Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Glob Chang Biol ; 29(5): 1377-1389, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36459482

RESUMO

Over the past decades, global warming has led to a lengthening of the time window during which temperatures remain favorable for carbon assimilation and tree growth, resulting in a lengthening of the green season. The extent to which forest green seasons have tracked the lengthening of this favorable period under climate warming, however, has not been quantified to date. Here, we used remote sensing data and long-term ground observations of leaf-out and coloration for six dominant species of European trees at 1773 sites, for a total of 6060 species-site combinations, during 1980-2016 and found that actual green season extensions (GS: 3.1 ± 0.1 day decade-1 ) lag four times behind extensions of the potential thermal season (TS: 12.6 ± 0.1 day decade-1 ). Similar but less pronounced differences were obtained using satellite-derived vegetation phenology observations, that is, a lengthening of 4.4 ± 0.13 and 7.5 ± 0.13 day decade-1 for GS and TS, respectively. This difference was mainly driven by the larger advance in the onset of the thermal season compared to the actual advance of leaf-out dates (spring mismatch: 7.2 ± 0.1 day decade-1 ), but to a less extent caused by a phenological mismatch between GS and TS in autumn (2.4 ± 0.1 day decade-1 ). Our results showed that forest trees do not linearly track the new thermal window extension, indicating more complex interactions between winter and spring temperatures and photoperiod and a justification of demonstrating that using more sophisticated models that include the influence of chilling and photoperiod is needed to accurately predict spring phenological changes under warmer climate. They urge caution if such mechanisms are omitted to predict, for example, how vegetative health and growth, species distribution and crop yields will change in the future.


Assuntos
Aquecimento Global , Árvores , Estações do Ano , Clima , Temperatura , Folhas de Planta , Mudança Climática
2.
BMC Med ; 19(1): 77, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33715626

RESUMO

BACKGROUND: Previous studies showed that recovered coronavirus disease 2019 (COVID-19) patients can have a subsequent positive polymerase chain reaction (PCR) test for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) after they are discharged from the hospital. Understanding the epidemiological characteristics of recovered COVID-19 patients who have a re-positive test is vital for preventing a second wave of COVID-19. METHODS: This retrospective study analyzed the epidemiological and clinical features of 20,280 COVID-19 patients from multiple centers in Wuhan who had a positive PCR test between December 31, 2019, and August 4, 2020. The RT-PCR test results for 4079 individuals who had close contact with the re-positive cases were also obtained. RESULTS: In total, 2466 (12.16%) of the 20,280 patients had a re-positive SARS-CoV-2 PCR test after they were discharged from the hospital, and 4079 individuals had close contact with members of this patient group. All of these 4079 individuals had a negative SARS-CoV-2 PCR test. CONCLUSIONS: This retrospective study in Wuhan analyzed the basic characteristics of recovered COVID-19 patients with re-positive PCR test and found that these cases may not be infectious.


Assuntos
COVID-19/epidemiologia , COVID-19/transmissão , COVID-19/virologia , Transmissão de Doença Infecciosa , Adulto , Teste para COVID-19 , China , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase , Estudos Retrospectivos , SARS-CoV-2
3.
Glob Chang Biol ; 26(10): 5979-5987, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32757456

RESUMO

Climate warming has substantially advanced spring leaf flushing, but winter chilling and photoperiod co-determine the leaf flushing process in ways that vary among species. As a result, the interspecific differences in spring phenology (IDSP) are expected to change with climate warming, which may, in turn, induce negative or positive ecological consequences. However, the temporal change of IDSP at large spatiotemporal scales remains unclear. In this study, we analyzed long-term in-situ observations (1951-2016) of six, coexisting temperate tree species from 305 sites across Central Europe and found that phenological ranking did not change when comparing the rapidly warming period 1984-2016 to the marginally warming period 1951-1983. However, the advance of leaf flushing was significantly larger in early-flushing species EFS (6.7 ± 0.3 days) than in late-flushing species LFS (5.9 ± 0.2 days) between the two periods, indicating extended IDSP. This IDSP extension could not be explained by differences in temperature sensitivity between EFS and LFS; however, climatic warming-induced heat accumulation effects on leaf flushing, which were linked to a greater heat requirement and higher photoperiod sensitivity in LFS, drove the shifts in IDSP. Continued climate warming is expected to further extend IDSP across temperate trees, with associated implications for ecosystem function.


Assuntos
Ecossistema , Árvores , Mudança Climática , Europa (Continente) , Folhas de Planta , Estações do Ano , Temperatura
4.
Glob Chang Biol ; 25(7): 2410-2418, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30927554

RESUMO

Global warming has led to substantially earlier spring leaf-out in temperate-zone deciduous trees. The interactive effects of temperature and daylength underlying this warming response remain unclear. However, they need to be accurately represented by earth system models to improve projections of the carbon and energy balances of temperate forests and the associated feedbacks to the Earth's climate system. We studied the control of leaf-out by daylength and temperature using data from six tree species across 2,377 European phenological network (www.pep725.eu), each with at least 30 years of observations. We found that, in addition to and independent of the known effect of chilling, daylength correlates negatively with the heat requirement for leaf-out in all studied species. In warm springs when leaf-out is early, days are short and the heat requirement is higher than in an average spring, which mitigates the warming-induced advancement of leaf-out and protects the tree against precocious leaf-out and the associated risks of late frosts. In contrast, longer-than-average daylength (in cold springs when leaf-out is late) reduces the heat requirement for leaf-out, ensuring that trees do not leaf-out too late and miss out on large amounts of solar energy. These results provide the first large-scale empirical evidence of a widespread daylength effect on the temperature sensitivity of leaf-out phenology in temperate deciduous trees.


Assuntos
Folhas de Planta , Árvores , Clima , Florestas , Estações do Ano , Temperatura
5.
Glob Chang Biol ; 25(5): 1696-1703, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30779408

RESUMO

Leaf phenology is one of the most reliable bioindicators of ongoing global warming in temperate and boreal zones because it is highly sensitive to temperature variation. A large number of studies have reported advanced spring leaf-out due to global warming, yet the temperature sensitivity of leaf-out has significantly decreased in temperate deciduous tree species over the past three decades. One of the possible mechanisms is that photoperiod is limiting further advance to protect the leaves against potential damaging frosts. However, the "photoperiod limitation" hypothesis remains poorly investigated and experimentally tested. Here, we conducted a photoperiod- and temperature-manipulation experiment in climate chambers on two common deciduous species in Europe: Fagus sylvatica (European beech, a typically late flushing species) and Aesculus hippocastanum (horse chestnut, a typically early flushing species). In agreement with previous studies, we found that the warming significantly advanced the leaf-out dates by 4.3 and 3.7 days/°C for beech and horse chestnut saplings, respectively. However, shorter photoperiod significantly reduced the temperature sensitivity of beech only (3.0 days/°C) by substantially increasing the heat requirement to avoid leafing-out too early. Interestingly, the photoperiod limitation only occurs below a certain daylength (photoperiod threshold) when the warming increased above 4°C for beech trees. In contrast, for chestnut, no photoperiod threshold was found even when the ambient air temperature was warmed by 5°C. Given the species-specific photoperiod effect on leaf phenology, the sequence of the leaf-out timing among forest tree species may change under future climate warming conditions. Nonphotoperiodic species may benefit from warmer springs by starting the growing season earlier than photoperiodic sensitive species, modifying forest ecosystem structure and functions, but this photoperiod limitation needs to be further investigated experimentally in numerous species.


Assuntos
Aesculus/fisiologia , Fagus/fisiologia , Fotoperíodo , Folhas de Planta/crescimento & desenvolvimento , Temperatura , Aesculus/crescimento & desenvolvimento , Europa (Continente) , Fagus/crescimento & desenvolvimento , Florestas , Aquecimento Global , Estações do Ano , Especificidade da Espécie
6.
Glob Chang Biol ; 25(12): 4282-4290, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31368203

RESUMO

Temperature during a particular period prior to spring leaf-out, the temperature-relevant period (TRP), is a strong determinant of the leaf-out date in temperate-zone trees. Climatic warming has substantially advanced leaf-out dates in temperate biomes worldwide, but its effect on the beginning and length of the TRP has not yet been explored, despite its direct relevance for phenology modeling. Using 1,551 species-site combinations of long-term (1951-2016) in situ observations on six tree species (namely, Aesculus hippocastanum, Alnus glutinosa, Betula pendula, Fagus sylvatica, Fraxinus excelsior, and Quercus robur) in central Europe, we found that the advancing leaf-out was accompanied by a shortening of the TRP. On average across all species and sites, the length of the TRP significantly decreased by 23% (p < .05), from 60 ± 4 days during 1951-1965 to 47 ± 4 days during 2002-2016. Importantly, the average start date of the TRP did not vary significantly over the study period (March 2-5, DOY = 61-64), which could be explained by sufficient chilling over the study period in the regions considered. The advanced leaf-out date with unchanged beginning of the TRP can be explained by the faster accumulation of the required heat due to climatic warming, which overcompensated for the retarding effect of shortening daylength on bud development. This study shows that climate warming has not yet affected the mean TRP starting date in the study region, implying that phenology modules in global land surface models might be reliable assuming a fixed TRP starting date at least for the temperate central Europe. Field warming experiments do, however, remain necessary to test to what extent the length of TRP will continue to shorten and whether the starting date will remain stable under future climate conditions.


Assuntos
Folhas de Planta , Árvores , Europa (Continente) , Estações do Ano , Temperatura
7.
J Environ Manage ; 248: 109259, 2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31325792

RESUMO

Lake eutrophication is characterized by a variety of indicators, including nitrogen and phosphorus concentrations, chemical oxygen demand, chlorophyll levels, and water transparency. In this study, a multidimensional similarity cloud model (MSCM) is combined with a random weighting method to reduce the impacts of random errors in eutrophication monitoring data and the fuzziness of lake eutrophication definitions on the consistency and reliability of lake eutrophication evaluations. Measured samples are assigned to lake eutrophication levels based on the cosine of the angle between the cloud digital characteristics vectors of each sample and those of each eutrophication grade. To field test this method, the eutrophication level of Nansi Lake in Shandong Province was evaluated based on monitoring data collected in 2009-2016. Results demonstrate that, in 2009 and in 2011-2015, the upper lake of Nansi Lake exhibited moderate eutrophication while the lower lake exhibited mild eutrophication. In 2010, 2016, elevated concentrations of total nitrogen and total phosphorus led to an increase in the eutrophication level of the lower lake, matching that of the upper lake. Based on the results of these field tests, we conclude that the MSCM presented in this study provides a more flexible and effective method for evaluating lake eutrophication data than the existing multidimensional normal cloud model.


Assuntos
Monitoramento Ambiental , Lagos , China , Clorofila , Eutrofização , Nitrogênio , Fósforo , Reprodutibilidade dos Testes
8.
Glob Chang Biol ; 24(5): 2159-2168, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29245174

RESUMO

Climate warming is substantially shifting the leaf phenological events of plants, and thereby impacting on their individual fitness and also on the structure and functioning of ecosystems. Previous studies have largely focused on the climate impact on spring phenology, and to date the processes underlying leaf senescence and their associated environmental drivers remain poorly understood. In this study, experiments with temperature gradients imposed during the summer and autumn were conducted on saplings of European beech to explore the temperature responses of leaf senescence. An additional warming experiment during winter enabled us to assess the differences in temperature responses of spring leaf-out and autumn leaf senescence. We found that warming significantly delayed the dates of leaf senescence both during summer and autumn warming, with similar temperature sensitivities (6-8 days delay per °C warming), suggesting that, in the absence of water and nutrient limitation, temperature may be a dominant factor controlling the leaf senescence in European beech. Interestingly, we found a significantly larger temperature response of autumn leaf senescence than of spring leaf-out. This suggests a possible larger contribution of delays in autumn senescence, than of the advancement in spring leaf-out, to extending the growing season under future warmer conditions.


Assuntos
Fagus/fisiologia , Folhas de Planta/fisiologia , Estações do Ano , Temperatura , Clima , Mudança Climática , Ecossistema
9.
J Environ Manage ; 175: 1-8, 2016 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-27017267

RESUMO

Herbicides are a main source of agricultural diffuse pollution due to their wide application in tillage practices. The aim of this study is to optimize the control efficiency of the herbicide atrazine with the aid of modified soil amendments. The soil amendments were composed of a combination of biochar and gravel. The biochar was created from corn straw with a catalytic pyrolysis of ammonium dihydrogen phosphate. The leaching experiments under four rainfall conditions were measured for the following designs: raw soil, soil amended with gravel, biochar individually and together with gravel. The control efficiency of each design was also identified. With the designed equipment, the atrazine content in the contaminant load layer, gravel substrate layer, biochar amendment layer and soil layer was measured under four types of rainfall intensities (1.25 mm/h, 2.50 mm/h, 5.00 mm/h and 10.00 mm/h). Furthermore, the vertical distribution of atrazine in the soil sections was also monitored. The results showed that the herbicide leaching load increased under the highest rainfall intensity in all designs. The soil with the combination of gravel and biochar provided the highest control efficiency of 87.85% on atrazine when the additional proportion of biochar was 3.0%. The performance assessment under the four kinds of rainfall intensity conditions provided the guideline for the soil amendment configuration. The combination of gravel and biochar is recommended as an efficient method for controlling diffuse herbicide pollution.


Assuntos
Atrazina/análise , Carvão Vegetal , Poluição Ambiental/prevenção & controle , Herbicidas/análise , Poluentes do Solo/análise , Solo/química , Agricultura , Atrazina/química , Herbicidas/química , Chuva , Poluentes do Solo/química
10.
J Environ Sci (China) ; 26(8): 1631-40, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-25108719

RESUMO

China's increasing energy consumption and coal-dominant energy structure have contributed not only to severe environmental pollution, but also to global climate change. This article begins with a brief review of China's primary energy use and associated environmental problems and health risks. To analyze the potential of China's transition to low-carbon development, three scenarios are constructed to simulate energy demand and CO2 emission trends in China up to 2050 by using the Long-range Energy Alternatives Planning System (LEAP) model. Simulation results show that with the assumption of an average annual Gross Domestic Product (GDP) growth rate of 6.45%, total primary energy demand is expected to increase by 63.4%, 48.8% and 12.2% under the Business as Usual (BaU), Carbon Reduction (CR) and Integrated Low Carbon Economy (ILCE) scenarios in 2050 from the 2009 levels. Total energy-related CO2 emissions will increase from 6.7 billiontons in 2009 to 9.5, 11, 11.6 and 11.2 billiontons; 8.2, 9.2, 9.6 and 9 billiontons; 7.1, 7.4, 7.2 and 6.4 billiontons in 2020, 2030, 2040 and 2050 under the BaU, CR and ILCE scenarios, respectively. Total CO2 emission will drop by 19.6% and 42.9% under the CR and ILCE scenarios in 2050, compared with the BaU scenario. To realize a substantial cut in energy consumption and carbon emissions, China needs to make a long-term low-carbon development strategy targeting further improvement of energy efficiency, optimization of energy structure, deployment of clean coal technology and use of market-based economic instruments like energy/carbon taxation.


Assuntos
Carbono/química , Conservação dos Recursos Naturais/métodos , Fontes Geradoras de Energia , China , Modelos Teóricos , Fatores de Tempo
11.
Sci Total Environ ; 899: 165681, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37481090

RESUMO

Wastewater treatment plants (WWTPs) are considered important sources of antibiotics and metabolites in aquatic environments and pose a serious threat to the safety of aquatic organisms. In this study, we investigated the seasonal occurrence, removal, emission, and environmental risk assessment (ERA) of 32 antibiotics and metabolites at four WWTPs located in Wuhu, China. The main findings of this study are as follows: Ofloxacin concentrations dominated all WWTPs, and large quantities of sulfachinoxalin were only detected in WWTP 2 treating mixed sewage. The average apparent removal of individual parent antibiotics or metabolites ranged from -94.7 to 100 %. There was a noticeable seasonal emission pattern (independent t-test, t = 9.89, p < 0.001), with lower emissions observed during summer. WWTPs discharged 85.2 ± 43.8 g of antibiotics and metabolites each day. Approximately 87 % of emissions were discharged into the mainstream of the Yangtze River, while the remainder were discharged into its tributary, the Zhanghe River. The total emissions of 21 parent antibiotics were approximately 18 % of the prescription data, indicating that a considerable and alarming amount of prototype drugs entered the receiving water body. Based on the risk quotient (RQ) of the ERA, the Zhanghe River has a moderate risk of ofloxacin (RQ = 0.111-0.583), a low or insignificant risk of sulfamethoxazole (RQ = 0.003-0.048), and an insignificant risk of other antibiotics or metabolites. However, the risk of antibiotics or metabolites in the mainstream of Yangtze River is insignificant. This study could help understand the seasonal emission patterns of antibiotics and metabolites, as well as more antibiotics sensitive of environmental risks in tributary than that in mainstream.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Antibacterianos/análise , Águas Residuárias , Eliminação de Resíduos Líquidos , Poluentes Químicos da Água/análise , Monitoramento Ambiental , Ofloxacino/análise , China , Rios
12.
J Environ Manage ; 113: 467-73, 2012 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-23122620

RESUMO

Managing storm rainfall runoff is paramount in semi-arid regions with urban development. In Beijing, pollution prevention in urban storm runoff and storm water utilization has been identified as the primary strategy for urban water management. In this paper, we sampled runoff during storm rainfall events and analyzed the concentration of chemical oxygen demand (COD), total suspended solids (TSS) and total phosphorus (TP) in the runoff. Furthermore, the first flush effect of storm rainfall from diverse underlying surfaces was also analyzed. With the Storm Water Management Model (SWMM), the different impervious rates of underlying surfaces during the storm runoff process were expressed. The removal rates of three typical pollutants and their interactions with precipitation and underlying surfaces were identified. From these rates, the scenarios regarding the urban storm runoff pollution loading from different designs of underlying previous rates were assessed with the SWMM. First flush effect analysis showed that the first 20% of the storm runoff should be discarded, which can help in utilizing the storm water resource. The results of this study suggest that the SWMM can express in detail the storm water pollution patterns from diverse underlying surfaces in Beijing, which significantly affected water quality. The scenario analysis demonstrated that impervious rate adjustment has the potential to reduce runoff peak and decrease pollution loading.


Assuntos
Monitoramento Ambiental/métodos , Modelos Teóricos , Chuva , Poluentes Químicos da Água/análise , Análise da Demanda Biológica de Oxigênio , Fósforo/análise
13.
Environ Manage ; 50(5): 888-99, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22961612

RESUMO

Intensive agricultural development can change land use, which can further affect regional ecosystem services and functions. With the rapid growth of the population and the national demand for food, the northeast of China, which is located in the high latitudes, has experienced four agricultural developments since the 1950s. The original wetlands of this area were developed for farmland. The evaluation of ecosystem services is conducted to reveal the ecosystem status and variable trends caused by land reclamation. The aim of this study is to provide scientific basis for environmental management and for the sustainable development of agriculture in Northeast China. With GIS-RS technology, a typical farm was chosen to analyze variations in the ecosystem service value in response to land use changes during the study period. The total ecosystem service value of the farm decreased from 7523.10 million Yuan in 1979 to 4023.59 million Yuan in 2009 with an annual rate of -1.6 % due to the decreasing areas of woodland and wetland. The increased areas of cropland, water area and grassland partly offset the loss of the total value, but the loss was still greater than the compensation. Waste treatment and climate regulation were the top two service functions with high service values, contributing to approximately 50 % of the total service value. The spatial difference of the ecosystem service value also was analyzed. The wetlands located in the central and northeastern sections of the farm changed significantly. From the aspect of ecosystem service value, the wetland and water area should be conserved, as they have the highest value coefficients. The accuracy of the value coefficient, however, needs to be studied further in future research.


Assuntos
Conservação dos Recursos Naturais/métodos , Ecossistema , Agricultura , China , Monitoramento Ambiental , Sistemas de Informação Geográfica , Áreas Alagadas
14.
Sci Total Environ ; 836: 155472, 2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-35472359

RESUMO

Studies have documented the significant effect of various factors on hydrological drought events. However, few studies have quantified drought's development and recovery process under environmental changes. This study focused on identifying hydrological drought's development and recovery characteristics and their potential causes in a typical semi-arid area. The Standardized Streamflow Index (SSI) was used as a metric for hydrological droughts, while the run theory was applied to identify the development and recovery processes of droughts. Changes in observed (human disturbed scenario) and simulated (natural scenario) droughts by employing the SWAT (Soil and Water Assessment Tool) model were also investigated from 1970 to 2016. The "simulated-observed" approach was used to assess the impacts of human regulations on hydrological drought development and recovery characteristics. Results showed that hydrological droughts occurred mainly during 1980-1990 and 2000-2016. In the natural condition, drought duration and intensity were higher, while lower severity in the drought recovery stage than development stage was observed. The drainage characteristics of the basin played the most critical role in the development and recovery characteristics of drought, which were also influenced by climatic conditions. Human activities had exacerbated recent natural hydrological drought. When considering the contribution of human activities, the reservoir operation was the dominant anthropic factor affected the development and recovery process of drought in the study area. Under the effects of reservoir regulation, long-duration hydrological droughts became rare. Moreover, the recovery ability of drought had been weakened. The effects of the reservoir were progressively crucial gradually. Although the water got from the river by the reservoir had been reduced, the negative impact on aggravating drought remains stronger than the reservoir was initially constructed. The results of our study will help improve the optimal management of reservoirs in semi-arid areas and enhance drought early warning and forecasting system.


Assuntos
Secas , Hidrologia , Rios , Solo , Água
15.
Sci Total Environ ; 838(Pt 2): 156021, 2022 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-35588839

RESUMO

Drought is a costly natural hazard with far-reaching impacts on agriculture, ecosystem, water supply, and socio-economy. While propagating through the water cycle, drought evolves into different types and affects the natural system and human society. Despite much progress made in recent decades, a synthesis of the characteristics, approaches, processes, and controlling factors of drought propagation is still lacking. We bridge this gap by reviewing the recent progress of drought propagation and discussing challenges and future directions. We first introduce drought propagation characteristics (e.g., response time scale, lag time), followed by different approaches, including statistical analysis and hydrological modeling. The recent progress in the propagation from meteorological drought to different types of drought (agricultural drought, hydrological drought, and ecological drought) is then synthesized, including the basic process, commonly used indicators, data sources, and main findings of drought propagation characteristics. Different controlling factors of drought propagations, including climate (e.g., aridity, seasonality, and anomalies of meteorological variables), catchment properties (e.g., slope, elevation, land cover, aquifer, baseflow), and human activities (e.g., reservoir operation and water diversion, irrigation, and groundwater abstraction), are then summarized. Challenges in drought propagation include the discrepancy in drought indicators (and approaches) and difficulty in characterizing the full propagation process and isolating influencing factors. Future analysis of drought propagation should shift from single indicators to multiple indicators, from individual drivers to combined drivers, from uni-directional analysis to feedbacks, from hazards to impacts, and from stationary to nonstationary assumptions. This review is expected to be useful for drought prediction and management across different regions under global warming.


Assuntos
Secas , Aquecimento Global , Ecossistema , Humanos , Hidrologia , Abastecimento de Água
16.
Sci Total Environ ; 805: 150103, 2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-34537689

RESUMO

Climate change is projected to affect the hydrological cycles in China, while the effects are expected to vary spatiotemporally. Understanding the variations in water security conditions and their sensitivity to climatic variables is crucial for assessing regional ecosystem responses to climate change. In the present study, we estimated the water yield capacity, an important indicator of water security in North China (NC), at a spatial resolution of 1 km during the last two decades based on the Budyko framework and quantified the sensitivity of water yield change to climate change among different vegetation types. The results showed that the performances of the Budyko framework were reliable both at the pixel scale and across large watersheds. The annual water yield in North China was estimated to be 7.61 ± 2.67 ∗ 1010 m3/yr, with an average mean water yield (MWY) of 49.51 ± 17.49 mm/yr. The spatial pattern of mean water yield change (MWYC) exhibited high heterogeneity; 46% of the study region was dominated by an increasing trend, while 9.84% was statistically significant (P < 0.05). Compared with temperature, the water yield capacity was more sensitive to precipitation variation. A consistent trend of variation was found in cropland between water yield and precipitation, while negative sensitivity coefficients were found in natural vegetation types. The variation in sensitivity coefficients (Swyp) in natural vegetation showed that in regions with a decrease in precipitation, the variation in water yield capacity also decreased, while in regions with an increase in precipitation from 0 to 8 mm/yr, the water yield capacity first decreased and then increased with precipitation. Our findings suggest that grass and shrubs would be more beneficial to regional water security in North China's revegetation, while afforestation would provide protection for the regional environment from extreme rainfall events.


Assuntos
Mudança Climática , Ecossistema , China , Temperatura , Água , Abastecimento de Água
17.
Fundam Res ; 2(5): 708-715, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38933126

RESUMO

Climate warming has substantially advanced the timing of spring leaf-out of woody species at middle and high latitudes, albeit with large differences. Insights in the spatial variation of this climate warming response may therefore help to constrain future trends in leaf-out and its impact on energy, water and carbon balances at global scales. In this study, we used in situ phenology observations of 38 species from 2067 study sites, distributed across the northern hemisphere in China, Europe and the United States, to investigate the latitudinal patterns of spring leaf-out and its sensitivity (ST, advance of leaf-out dates per degree of warming) and correlation (RT, partial correlation coefficient) to temperature during the period 1980-2016. Across all species and sites, we found that ST decreased significantly by 0.15 ± 0.02 d °C-1 °N-1, and RT increased by 0.02 ± 0.001 °N-1 (both at P < 0.001). The latitudinal patterns in RT and ST were explained by the differences in requirements of chilling and thermal forcing that evolved to maximize tree fitness under local climate, particularly climate predictability and summed precipitation during the pre-leaf-out season. Our results thus showed complicated spatial differences in leaf-out responses to ongoing climate warming and indicated that spatial differences in the interactions among environmental cues need to be embedded into large-scale phenology models to improve the simulation accuracy.

18.
Environ Sci Technol ; 45(14): 6041-8, 2011 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-21692445

RESUMO

Characterizing contaminant occurrences in China's centralized source waters can provide an understanding of source water quality for stakeholders. The single-factor (i.e., worst contaminant) water-quality assessment method, commonly used in Chinese official analysis and publications, provides a qualitative summary of the country's water-quality status but does not specify the extent and degree of specific contaminant occurrences at the national level. Such information is needed for developing scientifically sound management strategies. This article presents a Bayesian hierarchical modeling approach for estimating contaminant concentration distributions in China's centralized source waters using arsenic and fluoride as examples. The data used are from the most recent national census of centralized source waters in 2006. The article uses three commonly used source water stratification methods to establish alternative hierarchical structures reflecting alternative model assumptions as well as competing management needs in characterizing pollutant occurrences. The results indicate that the probability of arsenic exceeding the standard of 0.05 mg/L is about 0.96-1.68% and the probability of fluoride exceeding 1 mg/L is about 9.56-9.96% nationally, both with strong spatial patterns. The article also discusses the use of the Bayesian approach for establishing a source water-quality information management system as well as other applications of our methods.


Assuntos
Modelos Teóricos , Poluentes Químicos da Água/análise , Abastecimento de Água/análise , Arsênio , Teorema de Bayes , China , Fluoretos , Poluentes Químicos da Água/normas
19.
Front Plant Sci ; 12: 802664, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35058961

RESUMO

Climate warming has changed vegetation phenology, and the phenology-associated impacts on terrestrial water fluxes remain largely unquantified. The impacts are linked to plant adjustments and responses to climate change and can be different in different hydroclimatic regions. Based on remote sensing data and observed river runoff of hydrological station from six river basins across a hydroclimatic gradient from northeast to southwest in China, the relative contributions of the vegetation (including spring and autumn phenology, growing season length (GSL), and gross primary productivity) and climatic factors affecting the river runoffs over 1982-2015 were investigated by applying gray relational analysis (GRA). We found that the average GSLs in humid regions (190-241 days) were longer than that in semi-humid regions (186-192 days), and the average GSLs were consistently extended by 4.8-13.9 days in 1982-2015 period in six river basins. The extensions were mainly linked to the delayed autumn phenology in the humid regions and to advanced spring phenology in the semi-humid regions. Across all river basins, the GRA results showed that precipitation (r = 0.74) and soil moisture (r = 0.73) determine the river runoffs, and the vegetation factors (VFs) especially the vegetation phenology also affected the river runoffs (spring phenology: r = 0.66; GSL: r = 0.61; autumn phenology: r = 0.59), even larger than the contribution from temperature (r = 0.57), but its relative importance is climatic region-dependent. Interestingly, the spring phenology is the main VF in the humid region for runoffs reduction, while both spring and autumn growth phenology are the main VFs in the semi-humid region, because large autumn phenology delay and less water supply capacity in spring amplify the effect of advanced spring phenology. This article reveals diverse linkages between climatic and VFs, and runoff in different hydroclimatic regions, and provides insights that vegetation phenology influences the ecohydrology process largely depending on the local hydroclimatic conditions, which improve our understanding of terrestrial hydrological responses to climate change.

20.
Water Res ; 174: 115624, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32092545

RESUMO

Modeling studies have focused on N2O emissions in temperate rivers under static atmospheric N2O (N2Oairc), with cold temperate river networks under dynamic N2Oairc receiving less attention. To address this knowledge and methodological gap, the dissolved N2O concentration (N2Odisc) and N2Oairc algorithms were integrated with an air-water gas exchange model (FN2O) into the SWAT (Soil and Water Assessment Tool). This new model (SWAT-FN2O) allows users to simulate daily riverine N2O emissions under dynamic atmospheric N2O. The spatiotemporal fluctuations in the riverine N2O emissions was simulated and its response to the static and dynamic atmospheric N2O were analyzed in a middle-high latitude agricultural watershed in northeastern China. The results show that the SWAT-FN2O model is a useful method for capturing the hotspots in riverine N2O emissions. The model showed strong riverine N2O absorption and weak N2O emissions from September to February, which acted as a sink for atmospheric N2O in this cold temperate area. High N2O emissions occurred from April to July, which accounted for 83.34% of the yearly emissions. Spatial analysis indicated that the main stream and its tributary could contribute 302.3-1043.7 and 41.5-163.4 µg N2O/(m2·d) to the total riverine N2O emissions (15.02 t/a), respectively. The riverine N2O emissions rates in the subbasins dominated by forests and paddy fields were lower than those in the subbasins dominated by arable and residential land. Riverine N2O emissions can be overestimated under the static atmospheric N2O rather than under the increasing atmospheric N2O. This overestimation has increased from 1.52% to 23.97% from 1990 to 2016 under the static atmospheric N2O. The results of this study are valuable for water quality and future climate change assessments that aim to protect aquatic and atmospheric environments.


Assuntos
Poluentes Atmosféricos , Rios , Agricultura , China , Monitoramento Ambiental , Óxido Nitroso , Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA