrophil chemotaxis, B-cell signaling, and cortical oscillations in mast cells, the role that lipid and protein interactions serve in controlling SHIP1 membrane recruitment and activity remains unclear. Using single-molecule total internal reflection fluorescence microscopy, we directly visualized membrane recruitment and activation of SHIP1 on supported lipid bilayers and the cellular plasma membrane. We find that localization of the central catalytic domain of SHIP1 is insensitive to dynamic changes in PI(3,4,5)P3 and phosphatidylinositol-(3,4)-bisphosphate both in vitro and in vivo. Very transient SHIP1 membrane interactions were detected only when membranes contained a combination of phosphatidylserine and PI(3,4,5)P3 lipids. Molecular dissection reveals that SHIP1 is autoinhibited with the N-terminal Src homology 2 domain playing a critical role in suppressing phosphatase activity. Robust SHIP1 membrane localization and relief of autoinhibition can be achieved through interactions with immunoreceptor-derived phosphopeptides presented either in solution or conjugated to a membrane. Overall, this work provides new mechanistic details concerning the dynamic interplay between lipid-binding specificity, protein-protein interactions, and the activation of autoinhibited SHIP1.


Assuntos
Fosfatidilinositol 3-Quinases , Monoéster Fosfórico Hidrolases , Inositol Polifosfato 5-Fosfatases/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais , Domínios de Homologia de src , Fosfatidilinositóis , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases/genética , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases/metabolismo
4.
Proc Natl Acad Sci U S A ; 118(47)2021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-34789575

RESUMO

Here, we present detailed kinetic analyses of a panel of soluble lipid kinases and phosphatases, as well as Ras activating proteins, acting on their respective membrane surface substrates. The results reveal that the mean catalytic rate of such interfacial enzymes can exhibit a strong dependence on the size of the reaction system-in this case membrane area. Experimental measurements and kinetic modeling reveal how stochastic effects stemming from low molecular copy numbers of the enzymes alter reaction kinetics based on mechanistic characteristics of the enzyme, such as positive feedback. For the competitive enzymatic cycles studied here, the final product-consisting of a specific lipid composition or Ras activity state-depends on the size of the reaction system. Furthermore, we demonstrate how these reaction size dependencies can be controlled by engineering feedback mechanisms into the enzymes.


Assuntos
Tamanho Celular , Enzimas/metabolismo , Membranas/fisiologia , Retroalimentação , Cinética , Bicamadas Lipídicas , Lipídeos , Modelos Biológicos , Monoéster Fosfórico Hidrolases , Transdução de Sinais
5.
EMBO J ; 37(1): 102-121, 2018 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-29141912

RESUMO

WASP-family proteins are known to promote assembly of branched actin networks by stimulating the filament-nucleating activity of the Arp2/3 complex. Here, we show that WASP-family proteins also function as polymerases that accelerate elongation of uncapped actin filaments. When clustered on a surface, WASP-family proteins can drive branched actin networks to grow much faster than they could by direct incorporation of soluble monomers. This polymerase activity arises from the coordinated action of two regulatory sequences: (i) a WASP homology 2 (WH2) domain that binds actin, and (ii) a proline-rich sequence that binds profilin-actin complexes. In the absence of profilin, WH2 domains are sufficient to accelerate filament elongation, but in the presence of profilin, proline-rich sequences are required to support polymerase activity by (i) bringing polymerization-competent actin monomers in proximity to growing filament ends, and (ii) promoting shuttling of actin monomers from profilin-actin complexes onto nearby WH2 domains. Unoccupied WH2 domains transiently associate with free filament ends, preventing their growth and dynamically tethering the branched actin network to the WASP-family proteins that create it. Collaboration between WH2 and proline-rich sequences thus strikes a balance between filament growth and tethering. Our work expands the number of critical roles that WASP-family proteins play in the assembly of branched actin networks to at least three: (i) promoting dendritic nucleation; (ii) linking actin networks to membranes; and (iii) accelerating filament elongation.


Assuntos
Citoesqueleto de Actina/fisiologia , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Domínios Proteicos Ricos em Prolina , Família de Proteínas da Síndrome de Wiskott-Aldrich/metabolismo , Humanos , Ligação Proteica
6.
Proc Natl Acad Sci U S A ; 116(30): 15013-15022, 2019 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-31278151

RESUMO

Phosphorylation reactions, driven by competing kinases and phosphatases, are central elements of cellular signal transduction. We reconstituted a native eukaryotic lipid kinase-phosphatase reaction that drives the interconversion of phosphatidylinositol-4-phosphate [PI(4)P] and phosphatidylinositol-4,5-phosphate [PI(4,5)P2] on membrane surfaces. This system exhibited bistability and formed spatial composition patterns on supported membranes. In smaller confined regions of membrane, rapid diffusion ensures the system remains spatially homogeneous, but the final outcome-a predominantly PI(4)P or PI(4,5)P2 membrane composition-was governed by the size of the reaction environment. In larger confined regions, interplay between the reactions, diffusion, and confinement created a variety of differentially patterned states, including polarization. Experiments and kinetic modeling reveal how these geometric confinement effects arise from a mechanism based on stochastic fluctuations in the copy number of membrane-bound kinases and phosphatases. The underlying requirements for such behavior are unexpectedly simple and likely to occur in natural biological signaling systems.


Assuntos
Proteínas de Bactérias/química , Fatores de Troca do Nucleotídeo Guanina/química , Fosfatidilinositol 4,5-Difosfato/química , Fosfatos de Fosfatidilinositol/química , Monoéster Fosfórico Hidrolases/química , Fosfotransferases (Aceptor do Grupo Álcool)/química , Proteínas de Bactérias/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Humanos , Cinética , Legionella pneumophila/química , Legionella pneumophila/enzimologia , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Fosfolipase C delta/química , Fosfolipase C delta/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Fosforilação , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Transdução de Sinais , Imagem Individual de Molécula , Processos Estocásticos , Lipossomas Unilamelares/química , Lipossomas Unilamelares/metabolismo
7.
Proc Natl Acad Sci U S A ; 113(29): 8218-23, 2016 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-27370798

RESUMO

The assembly of cell surface receptors with downstream signaling molecules is a commonly occurring theme in multiple signaling systems. However, little is known about how these assemblies modulate reaction kinetics and the ultimate propagation of signals. Here, we reconstitute phosphotyrosine-mediated assembly of extended linker for the activation of T cells (LAT):growth factor receptor-bound protein 2 (Grb2):Son of Sevenless (SOS) networks, derived from the T-cell receptor signaling system, on supported membranes. Single-molecule dwell time distributions reveal two, well-differentiated kinetic species for both Grb2 and SOS on the LAT assemblies. The majority fraction of membrane-recruited Grb2 and SOS both exhibit fast kinetics and single exponential dwell time distributions, with average dwell times of hundreds of milliseconds. The minor fraction exhibits much slower kinetics, extending the dwell times to tens of seconds. Considering this result in the context of the multistep process by which the Ras GEF (guanine nucleotide exchange factor) activity of SOS is activated indicates that kinetic stabilization from the LAT assembly may be important. This kinetic proofreading effect would additionally serve as a stochastic noise filter by reducing the relative probability of spontaneous SOS activation in the absence of receptor triggering. The generality of receptor-mediated assembly suggests that such effects may play a role in multiple receptor proximal signaling processes.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Membrana/metabolismo , Fosfotirosina/metabolismo , Proteínas Son Of Sevenless/metabolismo , Proteína Adaptadora GRB2/metabolismo , Cinética , Membranas Artificiais , Receptores de Antígenos de Linfócitos T/metabolismo , Transdução de Sinais , Proteínas ras
8.
J Bacteriol ; 199(19)2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28716960

RESUMO

Bacteria of the genus Prosthecobacter express homologs of eukaryotic α- and ß-tubulin, called BtubA and BtubB (BtubA/B), that have been observed to assemble into filaments in the presence of GTP. BtubA/B polymers are proposed to be composed in vitro by two to six protofilaments in contrast to that in vivo, where they have been reported to form 5-protofilament tubes named bacterial microtubules (bMTs). The btubAB genes likely entered the Prosthecobacter lineage via horizontal gene transfer and may be derived from an early ancestor of the modern eukaryotic microtubule (MT). Previous biochemical studies revealed that BtubA/B polymerization is reversible and that BtubA/B folding does not require chaperones. To better understand BtubA/B filament behavior and gain insight into the evolution of microtubule dynamics, we characterized in vitro BtubA/B assembly using a combination of polymerization kinetics assays and microscopy. Like eukaryotic microtubules, BtubA/B filaments exhibit polarized growth with different assembly rates at each end. GTP hydrolysis stimulated by BtubA/B polymerization drives a stochastic mechanism of filament disassembly that occurs via polymer breakage and/or fast continuous depolymerization. We also observed treadmilling (continuous addition and loss of subunits at opposite ends) of BtubA/B filament fragments. Unlike MTs, polymerization of BtubA/B requires KCl, which reduces the critical concentration for BtubA/B assembly and induces it to form stable mixed-orientation bundles in the absence of any additional BtubA/B-binding proteins. The complex dynamics that we observe in stabilized and unstabilized BtubA/B filaments may reflect common properties of an ancestral eukaryotic tubulin polymer.IMPORTANCE Microtubules are polymers within all eukaryotic cells that perform critical functions; they segregate chromosomes, organize intracellular transport, and support the flagella. These functions rely on the remarkable range of tunable dynamic behaviors of microtubules. Bacterial tubulin A and B (BtubA/B) are evolutionarily related proteins that form polymers. They are proposed to be evolved from the ancestral eukaryotic tubulin, a missing link in microtubule evolution. Using microscopy and biochemical approaches to characterize BtubA/B assembly in vitro, we observed that they exhibit complex and structurally polarized dynamic behavior like eukaryotic microtubules but differ in how they self-associate into bundles and how this bundling affects their stability. Our results demonstrate the diversity of mechanisms through which tubulin homologs promote filament dynamics and monomer turnover.


Assuntos
Bactérias/metabolismo , Proteínas do Citoesqueleto/fisiologia , Guanosina Trifosfato/metabolismo , Tubulina (Proteína)/fisiologia , Proteínas de Bactérias/fisiologia , Citoesqueleto/fisiologia , Transferência Genética Horizontal , Hidrólise , Cinética , Microscopia , Microtúbulos/química , Microtúbulos/metabolismo , Modelos Moleculares , Polimerização , Tubulina (Proteína)/química
9.
Biomacromolecules ; 18(11): 3706-3713, 2017 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-28934548

RESUMO

The ability of styrene maleic acid copolymers to dissolve lipid membranes into nanosized lipid particles is a facile method of obtaining membrane proteins in solubilized lipid discs while conserving part of their native lipid environment. While the currently used copolymers can readily extract membrane proteins in native nanodiscs, their highly disperse composition is likely to influence the dispersity of the discs as well as the extraction efficiency. In this study, reversible addition-fragmentation chain transfer was used to control the polymer architecture and dispersity of molecular weights with a high-precision. Based on Monte Carlo simulations of the polymerizations, the monomer composition was predicted and allowed a structure-function analysis of the polymer architecture, in relation to their ability to assemble into lipid nanoparticles. We show that a higher degree of control of the polymer architecture generates more homogeneous samples. We hypothesize that low dispersity copolymers, with control of polymer architecture are an ideal framework for the rational design of polymers for customized isolation and characterization of integral membrane proteins in native lipid bilayer systems.


Assuntos
Bicamadas Lipídicas/química , Lipídeos de Membrana/química , Proteínas de Membrana/química , Polímeros/química , Maleatos/química , Peso Molecular , Nanopartículas/química , Polimerização , Estireno/química
10.
Proc Natl Acad Sci U S A ; 111(8): 2996-3001, 2014 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-24516166

RESUMO

The lipid-anchored small GTPase Ras is an important signaling node in mammalian cells. A number of observations suggest that Ras is laterally organized within the cell membrane, and this may play a regulatory role in its activation. Lipid anchors composed of palmitoyl and farnesyl moieties in H-, N-, and K-Ras are widely suspected to be responsible for guiding protein organization in membranes. Here, we report that H-Ras forms a dimer on membrane surfaces through a protein-protein binding interface. A Y64A point mutation in the switch II region, known to prevent Son of sevenless and PI3K effector interactions, abolishes dimer formation. This suggests that the switch II region, near the nucleotide binding cleft, is either part of, or allosterically coupled to, the dimer interface. By tethering H-Ras to bilayers via a membrane-miscible lipid tail, we show that dimer formation is mediated by protein interactions and does not require lipid anchor clustering. We quantitatively characterize H-Ras dimerization in supported membranes using a combination of fluorescence correlation spectroscopy, photon counting histogram analysis, time-resolved fluorescence anisotropy, single-molecule tracking, and step photobleaching analysis. The 2D dimerization Kd is measured to be ∼1 × 10(3) molecules/µm(2), and no higher-order oligomers were observed. Dimerization only occurs on the membrane surface; H-Ras is strictly monomeric at comparable densities in solution. Analysis of a number of H-Ras constructs, including key changes to the lipidation pattern of the hypervariable region, suggest that dimerization is a general property of native H-Ras on membrane surfaces.


Assuntos
Membrana Celular/metabolismo , Modelos Moleculares , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas/genética , Proteínas ras/química , Sequência de Aminoácidos , Dimerização , Polarização de Fluorescência , Humanos , Espectroscopia de Ressonância Magnética , Microscopia de Fluorescência , Dados de Sequência Molecular , Proteínas ras/metabolismo
11.
J Biol Chem ; 289(19): 13589-601, 2014 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-24692547

RESUMO

The classical cadherin·ß-catenin·α-catenin complex mediates homophilic cell-cell adhesion and mechanically couples the actin cytoskeletons of adjacent cells. Although α-catenin binds to ß-catenin and to F-actin, ß-catenin significantly weakens the affinity of α-catenin for F-actin. Moreover, α-catenin self-associates into homodimers that block ß-catenin binding. We investigated quantitatively and structurally αE- and αN-catenin dimer formation, their interaction with ß-catenin and the cadherin·ß-catenin complex, and the effect of the α-catenin actin-binding domain on ß-catenin association. The two α-catenin variants differ in their self-association properties: at physiological temperatures, αE-catenin homodimerizes 10× more weakly than does αN-catenin but is kinetically trapped in its oligomeric state. Both αE- and αN-catenin bind to ß-catenin with a Kd of 20 nM, and this affinity is increased by an order of magnitude when cadherin is bound to ß-catenin. We describe the crystal structure of a complex representing the full ß-catenin·αN-catenin interface. A three-dimensional model of the cadherin·ß-catenin·α-catenin complex based on these new structural data suggests mechanisms for the enhanced stability of the ternary complex. The C-terminal actin-binding domain of α-catenin has no influence on the interactions with ß-catenin, arguing against models in which ß-catenin weakens actin binding by stabilizing inhibitory intramolecular interactions between the actin-binding domain and the rest of α-catenin.


Assuntos
Caderinas/química , Complexos Multiproteicos/química , alfa Catenina/química , beta Catenina/química , Animais , Cristalografia por Raios X , Camundongos , Estrutura Quaternária de Proteína , Termodinâmica
12.
Elife ; 122024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38713746

RESUMO

Phosphoinositide 3-kinase (PI3K) beta (PI3Kß) is functionally unique in the ability to integrate signals derived from receptor tyrosine kinases (RTKs), G-protein coupled receptors, and Rho-family GTPases. The mechanism by which PI3Kß prioritizes interactions with various membrane-tethered signaling inputs, however, remains unclear. Previous experiments did not determine whether interactions with membrane-tethered proteins primarily control PI3Kß localization versus directly modulate lipid kinase activity. To address this gap in our knowledge, we established an assay to directly visualize how three distinct protein interactions regulate PI3Kß when presented to the kinase in a biologically relevant configuration on supported lipid bilayers. Using single molecule Total Internal Reflection Fluorescence (TIRF) Microscopy, we determined the mechanism controlling PI3Kß membrane localization, prioritization of signaling inputs, and lipid kinase activation. We find that auto-inhibited PI3Kß prioritizes interactions with RTK-derived tyrosine phosphorylated (pY) peptides before engaging either GßGγ or Rac1(GTP). Although pY peptides strongly localize PI3Kß to membranes, stimulation of lipid kinase activity is modest. In the presence of either pY/GßGγ or pY/Rac1(GTP), PI3Kß activity is dramatically enhanced beyond what can be explained by simply increasing membrane localization. Instead, PI3Kß is synergistically activated by pY/GßGγ and pY/Rac1 (GTP) through a mechanism consistent with allosteric regulation.


Assuntos
Classe I de Fosfatidilinositol 3-Quinases , Proteínas rac1 de Ligação ao GTP , Proteínas rho de Ligação ao GTP , Humanos , Subunidades beta da Proteína de Ligação ao GTP/metabolismo , Subunidades beta da Proteína de Ligação ao GTP/química , Subunidades gama da Proteína de Ligação ao GTP/metabolismo , Subunidades gama da Proteína de Ligação ao GTP/química , Subunidades gama da Proteína de Ligação ao GTP/genética , Microscopia de Fluorescência , Fosfatidilinositol 3-Quinases/metabolismo , Ligação Proteica , Receptores Proteína Tirosina Quinases/metabolismo , Receptores Proteína Tirosina Quinases/química , Proteínas rho de Ligação ao GTP/metabolismo , Proteínas rho de Ligação ao GTP/química , Transdução de Sinais , Classe I de Fosfatidilinositol 3-Quinases/química , Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Proteínas rac1 de Ligação ao GTP/química , Proteínas rac1 de Ligação ao GTP/metabolismo
13.
bioRxiv ; 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-37205499

RESUMO

Signal transduction downstream of growth factor and immune receptor activation relies on the production of phosphatidylinositol-(3,4,5)-trisphosphate (PI(3,4,5)P 3 ) lipids by phosphoinositide-3-kinase (PI3K). Regulating the strength and duration of PI3K signaling in immune cells, Src homology 2 domain-containing inositol 5-phosphatase 1 (SHIP1) controls the dephosphorylation of PI(3,4,5)P 3 to generate PI(3,4)P 2 . Although SHIP1 has been shown to regulate neutrophil chemotaxis, B-cell signaling, and cortical oscillations in mast cells, the role that lipid and protein interactions serve in controlling SHIP1 membrane recruitment and activity remains unclear. Using single molecule TIRF microscopy, we directly visualized membrane recruitment and activation of SHIP1 on supported lipid bilayers and the cellular plasma membrane. We find that SHIP1's interactions with lipids are insensitive to dynamic changes in PI(3,4,5)P 3 both in vitro and in vivo. Very transient SHIP1 membrane interactions were detected only when membranes contained a combination of phosphatidylserine (PS) and PI(3,4,5)P 3 lipids. Molecular dissection reveals that SHIP1 is autoinhibited with the N-terminal SH2 domain playing a critical role in suppressing phosphatase activity. Robust SHIP1 membrane localization and relief of autoinhibition can be achieved through interactions with immunoreceptor derived phosphopeptides presented either in solution or conjugated to supported membranes. Overall, this work provides new mechanistic details concerning the dynamic interplay between lipid binding specificity, protein-protein interactions, and activation of autoinhibited SHIP1.

14.
bioRxiv ; 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-37205345

RESUMO

The class 1A phosphoinositide 3-kinase (PI3K) beta (PI3Kß) is functionally unique in the ability to integrate signals derived from receptor tyrosine kinases (RTKs), heterotrimeric guanine nucleotide-binding protein (G-protein)-coupled receptors (GPCRs), and Rho-family GTPases. The mechanism by which PI3Kß prioritizes interactions with various membrane tethered signaling inputs, however, remains unclear. Previous experiments have not been able to elucidate whether interactions with membrane-tethered proteins primarily control PI3Kß localization versus directly modulate lipid kinase activity. To address this gap in our understanding of PI3Kß regulation, we established an assay to directly visualize and decipher how three distinct protein interactions regulate PI3Kß when presented to the kinase in a biologically relevant configuration on supported lipid bilayers. Using single molecule Total Internal Reflection Fluorescence (TIRF) Microscopy, we determined the mechanism controlling membrane localization of PI3Kß, prioritization of signaling inputs, and lipid kinase activation. We find that auto-inhibited PI3Kß prioritizes interactions with RTK-derived tyrosine phosphorylated (pY) peptides before engaging either GßGγ or Rac1(GTP). Although pY peptides strongly localize PI3Kß to membranes, stimulation of lipid kinase activity is modest. In the presence of either pY/GßGγ or pY/Rac1(GTP), PI3Kß activity is dramatically enhanced beyond what can be explained by simply increasing the strength of membrane localization. Instead, PI3Kß is synergistically activated by pY/GßGγ and pY/Rac1(GTP) through a mechanism consistent with allosteric regulation.

15.
bioRxiv ; 2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37090531

RESUMO

PI3Kγ is a critical immune signaling enzyme activated downstream of diverse cell surface molecules, including Ras, PKCß activated by the IgE receptor, and Gßγ subunits released from activated GPCRs. PI3Kγ can form two distinct complexes, with the p110γ catalytic subunit binding to either a p101 or p84 regulatory subunit, with these complexes being differentially activated by upstream stimuli. Here using a combination of cryo electron microscopy, HDX-MS, and biochemical assays we have identified novel roles of the helical domain of p110γ in regulating lipid kinase activity of distinct PI3Kγ complexes. We defined the molecular basis for how an allosteric inhibitory nanobody potently inhibits kinase activity through rigidifying the helical domain and regulatory motif of the kinase domain. The nanobody did not block either p110γ membrane recruitment or Ras/Gßγ binding, but instead decreased ATP turnover. We also identified that p110γ can be activated by dual PKCß helical domain phosphorylation leading to partial unfolding of an N-terminal region of the helical domain. PKCß phosphorylation is selective for p110γ-p84 compared to p110γ-p101, driven by differential dynamics of the helical domain of these different complexes. Nanobody binding prevented PKCß mediated phosphorylation. Overall, this works shows an unexpected allosteric regulatory role of the helical domain of p110γ that is distinct between p110γ-p84 and p110γ-p101 and reveals how this can be modulated by either phosphorylation or allosteric inhibitory binding partners. This opens possibilities of future allosteric inhibitor development for therapeutic intervention.

16.
Elife ; 122023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37417733

RESUMO

PI3Kγ is a critical immune signaling enzyme activated downstream of diverse cell surface molecules, including Ras, PKCß activated by the IgE receptor, and Gßγ subunits released from activated GPCRs. PI3Kγ can form two distinct complexes, with the p110γ catalytic subunit binding to either a p101 or p84 regulatory subunit, with these complexes being differentially activated by upstream stimuli. Here, using a combination of cryo electron microscopy, HDX-MS, and biochemical assays, we have identified novel roles of the helical domain of p110γ in regulating lipid kinase activity of distinct PI3Kγ complexes. We defined the molecular basis for how an allosteric inhibitory nanobody potently inhibits kinase activity through rigidifying the helical domain and regulatory motif of the kinase domain. The nanobody did not block either p110γ membrane recruitment or Ras/Gßγ binding, but instead decreased ATP turnover. We also identified that p110γ can be activated by dual PKCß helical domain phosphorylation leading to partial unfolding of an N-terminal region of the helical domain. PKCß phosphorylation is selective for p110γ-p84 compared to p110γ-p101, driven by differential dynamics of the helical domain of these different complexes. Nanobody binding prevented PKCß-mediated phosphorylation. Overall, this work shows an unexpected allosteric regulatory role of the helical domain of p110γ that is distinct between p110γ-p84 and p110γ-p101 and reveals how this can be modulated by either phosphorylation or allosteric inhibitory binding partners. This opens possibilities of future allosteric inhibitor development for therapeutic intervention.


Assuntos
Metabolismo dos Lipídeos , Transdução de Sinais , Regulação Alostérica , Transdução de Sinais/fisiologia , Fosforilação , Membrana Celular
17.
Cell Rep ; 42(3): 112172, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36842083

RESUMO

Class IB phosphoinositide 3-kinase (PI3Kγ) is activated in immune cells and can form two distinct complexes (p110γ-p84 and p110γ-p101), which are differentially activated by G protein-coupled receptors (GPCRs) and Ras. Using a combination of X-ray crystallography, hydrogen deuterium exchange mass spectrometry (HDX-MS), electron microscopy, molecular modeling, single-molecule imaging, and activity assays, we identify molecular differences between p110γ-p84 and p110γ-p101 that explain their differential membrane recruitment and activation by Ras and GPCRs. The p110γ-p84 complex is dynamic compared with p110γ-p101. While p110γ-p101 is robustly recruited by Gßγ subunits, p110γ-p84 is weakly recruited to membranes by Gßγ subunits alone and requires recruitment by Ras to allow for Gßγ activation. We mapped two distinct Gßγ interfaces on p101 and the p110γ helical domain, with differences in the C-terminal domain of p84 and p101 conferring sensitivity of p110γ-p101 to Gßγ activation. Overall, our work provides key insight into the molecular basis for how PI3Kγ complexes are activated.


Assuntos
Fosfatidilinositol 3-Quinases , Transdução de Sinais , Transdução de Sinais/fisiologia , Fosfatidilinositol 3-Quinases/metabolismo , Receptores Acoplados a Proteínas G , Modelos Moleculares , Fosfatidilinositol 3-Quinase
18.
Elife ; 112022 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-35976097

RESUMO

The phosphatidylinositol 4-phosphate 5-kinase (PIP5K) family of lipid-modifying enzymes generate the majority of phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] lipids found at the plasma membrane in eukaryotic cells. PI(4,5)P2 lipids serve a critical role in regulating receptor activation, ion channel gating, endocytosis, and actin nucleation. Here, we describe how PIP5K activity is regulated by cooperative binding to PI(4,5)P2 lipids and membrane-mediated dimerization of the kinase domain. In contrast to constitutively dimeric phosphatidylinositol 5-phosphate 4-kinase (PIP4K, type II PIPK), solution PIP5K exists in a weak monomer-dimer equilibrium. PIP5K monomers can associate with PI(4,5)P2-containing membranes and dimerize in a protein density-dependent manner. Although dispensable for cooperative PI(4,5)P2 binding, dimerization enhances the catalytic efficiency of PIP5K through a mechanism consistent with allosteric regulation. Additionally, dimerization amplifies stochastic variation in the kinase reaction velocity and strengthens effects such as the recently described stochastic geometry sensing. Overall, the mechanism of PIP5K membrane binding creates a broad dynamic range of lipid kinase activities that are coupled to the density of PI(4,5)P2 and membrane-bound kinase.


Assuntos
Fosfatos , Fosfotransferases (Aceptor do Grupo Álcool) , Membrana Celular/metabolismo , Dimerização , Fosfatos/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfatidilinositóis/metabolismo , Fosforilação , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo
19.
Sci Adv ; 7(35)2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34452907

RESUMO

The class IB phosphoinositide 3-kinase (PI3K), PI3Kγ, is a master regulator of immune cell function and a promising drug target for both cancer and inflammatory diseases. Critical to PI3Kγ function is the association of the p110γ catalytic subunit to either a p101 or p84 regulatory subunit, which mediates activation by G protein-coupled receptors. Here, we report the cryo-electron microscopy structure of a heterodimeric PI3Kγ complex, p110γ-p101. This structure reveals a unique assembly of catalytic and regulatory subunits that is distinct from other class I PI3K complexes. p101 mediates activation through its Gßγ-binding domain, recruiting the heterodimer to the membrane and allowing for engagement of a secondary Gßγ-binding site in p110γ. Mutations at the p110γ-p101 and p110γ-adaptor binding domain interfaces enhanced Gßγ activation. A nanobody that specifically binds to the p101-Gßγ interface blocks activation, providing a novel tool to study and target p110γ-p101-specific signaling events in vivo.

20.
STAR Protoc ; 2(2): 100486, 2021 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-34041500

RESUMO

MNase-seq (micrococcal nuclease sequencing) is used to map nucleosome positions in eukaryotic genomes to study the relationship between chromatin structure and DNA-dependent processes. Current protocols require at least two days to isolate nucleosome-protected DNA fragments. We have developed a streamlined protocol for S. cerevisiae and other fungi which takes only three hours. Modified protocols were developed for wild fungi and mammalian cells. This method for rapidly producing sequencing-ready nucleosome footprints from several organisms makes MNase-seq faster and easier, with less chemical waste.


Assuntos
Pegada de DNA/métodos , Nucleossomos , Análise de Sequência de DNA/métodos , Animais , Técnicas de Cultura de Células/métodos , Células Cultivadas , DNA/química , DNA/genética , DNA/metabolismo , Genômica , Nuclease do Micrococo/metabolismo , Nucleossomos/química , Nucleossomos/genética , Nucleossomos/metabolismo , Saccharomyces cerevisiae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA