Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Molecules ; 24(15)2019 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-31382452

RESUMO

Skim milk has a poor flavor due to the lack of fat. Finding ways to improve the flavor quality of skim milk has attracted the attention of more and more researchers. The purpose of this study was to create a skim milk product with good flavor by processing. Briefly, raw milk was treated by preheating at pasteurization (85 °C, 15 s) and ultra-high temperature (UHT) instantaneous sterilization (137-141 °C, 4 s). Subsequently, the sample was centrifuged to remove fat and obtain two kinds of skim milk, namely, PSM (skim milk obtained by preheating at 85 °C, 15 s) and USM (skim milk obtained by preheating at 137-141 °C, 4 s). The results showed that the intensity of the main sensory attributes (overall liking, milk aroma, etc.) and the concentrations of the key flavor compounds (2-heptanone, 2-nonanone, decanal, hexanoic acid, etc.) were significantly higher in the USM (p < 0.05) than that of the PSM and RSM (skim milk without preheating). Principal component analysis (PCA) with E-Nose (electronic nose) showed that the RSM had significant differences in the milk aroma compared with the PSM and USM. Furthermore, it was found that there were good relationships between volatile compounds and sensory attributes by partial least squares regression (PLSR) analysis. These findings provided insights into improving the flavor quality of skim milk by preheating treatment instead of any flavor additives.


Assuntos
Qualidade dos Alimentos , Leite/química , Leite/normas , Pasteurização , Animais , Nariz Eletrônico , Análise de Alimentos , Cromatografia Gasosa-Espectrometria de Massas , Temperatura Alta , Microextração em Fase Sólida , Compostos Orgânicos Voláteis/análise , Compostos Orgânicos Voláteis/química , Compostos Orgânicos Voláteis/isolamento & purificação
2.
Food Funct ; 15(4): 2328, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38305587

RESUMO

Correction for 'Lactobacillus fermentum F40-4 ameliorates hyperuricemia by modulating the gut microbiota and alleviating inflammation in mice' by Jiayuan Cao et al., Food Funct., 2023, 14, 3259-3268, https://doi.org/10.1039/D2FO03701G.

3.
J Agric Food Chem ; 72(9): 4726-4736, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38294408

RESUMO

Milk-derived extracellular vesicles can improve intestinal health and have antiosteoporosis potential. In this paper, we explored the effects of bovine raw milk-derived extracellular vesicles (mEVs) on ovariectomized (OVX) osteoporotic mice from the perspective of the gut-bone axis. mEVs could inhibit osteoclast differentiation and improve microarchitecture. The level of osteoporotic biomarkers in OVX mice was restored after the mEVs intervened. Compared with OVX mice, mEVs could enhance intestinal permeability, reduce endotoxin levels, and improve the expression of TNF-α, IL-17, and IL-10. 16S rDNA sequencing indicated that mEVs altered the composition of gut microbiota, specifically for Bacteroides associated with short-chain fatty acids (SCFAs). In-depth analysis of SCFAs demonstrated that mEVs could restore acetic acid, propionic acid, valeric acid, and isovaleric acid levels in OVX mice. Correlation analysis revealed that changed gut microbiota and SCFAs were significantly associated with gut inflammation and osteoporotic biomarkers. This study demonstrated that mEVs could inhibit osteoclast differentiation and improve osteoporosis by reshaping the gut microbiota, increasing SCFAs, and decreasing the level of pro-inflammatory cytokines and osteoclast differentiation-related factors in OVX mice. These findings provide evidence for the use of mEVs as a food supplement for osteoporosis.


Assuntos
Vesículas Extracelulares , Microbioma Gastrointestinal , Osteoporose , Animais , Bovinos , Camundongos , Leite , Osteogênese , Osteoporose/genética , Biomarcadores
4.
Nutrients ; 15(3)2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36771453

RESUMO

Osteoarthritis (OA) is the most common joint disease primarily characterized by cartilage degeneration. Milk-derived extracellular vesicles (mEVs) were reported to inhibit catabolic and inflammatory processes in the cartilage of OA patients. However, the current therapies target the advanced symptoms of OA, and it is significant to develop a novel strategy to inhibit the processes driving OA pathology. In this study, we investigated the therapeutic potential of mEVs in alleviating OA in vivo. The results revealed that mEVs ameliorated cartilage degeneration by increasing hyaline cartilage thickness, decreasing histological Osteoarthritis Research Society International (OARSI) scores, enhancing matrix synthesis, and reducing the expression of cartilage destructive enzymes in the destabilization of medial meniscus (DMM) mice. In addition, the disturbed gut microbiota in DMM mice was partially improved upon treatment with mEVs. It was observed that the pro-inflammatory bacteria (Proteobacteria) were reduced and the potential beneficial bacteria (Firmicutes, Ruminococcaceae, Akkermansiaceae) were increased. mEVs could alleviate the progression of OA by restoring matrix homeostasis and reshaping the gut microbiota. These findings suggested that mEVs might be a potential therapeutic dietary supplement for the treatment of OA.


Assuntos
Cartilagem Articular , Vesículas Extracelulares , Microbioma Gastrointestinal , Osteoartrite , Camundongos , Animais , Meniscos Tibiais/metabolismo , Meniscos Tibiais/patologia , Condrócitos/metabolismo , Leite/metabolismo , Camundongos Endogâmicos C57BL , Osteoartrite/tratamento farmacológico , Vesículas Extracelulares/metabolismo , Administração Oral , Cartilagem Articular/patologia , Modelos Animais de Doenças
5.
Food Funct ; 14(7): 3259-3268, 2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-36928268

RESUMO

Hyperuricemia (HUA) is a systemic disease characterized by a disorder of purine metabolism and an abnormal increase in the serum level of uric acid (UA). Probiotics can exert potential therapeutic benefits against some metabolic diseases by regulating the intestinal microbiota. Lactobacillus fermentum F40-4 with UA-lowering activity of 87.40% was screened using purine as the target in vitro. The UA-lowering activity of L. fermentum F40-4 was further explored in a mouse model of HUA in vivo. L. fermentum F40-4 could downregulate serum levels of UA, blood urea nitrogen, creatinine, and xanthine oxidase by 40.84%, 11.61%, 57.66%, and 41.79%, respectively. L. fermentum F40-4 restored organ damage, and adjusted enzyme activity and transporter expression to promote the metabolic level of UA. In addition, L. fermentum F40-4 could reshape the gut microbiota and suppress inflammation to ameliorate HUA. An increment in intestinal UA excretion was documented. These findings suggest that L. fermentum F40-4 might serve as a potential probiotic for the prevention and treatment of HUA.


Assuntos
Microbioma Gastrointestinal , Hiperuricemia , Limosilactobacillus fermentum , Probióticos , Camundongos , Animais , Microbioma Gastrointestinal/fisiologia , Hiperuricemia/tratamento farmacológico , Inflamação , Probióticos/metabolismo
6.
Nutrients ; 15(22)2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-38004116

RESUMO

Inflammatory bowel disease (IBD) is a chronic and recurrent disease. It has been observed that the incidence and prevalence of IBD are increasing, which consequently raises the risk of developing colon cancer. Recently, the regulation of the intestinal barrier by probiotics has become an effective treatment for colitis. Akkermansia muciniphila-derived extracellular vesicles (Akk EVs) are nano-vesicles that contain multiple bioactive macromolecules with the potential to modulate the intestinal barrier. In this study, we used ultrafiltration in conjunction with high-speed centrifugation to extract Akk EVs. A lipopolysaccharide (LPS)-induced RAW264.7 cell model was established to assess the anti-inflammatory effects of Akk EVs. It was found that Akk EVs were able to be absorbed by RAW264.7 cells and significantly reduce the expression of nitric oxide (NO), TNF-α, and IL-1ß (p < 0.05). We explored the preventative effects on colitis and the regulating effects on the intestinal barrier using a mouse colitis model caused by dextran sulfate sodium (DSS). The findings demonstrated that Akk EVs effectively prevented colitis symptoms and reduced colonic tissue injury. Additionally, Akk EVs significantly enhanced the effectiveness of the intestinal barrier by elevating the expression of MUC2 (0.53 ± 0.07), improving mucus integrity, and reducing intestinal permeability (p < 0.05). Moreover, Akk EVs increased the proportion of the beneficial bacteria Firmicutes (33.01 ± 0.09%) and downregulated the proportion of the harmful bacteria Proteobacteria (0.32 ± 0.27%). These findings suggest that Akk EVs possess the ability to regulate immune responses, protect intestinal barriers, and modulate the gut microbiota. The research presents a potential intervention approach for Akk EVs to prevent colitis.


Assuntos
Colite , Doenças Inflamatórias Intestinais , Animais , Camundongos , Colite/induzido quimicamente , Colite/prevenção & controle , Intestinos , Colo , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Sulfato de Dextrana
7.
Sci Adv ; 9(15): eade5041, 2023 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-37043568

RESUMO

Milk-derived extracellular vesicles (mEVs) have been proposed as a potential nanomedicine for intestinal disorders; however, their impact on intestinal barrier integrity in gut inflammation and associated metabolic diseases has not been explored yet. Here, mEVs derived from bovine and human breast milk exert similar protective effects on epithelial tight junction functionality in vitro, survive harsh gastrointestinal conditions ex vivo, and reach the colon in vivo. Oral administration of mEVs restores gut barrier integrity at multiple levels, including mucus, epithelial, and immune barriers, and prevents endotoxin translocation into the liver in chemical-induced experimental colitis and diet-induced nonalcoholic steatohepatitis (NASH), thereby alleviating gut disorders, their associated liver inflammation, and NASH. Oral administration of mEVs has potential in the treatment of gut inflammation and gut-liver axis-associated metabolic diseases via protection of intestinal barrier integrity.


Assuntos
Colite , Vesículas Extracelulares , Hepatite , Hepatopatia Gordurosa não Alcoólica , Humanos , Animais , Bovinos , Camundongos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Leite/metabolismo , Inflamação , Vesículas Extracelulares/metabolismo , Camundongos Endogâmicos C57BL
8.
Foods ; 11(11)2022 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-35681325

RESUMO

Probiotics are gaining attention due to their functions of regulating the intestinal barrier and promoting human health. The production of bacteriocins is one of the important factors for probiotics to exert beneficial properties. This study aimed to screen bacteriocin-producing Lactiplantibacillus plantarum and evaluate the probiotic potential in vitro. It was found that L. plantarum Q7, L. plantarum F3-2 and L. plantarum YRL45 could produce bacteriocins and inhibit common intestinal pathogens. These three strains had probiotic potential with tolerance to the gastrointestinal environmental and colonization in the gut, and exhibited various degrees of anti-inflammatory activity and tight junction function in the intestinal barrier. Particularly, L. plantarum YRL45 could significantly (p < 0.05) reduce the increase in nitric oxide (NO), prostaglandin E2 (PGE2), necrosis factor-α (TNF-α) and interleukin-1ß (IL-1ß) induced by lipopolysaccharide (LPS), thereby easing inflammatory response. L. plantarum F3-2 could remarkably (p < 0.05) up-regulate the expression levels of ZO-1, Occludin and Claudin-1 in intestinal epithelial injured cells, which was conducive to protecting the intestinal barrier. These findings provided fundamental information about the probiotic properties of bacteriocin-producing L. plantarum, which suggested that L. plantarum Q7, L. plantarum F3-2 and L. plantarum YRL45 had the potential to be used as novel probiotic strains.

9.
Front Nutr ; 9: 954545, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35873427

RESUMO

Hyperuricemia (HUA) is a disorder of purine metabolism resulting in abnormally elevated serum uric acid (UA) concentration. It is believed that there is an association between gut microbiota and HUA, and probiotics have the potential palliative effect. However, the underlying mechanism of probiotics in ameliorating HUA remains unclear. The purpose of this study was to investigate the effect and mechanism of Lactobacillus plantarum Q7 on HUA in Balb/c mice. The results showed that L. plantarum Q7 had an excellent capability to affect UA metabolism, which could degrade nucleotides by 99.97%, nucleosides by 99.15%, purine by 87.35%, and UA by 81.30%. It was observed that L. plantarum Q7 could downregulate serum UA, blood urea nitrogen (BUN), creatinine (Cr), and xanthine oxidase (XOD) by 47.24%, 14.59%, 54.59%, and 40.80%, respectively. Oral administration of L. plantarum Q7 could restore the liver, kidney, and intestinal injury induced by HUA and the expression of metabolic enzymes and transporters to normal level. 16S rRNA sequencing analysis showed that L. plantarum Q7 treatment could restore the imbalance of species diversity, richness, and community evenness compared with the model group. The ratio of Bacteroidetes to Firmicutes was recovered nearly to the normal level by L. plantarum Q7 intervention. The dominant microorganisms of L. plantarum Q7 group contained more anti-inflammatory bacteria than those of the model group. These findings indicated that L. plantarum Q7 might regulate UA metabolism and repair the liver and kidney injury by reshaping the gut microbiota and could be used as a potential probiotic strain to ameliorate HUA.

10.
Front Immunol ; 13: 940228, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35874662

RESUMO

Hyperuricemia (HUA) is the presence of excessive uric acid (UA) in blood, which leads to an increased risk of chronic kidney disease and gout. Probiotics have the potential effect of alleviating HUA. The purpose of this study was to screen probiotics with UA-lowering activity and explore the underlying mechanism. The UA-lowering activity of 20 lactic acid bacteria strains was investigated in vitro, and the effect of candidate probiotics on UA metabolism was evaluated using the HUA Balb/c mouse model. The results showed that Lactobacillus paracasei X11 had excellent UA-lowering activity in vitro, which could degrade nucleotides and nucleosides completely within 30 min, and the degradation rates of purine and trioxypurine could reach 83.25% and 80.42%, respectively. In addition, oral administration of L. paracasei X11 could reduce serum UA by 52.45% and inhibit renal proinflammatory cytokine IL-1ß by 50.69%, regulating adenosine deaminase (ADA), xanthine oxidase (XOD), and transporter expression (GLUT9, NPT1, and URAT1) to a normal level. Moreover, it could restore the ratio of Bacteroidetes to Firmicutes (Bac/Firm ratio) and showed a positive effect on the recovery of the intestinal microbiota. These findings provided fundamental information about the UA-lowering properties of probiotics, which suggested that L. paracasei X11 had the potential to be developed as a novel probiotic strain to ameliorate HUA.


Assuntos
Microbioma Gastrointestinal , Hiperuricemia , Lacticaseibacillus paracasei , Animais , Hiperuricemia/tratamento farmacológico , Hiperuricemia/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Ácido Úrico
11.
Food Chem X ; 15: 100385, 2022 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-36211740

RESUMO

The aroma of the fermented milk produced by twenty-eight Lactobacillus delbrueckii subsp. bulgaricus strains was evaluated via quantitative descriptive analysis. According to the sensory analysis results, the fermented milks were grouped into milky-type, cheesy-type, fermented-type and miscellaneous-type. The representative samples of cheese-type and fermented-type were analyzed by headspace-gas chromatography-ion mobility spectrometry (HS-GC-IMS) and flavoromics. A total of 95 volatile compounds were identified and particularly, 12 aroma-active compounds were detected by using gas chromatography-olfactometry-mass spectrometry (GC-O-MS). Among the different aroma types, 2,3-butanedione, δ-decalactone, acetaldehyde, butanoic acid, acetic acid and hexanoic acid were finally screened out as the key aroma-active compounds by quantitative and odor activity value (OAV) analysis combined with aroma recombination, omission and addition experiments. These findings were valuable in developing specific fermented milk products with different aroma profiles.

12.
Nutrients ; 13(10)2021 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-34684320

RESUMO

Ulcerative colitis (UC) is a relapsing and remitting inflammatory disease. Probiotics have a potential beneficial effect on the prevention of UC onset and relapse in clinical trials. Lactobacillus rhamnosus GG (L. rhamnosus GG) have shown clinical benefits on UC patients, however, the precise mechanisms are unknown. The aim of this study is to explore the effect of extracellular vesicles released from L. rhamnosus GG (LGG-EVs) on dextran sulfate sodium (DSS)-induced colitis and propose the underlying mechanism of LGG-EVs for protecting against colitis. The results showed that LGG-EVs could prevent colonic tissue damage and shortening of the colon (p < 0.01), and ameliorate intestinal inflammation by inhibiting TLR4-NF-κB-NLRP3 axis activation. Consistently, the pro-inflammatory cytokines (TNF-α, IL-1ß, IL-6, IL-2) were suppressed effectively upon LGG-EVs treatment (p < 0.05). The 16S rRNA sequencing showed that LGG-EVs administration could reshape the gut microbiota in DSS-induced colitis mice, which further alters the metabolism pathways of gut microbiota. These findings propose a novel perspective of L. rhamnosus GG in attenuating inflammation mediated by extracellular vesicles and offer consideration for developing oral gavage of LGG-EVs for colitis therapies.


Assuntos
Vesículas Extracelulares/metabolismo , Microbioma Gastrointestinal , Inflamação/microbiologia , Lacticaseibacillus rhamnosus/metabolismo , Animais , Biodiversidade , Colite/induzido quimicamente , Colite/genética , Colite/microbiologia , Colite/patologia , Citocinas/metabolismo , Sulfato de Dextrana , Vesículas Extracelulares/ultraestrutura , Ácidos Graxos/metabolismo , Regulação da Expressão Gênica , Inflamação/genética , Inflamação/imunologia , Masculino , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Especificidade de Órgãos , Análise de Componente Principal
13.
Front Immunol ; 12: 777147, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34925349

RESUMO

Probiotics plays an important role in regulating gut microbiota and maintaining intestinal homeostasis. Extracellular vesicles (EVs) derived from probiotics have emerged as potential mediators of host immune response and anti-inflammatory effect. However, the anti-inflammatory effect and mechanism of probiotics derived EVs on inflammatory bowel disease (IBD) remains unclear. In this study, the effect of Lactobacillus plantarum Q7-derived extracellular vesicles (Q7-EVs) on gut microbiota and intestinal inflammation was investigated in C57BL/6J mice. The results showed that Q7-EVs alleviated DSS-induced colitis symptoms, including colon shortening, bleeding, and body weight loss. Consumption of Q7-EVs reduced the degree of histological damage. DSS-upregulated proinflammatory cytokine levels including IL-6, IL-1ß, IL-2 and TNF-α were reduced significantly by Q7-EVs (p < 0.05). 16S rRNA sequencing results showed that Q7-EVs improved the dysregulation of gut microbiota and promoted the diversity of gut microbiota. It was observed that the pro-inflammatory bacteria (Proteobacteria) were reduced and the anti-inflammatory bacteria (Bifidobacteria and Muribaculaceae) were increased. These findings indicated that Q7-EVs might alleviate DSS-induced ulcerative colitis by regulating the gut microbiota.


Assuntos
Colite Ulcerativa/terapia , Vesículas Extracelulares/transplante , Microbioma Gastrointestinal/imunologia , Lactobacillus plantarum/citologia , Probióticos , Animais , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/imunologia , Colite Ulcerativa/microbiologia , Colo/efeitos dos fármacos , Colo/imunologia , Colo/microbiologia , Colo/patologia , Sulfato de Dextrana/administração & dosagem , Sulfato de Dextrana/toxicidade , Modelos Animais de Doenças , Vesículas Extracelulares/imunologia , Fezes , Humanos , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/imunologia , Mucosa Intestinal/microbiologia , Mucosa Intestinal/patologia , Lactobacillus plantarum/imunologia , Masculino , Camundongos
14.
Theranostics ; 11(17): 8570-8586, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34373759

RESUMO

Rationale: Bovine milk constitutes an essential part of human diet, especially for children, due to its enrichment of various nutrients. We recently developed an effective protocol for the isolation of extracellular vesicles from milk (mEVs) and discovered that mEVs contained large amounts of immune-active proteins and modulated the gut immunity and microbiota in healthy mice. Here, we aimed to explore the therapeutic effects of mEVs on inflammatory bowel disease. Methods: MicroRNAs and protein content in mEVs were analyzed by RNA sequencing and proteomics, respectively, followed by functional annotation. Ulcerative colitis (UC) was induced by feeding mice with dextran sulfate sodium. Intestinal immune cell populations were phenotyped by flow cytometry, and the gut microbiota was analyzed via 16S rRNA sequencing. Results: We showed that abundant proteins and microRNAs in mEVs were involved in the regulation of immune and inflammatory pathways and that oral administration of mEVs prevented colon shortening, reduced intestinal epithelium disruption, inhibited infiltration of inflammatory cells and tissue fibrosis in a mouse UC model. Mechanistically, mEVs attenuated inflammatory response via inhibiting TLR4-NF-κB signaling pathway and NLRP3 inflammasome activation. Furthermore, mEVs were able to correct cytokine production disorder and restore the balance between T helper type 17 (Th17) cells and interleukin-10+Foxp3+ regulatory T (Treg) cells in the inflamed colon. The disturbed gut microbiota in UC was also partially recovered upon treatment with mEVs. The correlation between the gut microbiota and cytokines suggests that mEVs may modulate intestinal immunity via influencing the gut microbiota. Conclusions: These findings reveal that mEVs alleviate colitis by regulating intestinal immune homeostasis via inhibiting TLR4-NF-κB and NLRP3 signaling pathways, restoring Treg/Th17 cell balance, and reshaping the gut microbiota.


Assuntos
Colite Ulcerativa/tratamento farmacológico , Vesículas Extracelulares/metabolismo , Leite/metabolismo , Animais , China , Colite/tratamento farmacológico , Colite Ulcerativa/metabolismo , Colo/efeitos dos fármacos , Citocinas/metabolismo , Modelos Animais de Doenças , Vesículas Extracelulares/genética , Vesículas Extracelulares/fisiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Doenças Inflamatórias Intestinais/tratamento farmacológico , Mucosa Intestinal/metabolismo , Intestinos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Células RAW 264.7 , RNA Ribossômico 16S/genética , Transdução de Sinais , Linfócitos T Reguladores/metabolismo , Células Th17/metabolismo
15.
Mol Nutr Food Res ; 64(8): e1901251, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32180343

RESUMO

SCOPE: Milk-derived extracellular vesicles (mEVs) as nanoparticles are being developed as novel drug vehicles due to their pivotal role in cell-cell communication. As an important bioactive component in milk, little is known about their effect on the gut microbiota and intestinal immunity. Therefore, the effects of mEVs on gut microbiota and intestinal immunity in mice are investigated. METHODS AND RESULTS: First, a new method to obtain high-yield mEVs is developed. Afterward, the colonic contents from C57BL/6 mice fed different doses of mEVs (8 weeks) are collected and the microbial composition via 16S rRNA gene sequencing is analyzed. It is found that mEVs could alter the gut microbiota composition and modulate their metabolites-short-chain fatty acids (SCFAs). Furthermore, the effects of mEVs on intestinal immunity are evaluated. It is observed that the expression levels of Muc2, RegIIIγ, Myd88, GATA4 genes, and IgA, sIgA are increased in the intestine, which are significant for the integrity of the mucus layer. CONCLUSION: These findings reveal that the genes with critical importance for intestinal barrier function and immune regulation are modified in mice by oral administration mEVs, which also result in the changes of the relative composition of gut microbiome and SCFAs.


Assuntos
Vesículas Extracelulares , Microbioma Gastrointestinal , Intestinos/imunologia , Leite/química , Administração Oral , Animais , Bovinos , Vesículas Extracelulares/química , Ácidos Graxos Voláteis/metabolismo , Feminino , Expressão Gênica , Ácido Clorídrico/química , Imunoglobulina A/genética , Camundongos , Camundongos Endogâmicos C57BL , Leite/citologia , Células RAW 264.7 , Ultracentrifugação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA