Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Appl Microbiol Biotechnol ; 108(1): 13, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38170309

RESUMO

The cellulose-rich corncob residue (CCR) is an abundant and renewable agricultural biomass that has been under-exploited. In this study, two strategies were compared for their ability to transform CCR into cello-oligosaccharides (COS). The first strategy employed the use of endo-glucanases. Although selected endo-glucanases from GH9, GH12, GH45, and GH131 could release COS with degrees of polymerization from 2 to 4, the degrading efficiency was low. For the second strategy, first, CCR was efficiently depolymerized to glucose and cellobiose using the cellulase from Trichoderma reesei. Then, using these simple sugars and sucrose as the starting materials, phosphorylases from different microorganisms were combined to generate COS to a level up to 100.3 g/L with different patterns and degrees of polymerization. Using tomato as a model plant, the representative COS obtained from BaSP (a sucrose phosphorylase from Bifidobacterium adolescens), CuCbP (a cellobiose phosphorylase from Cellulomonas uda), and CcCdP (a cellodextrin phosphorylase from Clostridium cellulosi) were shown to be able to promote plant growth. The current study pointed to an approach to make use of CCR for production of the value-added COS. KEY POINTS: • Sequential use of cellulase and phosphorylases effectively generated cello-oligosaccharides from corncob residue. • Cello-oligosaccharides patterns varied in accordance to cellobiose/cellodextrin phosphorylases. • Spraying cello-oligosaccharides promoted tomato growth.


Assuntos
Celobiose , Celulase , Zea mays , Oligossacarídeos/química , Fosforilases
2.
Int J Mol Sci ; 25(9)2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38732181

RESUMO

B cell receptor-associated protein 31 (BAP31) is a transmembrane protein that is widely expressed and primarily located in the endoplasmic reticulum (ER). B cells play a crucial role in the immune system, and BAP31 significantly contributes to the functions of various immune cells. However, the specific role of BAP31 in B lymphocytes development remains unknown. In this study, we utilized a mouse model with BAP31 deleted from B cells to investigate its effects. Our findings reveal a block in early B cell development in the bone marrow and a significant decrease in the number of B cells in peripheral lymphoid organs taken from BAP31 B cell conditional knockout (BAP31-BCKO) mice. B cell receptor (BCR) signaling is crucial for the normal development and differentiation of B lymphocytes. BAP31, an endoplasmic reticulum membrane protein, directly regulates the BCR signaling pathway and was shown to be significantly positively correlated with B cell activation and proliferation. These findings establish BAP31 as a crucial regulator of early B cell development.


Assuntos
Linfócitos B , Diferenciação Celular , Receptores de Antígenos de Linfócitos B , Transdução de Sinais , Animais , Camundongos , Linfócitos B/metabolismo , Proliferação de Células , Ativação Linfocitária , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de Antígenos de Linfócitos B/metabolismo , Receptores de Antígenos de Linfócitos B/genética
3.
Int J Mol Sci ; 24(17)2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37686286

RESUMO

The differentiation of CD4+T cells is a crucial component of the immune response. The spleen and thymus, as immune organs, are closely associated with the differentiation and development of T cells. Previous studies have suggested that BAP31 may play a role in modulating T cell activation, but the specific impact of BAP31 on T cells through macrophages remains uncertain. In this study, we present evidence that BAP31 macrophage conditional knockout (BAP31-MCKO) mice display an enlarged spleen and thymus, accompanied by activated clustering and disrupted differentiation of CD4+T cells. In vitro co-culture studies were conducted to investigate the impact of BAP31-MCKO on the activation and differentiation of CD4+T cells. The examination of costimulatory molecule expression in BMDMs and RAW 264.7 cells, based on the endoplasmic reticulum function of BAP31, revealed an increase in the expression of antigen presenting molecules, particularly MHC-II molecule, in the absence of BAP31 in BMDMs or RAW264.7 cells. These findings suggest that BAP31 plays a role in the activation and differentiation of CD4+T cells by regulating the MHC class II molecule on macrophages. These results provide further support for the importance of BAP31 in developing interaction between macrophages and CD4+T cells.


Assuntos
Antígenos de Histocompatibilidade Classe II , Macrófagos , Animais , Camundongos , Antígenos de Histocompatibilidade Classe II/genética , Camundongos Knockout , Ativação Transcricional , Regulação para Cima
4.
Int J Mol Sci ; 23(8)2022 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-35456954

RESUMO

Xylanase releases xylo-oligosaccharides from dietary xylan, which stimulate the growth of the gut bacteria lactobacilli. Many lactobacilli adhere to dietary fibers, which may facilitate the assimilation of xylo-oligosaccharides and help them gain competence in the gut, but the underlying mechanisms remain elusive. Herein we report, from the highly abundant transcripts of Lactobacillus brevis cultured in wheat arabinoxylan supplemented with a xylanase, the identification of genes encoding four putative cell-surface WxL proteins (Lb630, Lb631, Lb632, and Lb635) and one S-layer protein (Lb1325) with either cellulose- or xylan-binding ability. The repetitively occurring WxL proteins were encoded by a gene cluster, among which Lb630 was chosen for further mutational studies. The analysis revealed three aromatic residues (F30, W61, and W156) that might be involved in the interaction of the protein with cellulose. A homology search in the genome of Enterococcus faecium identified three WxL proteins with conserved counterparts of these three aromatic residues, and they were also found to be able to bind cellulose and xylan. The findings suggested a role of the cell-surface WxL and S-layer proteins in assisting the cellular adhesion of L. brevis to plant cell wall polysaccharides.


Assuntos
Levilactobacillus brevis , Xilanos , Celulose/metabolismo , Levilactobacillus brevis/genética , Levilactobacillus brevis/metabolismo , Glicoproteínas de Membrana , Proteínas de Membrana/metabolismo , Oligossacarídeos , Xilanos/metabolismo
5.
J Cell Mol Med ; 25(15): 7135-7145, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34164906

RESUMO

In recent years, the repurposing of conventional and chemotherapeutic drugs is recognized as an alternative strategy for health care. The main purpose of this study is to strengthen the application of non-oncological drug metformin on breast cancer treatment in the perspective of epigenetics. In the present study, metformin was found to inhibit cell proliferation, promote apoptosis and induce cell cycle arrest in breast cancer cells at a dose-dependent manner. In addition, metformin treatment elevated acH3K9 abundance and decreased acH3K18 level. The expression of lncRNA MALAT1, HOTAIR, DICER1-AS1, LINC01121 and TUG1 was up-regulated by metformin treatment. In metformin-treated cells, MALAT1 knock-down increased the Bax/Bcl2 ratio and enhanced p21 but decreased cyclin B1 expression. The expression of Beclin1, VDAC1, LC3-II, CHOP and Bip was promoted in the cells received combinatorial treatment of metformin and MALAT1 knock-down. The reduced phosphorylation of c-Myc was further decreased in the metformin-treated cells in combination with MALAT1 knock-down than metformin treatment alone. Taken together, these results provide a promising repurposed strategy for metformin on cancer treatment by modulating epigenetic modifiers.


Assuntos
Neoplasias da Mama/metabolismo , Proliferação de Células/efeitos dos fármacos , Hipoglicemiantes/farmacologia , Metformina/farmacologia , RNA Longo não Codificante/metabolismo , Apoptose/efeitos dos fármacos , Proteína Beclina-1/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Chaperona BiP do Retículo Endoplasmático/metabolismo , Feminino , Humanos , Células MCF-7 , Proteínas Associadas aos Microtúbulos/metabolismo , RNA Longo não Codificante/genética , Fator de Transcrição CHOP/metabolismo , Canal de Ânion 1 Dependente de Voltagem/metabolismo
6.
Int J Mol Sci ; 22(6)2021 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-33802923

RESUMO

Plant cell wall polysaccharides (PCWP) are abundantly present in the food of humans and feed of livestock. Mammalians by themselves cannot degrade PCWP but rather depend on microbes resident in the gut intestine for deconstruction. The dominant Bacteroidetes in the gut microbial community are such bacteria with PCWP-degrading ability. The polysaccharide utilization systems (PUL) responsible for PCWP degradation and utilization are a prominent feature of Bacteroidetes. In recent years, there have been tremendous efforts in elucidating how PULs assist Bacteroidetes to assimilate carbon and acquire energy from PCWP. Here, we will review the PUL-mediated plant cell wall polysaccharides utilization in the gut Bacteroidetes focusing on cellulose, xylan, mannan, and pectin utilization and discuss how the mechanisms can be exploited to modulate the gut microbiota.


Assuntos
Bacteroidetes/metabolismo , Parede Celular/química , Microbioma Gastrointestinal , Plantas/química , Polissacarídeos/metabolismo , Animais , Humanos , Modelos Biológicos
7.
BMC Biotechnol ; 19(1): 2, 2019 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-30626373

RESUMO

BACKGROUND: CRISPR/Cas9 has wide application potentials in a variety of biological species including Trichoderma reesei, a filamentous fungus workhorse for cellulase production. However, expression of Cas9 heterologously in the host cell could be time-consuming and sometimes even troublesome. RESULTS: We tested two gene disruption methods in T. reesei using CRISPR/Cas9 in this study. The intracellularly expressed Cas9 led to unexpected off-target gene disruption in T. reesei QM9414, favoring inserting 9- or 12-bp at 70- and 100-bp downstream of the targeted ura5. An alternative method was, therefore, established by assembling Cas9 and gRNA in vitro, followed by transformation of the ribonucleoprotein complex with a plasmid containing the pyr4 marker gene into T. reesei TU-6. When the gRNA targeting cbh1 was used, eight among the twenty seven transformants were found to lose the ability to express CBH1, indicative of successful cbh1 disruption through genome editing. Large DNA fragments including the co-transformed plasmid, chromosomal genes, or a mixture of these nucleotides, were inserted in the disrupted cbh1 locus. CONCLUSIONS: Direct transformation of Cas9/gRNA complex into the cell is a fast means to disrupt a gene in T. reesei and may find wide applications in strain improvement and functional genomics study.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes/métodos , RNA Guia de Cinetoplastídeos/genética , Trichoderma/genética , Proteína 9 Associada à CRISPR/genética , Celulose 1,4-beta-Celobiosidase/genética , Fragmentação do DNA , Deleção de Genes , Mutagênese Insercional
8.
Opt Express ; 26(19): 25257-25264, 2018 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-30469629

RESUMO

By combining the surface plasmon enhancement technique with gating effect, a tunable blue lighting emitting diode (LED) based on graphene/Ag nanoparticles (NPs)-polymethyl methacrylate (PMMA)/graphene/p-GaN heterostructure has been achieved. The surface plasmon enhancement is introduced through spin-coating Ag nanoparticles on graphene/p-GaN heterostructure while the gating effect is demonstrated through a graphene/PMMA/graphene sandwich structure, where the top graphene layer acts as the gate electrode. Compared with initial graphene/p-GaN heterostructure LEDs, the electroluminescence (EL) emission intensity of Ag NPs/graphene/p-GaN heterostructure LEDs has been largely enhanced, attributing to the surface plasmon resonance (SPR) of Ag nanoparticles. The EL emission intensity of graphene/Ag NPs-PMMA/graphene/p-GaN heterostructure LEDs can further be gate-tunable effectively through exerting a static voltage between the sandwich structure, which tunes the Fermi level of graphene contacting with p-GaN. These results indicate that through sophisticated design, graphene/Ag NPs-PMMA/graphene/p-GaN heterostructure LEDs can be a potential candidate for many essential electronic and optoelectronic applications.

9.
Mol Phylogenet Evol ; 87: 65-79, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25800283

RESUMO

Climatic changes and tectonic events in the Cenozoic have greatly influenced the evolution and geographic distribution of the temperate flora. Such consequences should be most evident in plant groups that are ancient, widespread, and diverse. As one of the most widespread genera of trees, Pinus provides a good model for investigating the history of species diversification and biogeographic disjunction in the Northern Hemisphere. In this study, we reconstructed the phylogeny and investigated the evolutionary and biogeographic history of sect. Quinquefoliae (Pinus), a species-rich lineage disjunctly distributed in Asia, Europe and North America, based on complete taxon sampling and by using nine DNA fragments from chloroplast (cp), mitochondrial (mt) and nuclear genomes. The monophyly of the three subsections, Krempfianae, Gerardianae, and Strobus, is well-supported by cpDNA and nuclear gene phylogenies. However, neither subsect. Gerardianae nor subsect. Strobus forms a monophyletic group in the mtDNA phylogeny, in which sect. Quinquefoliae was divided into two major clades, one consisting of the North American and northeastern Asian species as well as the European P. peuce of subsect. Strobus, and the other comprising the remaining Eurasian species belonging to three subsections. The significant topological incongruence among the gene trees, in conjunction with divergence time estimation and ancestral area reconstruction, indicates that both ancient and relatively recent introgressive hybridization events occurred in the evolution of sect. Quinquefoliae, particularly in northeastern Asia and northwestern North America. In addition, the phylogenetic analysis suggests that the species of subsect. Strobus from subtropical eastern Asia and neighboring areas may have a single origin, although species non-monophyly is very widespread in the nuclear gene trees. Moreover, our study seems to support a Tethyan origin of sect. Quinquefoliae given the distributions and phylogenetic positions of subsects. Krempfianae and Gerardianae, and also highlights the importance of active mountain buildings and climatic changes during the Late Neogene in shaping the species diversity and geographic distribution of Pinus.


Assuntos
Evolução Biológica , Filogenia , Pinus/classificação , Ásia , Teorema de Bayes , Núcleo Celular/genética , DNA de Cloroplastos/genética , DNA Mitocondrial/genética , DNA de Plantas/genética , Europa (Continente) , Ásia Oriental , Genes de Plantas , Hibridização Genética , Funções Verossimilhança , Modelos Genéticos , América do Norte , Pinus/genética , Análise de Sequência de DNA
10.
Trends Endocrinol Metab ; 34(5): 257-259, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36890042

RESUMO

Tiny amounts of exogenous enzymes entering the plasma can exert important health-promoting functions. We propose that orally administered enzymes can potentially translocate across the gut barrier to combat reduced fitness and diseases concurrent with increased gut permeability. Engineering of the enzymes using two discussed strategies may further improve their translocation efficiency.


Assuntos
Translocação Bacteriana , Mucosa Intestinal , Humanos
11.
J Anim Sci Biotechnol ; 14(1): 86, 2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37415202

RESUMO

BACKGROUND: Soybean (Glycine max) meal is one of the important protein sources for fish, but the non-starch polysaccharides (NSP) in soybean meal impair the intestinal barrier function. Here we aimed to investigate whether xylanase can alleviate the adverse effects on the gut barrier induced by soybean meal in Nile tilapia and to explore the possible mechanism. RESULTS: Nile tilapia (Oreochromis niloticus) (4.09 ± 0.02 g) were fed with two diets including SM (soybean meal) and SMC (soybean meal + 3,000 U/kg xylanase) for 8 weeks. We characterized the effects of xylanase on the gut barrier, and the transcriptome analysis was performed to investigate the underlying mechanism. Dietary xylanase improved intestinal morphology and decreased the concentration of lipopolysaccharide (LPS) in serum. The results of transcriptome and Western blotting showed that dietary xylanase up-regulated the expression level of mucin2 (MUC2) which may be related to the inhibition of protein kinase RNA-like endoplasmic reticulum kinase (perk)/activating transcription factor 4 (atf4) signaling pathways. Microbiome analysis showed that addition of xylanase in soybean meal altered the intestinal microbiota composition and increased the concentration of butyric acid in the gut. Notably, dietary sodium butyrate was supplemented into the soybean meal diet to feed Nile tilapia, and the data verified that sodium butyrate mirrored the beneficial effects of xylanase. CONCLUSIONS: Collectively, supplementation of xylanase in soybean meal altered the intestinal microbiota composition and increased the content of butyric acid which can repress the perk/atf4 signaling pathway and increase the expression of muc2 to enhance the gut barrier function of Nile tilapia. The present study reveals the mechanism by which xylanase improves the intestinal barrier, and it also provides a theoretical basis for the application of xylanase in aquaculture.

12.
PeerJ ; 10: e13542, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35811824

RESUMO

Forest soil carbon (C) sequestration has an important effect on global C dynamics and is regulated by various environmental factors. Mixed and pure plantations are common afforestation choices in north China, but how forest type and environmental factors interact to affect soil C stock remains unclear. We hypothesize that forest type changes soil physicochemical properties and surface biological factors, and further contributes to soil active C components, which together affect soil C sequestration capacity and C dynamic processes. Three 46-year-old 25 m × 25 m pure Pinus tabulaeformis forests (PF) and three 47-year-old 25 m × 25 m mixed coniferous-broadleaf (Pinus tabulaeformis-Quercus liaotungensis) forests (MF) were selected as the two treatments and sampled in August 2016. In 2017, soil temperature (ST) at 10 cm were measured every 30 min for the entire vegetation season. Across 0-50 cm (five soil layers, 10 cm per layer), we also measured C components and environmental factors which may affect soil C sequestration, including soil organic carbon (SOC), soil total nitrogen (STN), dissolved organic carbon (DOC), microbial biomass carbon (MBC), soil moisture (SM) and soil pH. We then incubated samples for 56 days at 25 °C to monitor the C loss through CO2 release, characterized as cumulative mineralization carbon (CMC) and mineralized carbon (MC). Our results indicate that ST, pH, SM and litter thickness were affected by forest type. Average SOC stock in MF was 20% higher than in PF (MF: 11.29 kg m-2; PF: 13.52 kg m-2). Higher CMC under PF caused more soil C lost, and CMC increased 14.5% in PF (4.67 g kg-1 soil) compared to MF (4.04 g kg-1 soil) plots over the two-month incubation period. SOC stock was significantly positively correlated with SM (p < 0.001, R2 = 0.43), DOC (p < 0.001, R2 = 0.47) and CMC (p < 0.001, R2 = 0.33), and significantly negatively correlated with pH (p < 0.001, R2 = -0.37) and MC (p < 0.001, R2 = -0.32). SOC stock and litter thickness may have contributed to more DOC leaching in MF, which may also provide more C source for microbial decomposition. Conversely, lower SM and pH in MF may inhibit microbial activity, which ultimately makes higher MC and lower CMC under MF and promotes C accumulation. Soil mineralized C drives more C stock in coniferous-broadleaf mixed plantations compared to pure plantations, and CMC and MC should be considered when soil C balance is assessed.


Assuntos
Carbono , Traqueófitas , Carbono/química , Solo/química , Florestas , Biomassa
13.
Front Oncol ; 12: 859195, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35359416

RESUMO

B-cell receptor-associated protein 31 (BAP31) has been shown to overexpress in a wide range type of cancers. The present study aims to investigate the role of BAP31 on migration in lung cancer. Results showed that the migration of BAP31 knockdown cells was weaken than the control cells. Applying TGFß to treat BAP31 knockdown cells could reduce cell migration. The enhancement on proliferation by TGFß treatment was downregulated after BAP31 knockdown. The cell death and G0/G1 phase arrest was increased in the cells with TGFß and BAP31 siRNA treatment when compared with TGFß treatment alone. Gene expression analysis showed that Bax/Bcl2, MLKL and LC3 was upregulated in the cells with combinatorial treatment of TGFß and BAP31 siRNA. In addition, BAP31 was shown to regulate multiple signaling pathways, especially for Wnt signaling. It found that BAP31 knockdown cells treated with TGFß decreased ß-catenin cytosolic expression and nuclear localization. Wnt signaling activator BIO could restore the downregulation of proliferation by BAP31 knockdown. This finding suggested that BAP31 regulated cancer cell migration is possibly involved with cell death mechanisms and Wnt signaling.

14.
RSC Adv ; 11(31): 19106-19112, 2021 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-35478643

RESUMO

With the fast development of the internet of things (IoTs), distributed sensors are frequently used and small and portable power sources are highly demanded. However, current portable power sources such as lithium batteries have low capacity and need to be replaced or recharged frequently. A portable power source which can continuously generate electrical power in situ will be an ideal solution. Herein, we demonstrate a wind driven semiconductor electricity generator based on a dynamic Schottky junction, which can output a continuous direct current with an average value of 4.4 mA (with a maximum value of 8.4 mA) over 740 seconds. Compared with a previous metal/semiconductor generator, the output current is one thousand times higher. Furthermore, this wind driven generator has been used as a turn counter, due to its stable output, and also to drive a graphene ultraviolet photodetector, which shows a responsivity of 35.8 A W-1 under 365 nm ultraviolet light. Our research provides a feasible method to achieve wind power generation and power supply for distributed sensors in the future.

15.
Biochem Genet ; 48(7-8): 590-602, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20405317

RESUMO

Thirteen natural populations from throughout the range of the Chinese pine (Pinus tabulaeformis Carr.) were examined using inter-simple sequence repeat markers to characterize the genetic structure at the species level and to compare the extent and distribution of genetic variation among central, intermediate, and marginal populations. Although the total genetic variation in the Chinese pine was mainly maintained within populations, the genetic differentiation among populations was significant (P < 0.001). The genetic divergence was significantly correlated with geographic distance (P < 0.05). Genetic diversity tended to decrease from the central to intermediate and marginal populations. The marginal populations had significantly lower intrapopulation genetic diversity than central populations (P < 0.05). Cluster analysis based on Nei's unbiased genetic distances confirmed the difference among four central populations and the rest. Both historical and contemporary factors may have played key roles in shaping the spatial genetic structure of this species.


Assuntos
Variação Genética , Pinus/genética , China , Genética Populacional , Geografia , Filogenia
16.
Front Oncol ; 10: 589112, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33363019

RESUMO

Magnesium, the second most predominant intracellular cation, plays a crucial role in many physiological functions; magnesium-based biomaterials have been widely used in clinical application. In a variety of cancer types, the high intracellular concentration of magnesium contributes to cancer initiation and progression. Therefore, we initiated this study to investigate the likelihood of confounding magnesium with cancer therapy. In this study, the anti-tumor activity of magnesium and underlying mechanisms were assessed in bladder cancer both in vitro and in vivo. The results indicated that the proliferation of bladder cancer cells was inhibited by treatment with a high concentration of MgCl2 or MgSO4. The apoptosis, G0/G1 cell cycle arrest, autophagy, and ER stress were promoted following treatment with MgCl2. However, the migratory ability of MgCl2 treated cells was similar to that of control cells, as revealed by the trans-well assay. Besides, no significant difference was observed in the proportion of CD44 or CD133 positive cells between the control and MgCl2 treated cells. Thus, to improve the therapeutic effect of magnesium, VPA was used to treat cancer cells in combination with MgCl2. As expected, combination treatment with MgCl2 and VPA could markedly reduce proliferation, migration, and in vivo tumorigenicity of UC3 cells. Moreover, the Wnt signaling was down-regulated, and ERK signaling was activated in the cells treated with combination treatment. In conclusion, the accurate utilization of MgCl2 in targeting autophagy might be beneficial in cancer therapy. Although further studies are warranted, the combination treatment of MgCl2 with VPA is an effective strategy to improve the outcome of chemotherapy.

17.
Research (Wash D C) ; 2020: 5714754, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32607498

RESUMO

Searching for light and miniaturized functional device structures for sustainable energy gathering from the environment is the focus of energy society with the development of the internet of things. The proposal of a dynamic heterojunction-based direct current generator builds up new platforms for developing in situ energy. However, the requirement of different semiconductors in dynamic heterojunction is too complex to wide applications, generating energy loss for crystal structure mismatch. Herein, dynamic homojunction generators are explored, with the same semiconductor and majority carrier type. Systematic experiments reveal that the majority of carrier directional separation originates from the breaking symmetry between carrier distribution, leading to the rebounding effect of carriers by the interfacial electric field. Strikingly, NN Si homojunction with different Fermi levels can also output the electricity with higher current density than PP/PN homojunction, attributing to higher carrier mobility. The current density is as high as 214.0 A/m2, and internal impedance is as low as 3.6 kΩ, matching well with the impedance of electron components. Furthermore, the N-i-N structure is explored, whose output voltage can be further improved to 1.3 V in the case of the N-Si/Al2O3/N-Si structure, attributing to the enhanced interfacial barrier. This approach provides a simple and feasible way of converting low-frequency disordered mechanical motion into electricity.

18.
Adv Mater ; 31(7): e1804398, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30556216

RESUMO

Traditionally, Schottky diodes are used statically in the electronic information industry while dynamic or moving Schottky diode-based applications are rarely explored. Herein, a novel Schottky diode named "moving Schottky diode generator" is designed, which can convert mechanical energy into electrical energy by means of lateral movement between the graphene/metal film and semiconductor. The mechanism is based on the built-in electric field separation of the diffusing carriers in moving Schottky diode. A current-density output up of 40.0 A m-2 is achieved through minimizing the contact distance between metal and semiconductor, which is 100-1000 times higher than former piezoelectric and triboelectric nanogenerators. The power density and power conversion efficiency of the heterostructure-based generator can reach 5.25 W m-2 and 20.8%, which can be further enhanced by Schottky junction interface design. Moreover, the graphene film/semiconductor moving Schottky diode-based generator behaves better flexibility and stability, which does not show obvious degradation after 10 000 times of running, indicating its great potential in the usage of portable energy source. This moving Schottky diode direct-current generator can light up a blue light-emitting diode and a flexible graphene wristband is demonstrated for wearable energy source.

19.
iScience ; 22: 58-69, 2019 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-31751825

RESUMO

The static PN junction is the foundation of integrated circuits. Herein, we pioneer a high current density generation by mechanically moving N-type semiconductor over P-type semiconductor, named as the dynamic PN junction. The establishment and destruction of the depletion layer causes the redistribution and rebounding of diffusing carriers by the built-in field, similar to a capacitive charge/discharge process of PN junction capacitance during the movement. Through inserting dielectric layer at the interface of the dynamic PN junction, output voltage can be improved and designed numerically according to the energy level difference between the valence band of semiconductor and conduction band of dielectric layer. Especially, the dynamic MoS2/AlN/Si generator with open-circuit voltage of 5.1 V, short-circuit current density of 112.0 A/m2, power density of 130.0 W/m2, and power-conversion efficiency of 32.5% has been achieved, which can light up light-emitting diode timely and directly. This generator can continuously work for 1 h, demonstrating its great potential applications.

20.
Toxins (Basel) ; 11(10)2019 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-31569657

RESUMO

Enzymatic treatment is an attractive method for mycotoxin detoxification, which ideally prefers the use of one or a few enzymes. However, this is challenged by the diverse structures and co-contamination of multiple mycotoxins in food and feed. Lignin-degrading fungi have been discovered to detoxify organics including mycotoxins. Manganese peroxidase (MnP) is a major enzyme responsible for lignin oxidative depolymerization in such fungi. Here, we demonstrate that eight MnPs from different lignocellulose-degrading fungi (five from Irpex lacteus, one from Phanerochaete chrysosporium, one from Ceriporiopsis subvermispora, and another from Nematoloma frowardii) could all degrade four major mycotoxins (aflatoxin B1, AFB1; zearalenone, ZEN; deoxynivalenol, DON; fumonisin B1, FB1) only in the presence of a dicarboxylic acid malonate, in which free radicals play an important role. The I. lacteus and C. subvermispora MnPs behaved similarly in mycotoxins transformation, outperforming the P. chrysosporium and N. frowardii MnPs. The large evolutionary diversity of these MnPs suggests that mycotoxin degradation tends to be a common feature shared by MnPs. MnP can, therefore, serve as a candidate enzyme for the degradation of multiple mycotoxins in food and feed if careful surveillance of the residual toxicity of degradation products is properly carried out.


Assuntos
Fungos/enzimologia , Malonatos/farmacologia , Micotoxinas/metabolismo , Peroxidases/metabolismo , Aflatoxina B1/metabolismo , Contaminação de Alimentos , Fumonisinas/metabolismo , Desintoxicação Metabólica Fase I , Naftalenossulfonatos , Tricotecenos/metabolismo , Zearalenona/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA