Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nanotechnology ; 35(1)2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37797599

RESUMO

Fiber-shaped energy-storage devices for high energy and power density are crucial to power wearable electronics. In this work, reduced graphene oxide/carbon nanotubes/polypyrrole (GCP-op) cotton fabric with the optimal performance is prepared via a facile and cost-effective dipping-drying together with chemical polymerization approach. The structural characterizations confirm that the GCP-op cotton fabric has been successfully attached with numerous nanoparticles and carbon nanotubes, which can serve as a channel for electronical transfer. And GCP-op cotton fabric electrode displays admirable areal specific capacitance with 8397 mF cm-2at 1 mA cm-2. By combining GCP-op cathode with zinc anode, a GCP-op//PAM/ZnCl2//Zn flexible Zn-ion hybrid supercapacitor (FZHSC) is produced with 2 M polyacrylamide/ZnCl2(PAM/ZnCl2) hydrogel as the gel electrolyte. The FZHSC has superior cycle stability of 88.2%, outstanding energy density of up to 158µWh cm-2and power density at 0.5 mW cm-2. The remarkable performance proves that PPy-based material can provide more options for design and fabricate high energy flexible Zn-ion hybrid supercapacitors.

2.
Nanotechnology ; 32(50)2021 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-34584021

RESUMO

Herein, we report an enhanced red emission from colloidal silicon nanocrystals (c-Si NCs) solution-processed light-emitting diode. c-Si NCs were synthesized by facile femtosecond laser ablation. Based on the structural characterization and opto-electrics properties analysis, both photoluminescence and electroluminescence arise from the radiative recombination of carriers due to quantum confined effect. The optical power density and highest external quantum efficiency have been obtained to be 0.79 mW cm-2and âˆ¼6.6%, respectively. These results indicate that Si NCs are very attractive as a potential optical source for future integrated chips.

3.
Nanotechnology ; 32(19): 195405, 2021 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-33494075

RESUMO

Heteroatom-doped carbon materials with a high specific area, a well-defined porous structure is important to high-performance supercapacitors (SCs). Here, S and N co-doped three-dimensional porous graphene aerogel (NS-3DPGHs) have been synthesized in a facile and efficient self-assembly process with thiourea acting as the reducing and doping agent solution. Operating as a SC electrode, fabricated co-doping graphene, i.e. the sample of NS-3DPGH-150 exhibits the highest specific capacitance of 412.9 F g-1 under 0.5 A g-1 and prominent cycle stabilization with 96.4% capacitance retention in the back of 10 000 cycles. Furthermore, based on NS-3DPGH-150, the symmetrical supercapacitor as-prepared in 6 M KOH displays a superior energy density of 12.9 Wh kg-1 under the power density of 249 W kg-1. Hence, NS-3DPGHs could be considered as an excellent candidate for SCs.

4.
Nanotechnology ; 32(30)2021 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-33878745

RESUMO

Polypyrrole (PPy) has high electrochemical activity and low cost, so it has great application prospects in wearable supercapacitors. Herein, we have successfully prepared polypyrrole/reduced graphene oxide (PPy/rGO) nanocomposite cotton fabric (NCF) by chemical polymerization, which exhibits splendid electrochemical performance compared with the individual. The addition of rGO can block the deformation of PPy caused by the expansion and contraction. The as-prepared PPy-0.5/rGO NCF electrode exhibits the brilliant specific capacitance (9300 mF cm-2at 1 mA cm-2) and the capacitance retention with 94.47% after 10 000 cycles. At the same time, the superior capacitance stability under different bending conditions and reuse capability have been achieved. All-solid-state supercapacitor has high energy density of 167µWh cm-2with a power density of 1.20 mW cm-2. Therefore, the PPy-0.5/rGO NCF electrode has a broad application prospect in high-performance flexible supercapacitor fabric electrode.

5.
Nanotechnology ; 30(1): 015705, 2019 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-30362465

RESUMO

Stable luminescent colloidal silicon (Si) nanocrystals (NCs) with sufficient surface protection are prepared through femtosecond laser ablation in organic solvent containing diverse concentrations of HF solution. The average size of Si NCs shows the decreasing tendency from 6.5 to 2.7 nm when the concentration of HF varies from 0 to 11.1 vol% (volume ratio). In line with the structural evolution, UV-visible absorption, photoluminescence (PL) excitation spectra, and time-resolved PL, we propose that room temperature blue emission peaks at 412 and 440 nm originate from alkyl-related radiative recombination centers. The enhanced PL quantum yield of colloidal Si NCs from 16.3% to 76.5% has been attributed to the effective passivation and suppression of non-radiative defect centers with increasing HF concentration from 0 to 11.1 vol%.

6.
J Phys Condens Matter ; 36(26)2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38537284

RESUMO

Supercapacitors (SCs) have become one of the most popular energy-storage devices for high power density and fast charging/discharging capability. Polyaniline is a class of conductive polymer materials with ultra-high specific capacitance, and the excellent mechanical properties will play a key role in the research of flexible SCs. The synergistic effect between polyaniline and graphene is often used to overcome their respective inherent shortcomings, thus the high-performance polyaniline-graphene based nanocomposite electrode materials can be prepared. The development of graphene-polyaniline nanocomposites as electrode materials for SCs depends on their excellent microstructure design. However, it is still difficult to seek a balance between graphene performance and functionalization to improve the weak interfacial interaction between graphene and polyaniline. In this manuscript, the latest preparation methods, research progress and research results of graphene-polyaniline nanocomposites on SCs are reviewed, and the optimization of electrode structures and performances is discussed. Finally, the prospect of graphene-polyaniline composites is expected.

7.
Dalton Trans ; 52(47): 17711-17716, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37902882

RESUMO

We used sodium hydroxide-mediated approach and tannic acid etching to prepare hollow structured trimetallic MOF-derived CoFeNi/Z-P NC nanocomposites. Remarkably, the resulting CoFeNi/Z-P NC nanocomposites have large specific surface area and mesoporous structure, making their active sites more accessible and mass transfer more effective. More complex trimetallic components provide greater possibilities for further improving electrocatalytic performance. The CoFeNi/Z-P NC nanocomposites demonstrate notable enhancements for the OER, and 10 mA cm-2 current density is achieved at a low overpotential of 244 mV, with a low Tafel slope of 66.2 mV dec-1 and have good stability in alkaline solutions. In addition, as a cathode material for overall alkaline water splitting, CoFeNi/Z-P NC is better than RuO2 with longer cycling stability.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA