Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Opt Express ; 29(3): 3284-3295, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33770930

RESUMO

Metamaterial absorbers can achieve high-efficiency electromagnetic absorption in a specific band, which have been used in biochemical sensing, photoelectric detection, imaging and other fields. Tunable metamaterial absorbers provide more possibilities for the development of multifunctional electromagnetic absorption devices. Here we propose a tunable and polarization-dependent terahertz metamaterial absorber which can work for both linearly and circularly polarized waves. By introducing single layer graphene and vanadium dioxide (VO2), switching between the two working states and wide-range tuning of the absorption efficiency are realized. When VO2 is in insulating state, the absorber shows different tunable absorption performance for the x- or y-polarized terahertz waves, in which the maximum absorption rate is close to 100%. When VO2 is in metallic state, the metasurface behaves as a chiral absorber, and the maximum absorption difference between the two circular polarizations is about 0.45, while the tuning efficiency reaches 86.3%. Under the two working conditions, the absorber can maintain efficient absorption with a large incident angle. In addition, as an application exploration of the absorber, we demonstrated its application in tunable and polarization multiplexed near-field image display.

2.
Opt Express ; 29(18): 28329-28337, 2021 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-34614966

RESUMO

It is difficult for single-layer metal metasurfaces to excite in-plane component of magnetic dipole moment, so achieving giant intrinsic optical chirality remains challenging. Fortunately, displacement current in dielectric metasurfaces can form the in-plane magnetic moment which is not orthogonal to the electric dipole moment and forms intrinsic chirality. Here, we show a lossless all-silicon metasurface which achieves giant intrinsic chirality in terahertz band. The leaky waveguide mode in the chiral silicon pillars simultaneously excite the in-plane electric and magnetic dipole moments, which triggers the spin-selected backward electromagnetic radiation, and then realizes the chiral response. The theoretical value of circular dichroism in the transmission spectrum reaches 69.4%, and the measured one is 43%. Based on the photoconductivity effect of the silicon metasurface, we demonstrate optical modulation of the intrinsic chirality using near-infrared continuous wave. In addition, by arranging the two kinds of meta-atoms which are enantiomers, we show the spin-dependent and tunable near-field image display. This simple-prepared all-silicon metasurface provides a new idea for the design of terahertz chiral meta-devices, and it is expected to be applied in the fields of terahertz polarization imaging or spectral detection.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA