RESUMO
Lodging is one of the primary factors that reduce wheat yield; therefore, rapid and accurate monitoring of wheat lodging helps to provide data support for crop loss and damage response and the subsequent settlement of agricultural insurance claims. In this study, we aimed to address two problems: (1) calculating the wheat lodging area. Through comparative experiments, the SegFormer-B1 model can achieve a better segmentation effect of wheat lodging plots with a higher prediction rate and a stronger generalization ability. This model has an accuracy of 96.56%, which realizes the accurate extraction of wheat lodging plots and the relatively precise calculation of the wheat lodging area. (2) Analyzing wheat lodging areas from various growth stages. The model established, based on the mixed-stage dataset, generally outperforms those set up based on the single-stage datasets in terms of the segmentation effect. The SegFormer-B1 model established based on the mixed-stage dataset, with its mIoU reaching 89.64%, was applicable to wheat lodging monitoring throughout the whole growth cycle of wheat.
Assuntos
Agricultura , TriticumRESUMO
There is a great demand for the technology of molecular delivery into living cells using nanocarriers to realise molecular therapies such as gene delivery and drug delivery systems. Lipid-based nanocarriers offer several advantages for molecular delivery in biological systems, such as easy preparation, high encapsulation efficiency of water-insoluble drug molecules, and excellent biocompatibility. In this paper, we first report the interaction of lipid nanodiscs spontaneously formed by the complexation of an amphiphilic polymethacrylate derivative and phospholipid with intact cells. We evaluated the internalisation of polymethacrylate-based lipid nanodiscs by intact HeLa cells and applied them to the delivery of paclitaxel (PTX), an anticancer drug. The lipid nanodisc showed excellent uptake efficiency compared to conventional liposomes at a concentration where nanodiscs do not show cytotoxicity. In addition, the nanodisc encapsulating PTX showed significantly higher anticancer activity than PTX-loaded liposomes against HeLa cells, reflecting their excellent activity in delivering payloads to intact cells. This study demonstrated the potential of a polymethacrylate-based lipid nanodisc as a novel nanocarrier for molecular delivery to intact cells.
RESUMO
INTRODUCTION AND OBJECTIVES: The present study aimed to investigate different peripheral lymphocyte subsets in patients with severe hemophilia A (HA) and factor VIII (FVIII) inhibitor production. For this, age-matched cases of 19 FVIII inhibitor-positive (IP), 21 FVIII inhibitor-negative (IN) and 45 healthy controls were selected for study. METHODS: Flow cytometry was used to analyze the peripheral lymphocyte subsets, including T, B, natural killer (NK) and NKT cells. The T cell subsets included CD3 + CD4-CD8- [double negative T (DNT)], CD3 + CD4 + CD8+ [double-positive T (DPT)], CD3 + CD4 + CD8- and CD3 + CD4-CD8+ T cells. Pairwise comparisons of absolute lymphocyte subset values were conducted among the three groups. The cut-off value for absolute lymphocyte counts was determined using receiver operating characteristic curve analysis. RESULTS: The results demonstrated that the absolute values of DPT cells in the IN and IP groups were significantly lower than those in the healthy control group (P = 0.007). The DNT values were also lower in severe HA patients with or without inhibitor than those in healthy subjects, but these differences were not statistically significant (P = 0.053). In addition, the absolute value of CD4+ Th cells in the IP group was lower than that in the healthy controls (P = 0.013). Although not statistically significant (P = 0.064), the absolute values of NKT cells were higher in the IN group compared with the IP group, and higher in the IP group compared with the healthy control group. There were no statistically significant differences in total T, B, CD8 + and NK cells among the IN, IP and healthy control groups. The cut-off value for absolute CD4+ Th cells in the IN group was < 598/µl. CONCLUSION: The decrease in absolute values of CD4+ Th cells in severe HA patients may contribute to the establishment of infused FVIII immune tolerance. If the CD4+ Th value remains > 598/µl, clinicians should be vigilant for possible FVIII inhibitor production, especially on days prior to FVIII exposure.
Assuntos
Fator VIII , Hemofilia A , Subpopulações de Linfócitos , Humanos , Hemofilia A/sangue , Hemofilia A/imunologia , Estudos de Casos e Controles , Fator VIII/imunologia , Masculino , Adulto , Adolescente , Adulto Jovem , Feminino , CriançaRESUMO
When developing novel radiopharmaceuticals, a linker moiety between the chelator and targeting vector can have a crucial influence on adjusting the affinity of the tracer and its biodistribution in organisms. To develop novel 99mTc-labelled hypoxia imaging radiotracers, in this study, five isocyanide-containing 2-nitroimidazole derivatives with different linkers (L1, L2, L3, L4 and L5) were synthesised and radiolabelled with technetium-99m to obtain five stable 99mTc-complexes ([99mTc]Tc-L1, [99mTc]Tc-L2, [99mTc]Tc-L3, [99mTc]Tc-L4 and [99mTc]Tc-L5). Corresponding rhenium analogues of [99mTc]Tc-L1 were synthesised and suggested the structures of these 99mTc-complexes would be a monovalent cation with a technetium (I) core surrounded by six ligands. [99mTc]Tc-L1 is hydrophilic, while the lipophilicities of [99mTc]Tc-L2, [99mTc]Tc-L3, [99mTc]Tc-L4 and [99mTc]Tc-L5 are close. In vitro cell experiments showed that all five novel 99mTc-complexes had higher uptake in hypoxic cells compared with aerobic cells, which indicates the complexes have good hypoxia selectivity. The biodistribution of the five 99mTc-complexes in S180 tumour-bearing mice showed that they all had certain uptake in the tumours. Among them, [99mTc]Tc-L1 had the highest tumour-to-muscle (4.68 ± 0.44) and tumour-to-blood (3.81 ± 0.46) ratios. The introduction of polyethylene glycol (PEG) chains effectively reduced the lipophilicity and decreased uptake by the liver, intestine and blood but also increased clearance from the tumours. In vivo metabolic studies showed [99mTc]Tc-L1 kept intact and remained stable in tumour, blood and urine at 2 h post-injection. The results of SPECT imaging showed that [99mTc]Tc-L1 had significant tumour uptake at 2 h post-injection, but there was still high uptake in abdominal organs such as the liver and kidney, suggesting that this complex needs to be further optimised before being used for tumour hypoxia imaging.
RESUMO
Nanomaterial-based mimetic enzymes, called nanozymes, received more and more attention in recent decades; however, their lack of biocompatibility limited the biomedical applications, which could be solved by surface modification. In this work, the Co3O4 nanoplates were modified by different functional groups, including the amino group, carboxyl group, hydroxyl group, and sulfhydryl group (NH2-Co3O4, COOH-Co3O4, OH-Co3O4, and SH-Co3O4). And the modified Co3O4 nanoplates were characterized by XRD, SEM, TEM, XPS, FTIR, TG, and the Zeta potential, verifying the successful modification of different functional groups. Their mimetic peroxidase properties and kinetics process were further studied and showed that the order of their catalytic activities was as follows: NH2-Co3O4 > SH-Co3O4 > COOH-Co3O4 > pure Co3O4 > OH-Co3O4, and the catalysis of modified Co3O4 nanozymes all followed Michaelis-Menten kinetics. The results indicated that the different functional groups changed their electron transfer ability, and further affected their catalytic activity. H2O2 detection was selected as an application model system to evaluate the modified Co3O4 nanozymes. Compared with other Co3O4 nanozymes, a wider linear range from 0.01 to 40 mmol L-1 and a lower detection limit of 1.5 µmol L-1 was constructed with NH2-Co3O4 nanozymes. The results suggested that surface modification by functional groups was a robust strategy to improve the application of Co3O4 nanozymes. The enhanced catalytic activity and good biocompatibility of modified Co3O4 nanozymes provided valuable materials for the relative application, such as medical detection and antioxidation.
Assuntos
Materiais Biocompatíveis/química , Técnicas Biossensoriais , Cobalto/química , Peróxido de Hidrogênio/análise , Nanoestruturas/química , Óxidos/química , Teste de Materiais , Estrutura Molecular , Tamanho da Partícula , Peroxidase/química , Peroxidase/metabolismo , Propriedades de SuperfícieRESUMO
Glucose-regulated protein 75 (Grp75) is an important molecular chaperone that belongs to the heat shock protein 70 family and resides predominantly in mitochondria. Grp75 can protect cells from glucose deprivation (GD) injury. However, the molecular mechanisms by which it carries out this function are unknown. Here we report that Grp75 could delay the release of cytochrome c and reduce apoptosis induced by GD, and we also found that Grp75 could decrease Bax/Bcl-2 gene expression ratio and inhibit the conformational change of Bax during this process. In conclusion, these findings suggested that Grp75 overexpression was able to inhibit apoptosis induced by GD. Grp75 inhibited Bax conformational change to delay the release of cytochrome c, thus providing protection to PC12 cell which was used primarily as a neuron model against GD toxicity.