Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Chem Rev ; 122(6): 6322-6373, 2022 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-35133803

RESUMO

Transforming how plastics are made, unmade, and remade through innovative research and diverse partnerships that together foster environmental stewardship is critically important to a sustainable future. Designing, preparing, and implementing polymers derived from renewable resources for a wide range of advanced applications that promote future economic development, energy efficiency, and environmental sustainability are all central to these efforts. In this Chemical Reviews contribution, we take a comprehensive, integrated approach to summarize important and impactful contributions to this broad research arena. The Review highlights signature accomplishments across a broad research portfolio and is organized into four wide-ranging research themes that address the topic in a comprehensive manner: Feedstocks, Polymerization Processes and Techniques, Intended Use, and End of Use. We emphasize those successes that benefitted from collaborative engagements across disciplinary lines.


Assuntos
Polímeros , Polímeros/química
2.
Analyst ; 147(10): 2089-2096, 2022 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-35502879

RESUMO

Macrocyclic poly(glycidyl phenyl ether) (pGPE) synthesized via zwitterionic ring opening polymerization is typically contaminated by chains with linear and tadpole architecture. Although mass spectrometry (MS) analysis can readily confirm the presence of the linear byproduct, due to its unique mass, it is unable to differentiate between the cyclic and tadpole structures, which are constitutional isomers produced by backbiting reactions in monomeric or dimeric chains, respectively. To overcome this problem, ultraperformance reversed-phase liquid chromatography interfaced with electrospray ionization tandem mass spectrometry (UPLC-ESI-MS/MS) was employed. The separation achieved by UPLC revealed that the tadpole isomer elutes before the cyclic structure because of the increased polarity afforded by its distinctive substituents. The ratio of tadpole to cyclic species increased with the degree of polymerization, in agreement with the synthetic method used, as the potential for forming tadpole structures by backbiting is entropically favored in longer polymer chains. Once separated, the two isomers could be independently characterized by tandem mass spectrometry. The macrocyclic and tadpole species exhibit unique fragmentation patterns, including structurally diagnostic fragments for each structure.


Assuntos
Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem , Animais , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia Líquida , Larva , Polímeros/química , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectrometria de Massas em Tandem/métodos
3.
Angew Chem Int Ed Engl ; 59(23): 9074-9079, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32059058

RESUMO

Photo-redox mediated ring-opening metathesis polymerization (photo-ROMP) is an emerging ROMP technique that uses an organic redox mediator and a vinyl ether initiator, in contrast to metal-based initiators traditionally used in ROMP. The reversibility of the redox-mediated initiation and propagation steps enable spatiotemporal control over the polymerization. Herein, we explore a simple, inexpensive means of controlling molecular weight, using alpha olefins as chain transfer agents. This method enables access to low molecular weight oligomers, and molecular weights between 1 and 30 kDa can be targeted simply by altering the stoichiometry of the reaction. This method of molecular weight control was then used to synthesize a functionalized norbornene copolymer in a range of molecular weights for specific materials applications.

4.
Angew Chem Int Ed Engl ; 58(9): 2831-2833, 2019 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-30628142

RESUMO

Dodecaphenyltetracene (4), the largest perphenylacene yet prepared, was synthesized from known tetraphenylfuran, hexaphenylisobenzofuran, and 1,2,4,5-tetrabromo-3,6-diphenylbenzene in three steps. The X-ray structure of the deep red, highly luminescent 4 shows it to be a D2 -symmetric molecule with an end-to-end twist of 97°. The central acene is encapsulated by the peripheral phenyl substituents, and as a result, the molecule is relatively unreactive and even displays reversible electrochemical oxidation and reduction.

5.
Angew Chem Int Ed Engl ; 58(31): 10572-10576, 2019 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-31141618

RESUMO

Herein, the design, synthesis, and characterization of an unprecedented copolymer consisting of alternating linear and dendritic segments is described. First, a 4th-generation Hawker-type dendron with two azide groups was synthesized, followed by a step-growth azide-alkyne "click" reaction between the 4th-generation diazido dendron and poly(ethylene glycol) diacetylene to create the target polymers. Unequal reactivity of the functional groups was observed in the step-growth polymerization. The resulting copolymers, with alternating hydrophilic linear and hydrophobic dendritic segments, can spontaneously associate into a unique type of microphase-segregated nanorods in water.

6.
ACS Polym Au ; 3(5): 365-375, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37841953

RESUMO

Chemically crosslinked elastomers are a class of polymeric materials with properties that render them useful as adhesives, sealants, and in other engineering applications. Poly(γ-methyl-ε-caprolactone) (PγMCL) is a hydrolytically degradable and compostable aliphatic polyester that can be biosourced and exhibits competitive mechanical properties to traditional elastomers when chemically crosslinked. A typical limitation of chemically crosslinked elastomers is that they cannot be reprocessed; however, the incorporation of dynamic covalent bonds can allow for bonds to reversibly break and reform under an external stimulus, usually heat. In this work, we study the dynamic behavior and mechanical properties of PγMCL elastomers synthesized from aliphatic dianhydride crosslinkers. The crosslinked elastomers in this work were synthesized using the commercially available crosslinkers, 1,2,4,5-cyclohexanetetracarboxylic dianhydride, and 1,2,3,4-cyclobutanetetracarboxylic dianhydride and three-arm hydroxy-telechelic PγMCL star polymers. Stress relaxation experiments on the crosslinked networks showed an Arrhenius dependence of viscosity with temperature with an activation energy of 118 ± 8 kJ/mol, which agrees well with the activation energy of transesterification exchange chemistry obtained from small molecule model studies. Dynamic mechanical thermal analysis and rheological experiments confirmed the dynamic nature of the networks and provided insight into the mechanism of exchange (i.e., associative or dissociative). Tensile testing showed that these materials can exhibit high strains at break and low Young's moduli, characteristic of soft and strong elastomers. By controlling the exchange chemistry and understanding the effect of macromolecular structure on mechanical properties, we prepared the high-performance elastomers that can be potentially reprocessed at moderately elevated temperatures.

7.
Nat Chem ; 12(5): 433-444, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32251372

RESUMO

Unlike their more common linear counterparts, cyclic polymers have a ring-like structure and a lack of chain ends. Because of their topology, cyclic polymers exhibit a unique set of properties when compared with linear or branched macromolecules. For example, cyclic homopolymers exhibit a reduced hydrodynamic volume and a slower degradation profile compared with their linear analogues. Cyclic block copolymers self-assemble into compact nanostructures, as illustrated by their reduced domain spacing when cast into thin films and their reduced micellar size in solution. Although methods for preparing well-defined cyclic polymers have only been available since 1980, the extensive utilization of the cyclic topology in nature highlights the vital role that a cyclic architecture can play in imparting valuable physical properties, such as increased chemical stability or propensity towards self-assembly. This Review describes the major developments in the synthesis of cyclic polymers and provides an overview of their fundamental physical properties. In this context, preliminary studies exploring potential applications will be critically assessed and the remaining challenges for the field delineated.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA