Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Nature ; 588(7837): 267-271, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33208939

RESUMO

Recent analyses have reported catastrophic global declines in vertebrate populations1,2. However, the distillation of many trends into a global mean index obscures the variation that can inform conservation measures and can be sensitive to analytical decisions. For example, previous analyses have estimated a mean vertebrate decline of more than 50% since 1970 (Living Planet Index2). Here we show, however, that this estimate is driven by less than 3% of vertebrate populations; if these extremely declining populations are excluded, the global trend switches to an increase. The sensitivity of global mean trends to outliers suggests that more informative indices are needed. We propose an alternative approach, which identifies clusters of extreme decline (or increase) that differ statistically from the majority of population trends. We show that, of taxonomic-geographic systems in the Living Planet Index, 16 systems contain clusters of extreme decline (comprising around 1% of populations; these extreme declines occur disproportionately in larger animals) and 7 contain extreme increases (around 0.4% of populations). The remaining 98.6% of populations across all systems showed no mean global trend. However, when analysed separately, three systems were declining strongly with high certainty (all in the Indo-Pacific region) and seven were declining strongly but with less certainty (mostly reptile and amphibian groups). Accounting for extreme clusters fundamentally alters the interpretation of global vertebrate trends and should be used to help to prioritize conservation efforts.


Assuntos
Biodiversidade , Mapeamento Geográfico , Vertebrados , Anfíbios/classificação , Animais , Conservação dos Recursos Naturais , Internacionalidade , Dinâmica Populacional , Répteis/classificação , Vertebrados/classificação
2.
Proc Biol Sci ; 290(1995): 20222307, 2023 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-36919428

RESUMO

Protecting habitat of species at risk is critical to their recovery, but can be contentious. For example, protecting species that are locally imperilled but globally common is often thought to distract from protecting globally imperilled species. However, such perceived trade-offs are based on the assumption that threatened groups have little spatial overlap, which is rarely quantified. We compiled range maps of terrestrial species at risk in Canada to assess the geographic overlap of nationally and globally at-risk species with each other, among taxonomic groups, and with protected areas. While many nationally at-risk taxa only occur in Canada at their northern range edge, they are not significantly more peripheral in Canada than globally at-risk species. Further, 56% of hotspots of nationally at-risk taxa are also hotspots of globally at-risk species, undercutting the perceived trade-off in their protection. While strong spatial overlap across threat levels and taxa should facilitate efficient habitat protection, less than 7% of the area in Canada's at-risk hotspots is protected, and two-thirds of nationally and globally at-risk species in Canada have less than 10% of their Canadian range protected. Our results counter the perception that protecting nationally versus globally at-risk species are at odds, and identify critical areas to target as Canada strives to increase its protected areas and promote recovery of species at risk.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Conservação dos Recursos Naturais/métodos , Canadá , Biodiversidade
7.
Proc Biol Sci ; 289(1981): 20220300, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-36000233

RESUMO

Rising global temperatures are expected to increase reproductive costs for wildlife as greater thermoregulatory demands interfere with reproductive activities. However, predicting the temperatures at which reproductive performance is negatively impacted remains a significant hurdle. Using a thermoregulatory polygon approach, we derived a reproductive threshold temperature for an Arctic songbird-the snow bunting (Plectrophenax nivalis). We defined this threshold as the temperature at which individuals must reduce activity to suboptimal levels (i.e. less than four-time basal metabolic rate) to sustain nestling provisioning and avoid overheating. We then compared this threshold to operative temperatures recorded at high (82° N) and low (64° N) Arctic sites to estimate how heat constraints translate into site-specific impacts on sustained activity level. We predict buntings would become behaviourally constrained at operative temperatures above 11.7°C, whereupon they must reduce provisioning rates to avoid overheating. Low-Arctic sites had larger fluctuations in solar radiation, consistently producing daily periods when operative temperatures exceeded 11.7°C. However, high-latitude birds faced entire, consecutive days when parents would be unable to sustain required provisioning rates. These data indicate that Arctic warming is probably already disrupting the breeding performance of cold-specialist birds and suggests counterintuitive and severe negative impacts of warming at higher latitude breeding locations.


Assuntos
Aves Canoras , Animais , Regiões Árticas , Resposta ao Choque Térmico , Reprodução , Temperatura
9.
Ecol Lett ; 24(11): 2427-2438, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34453406

RESUMO

Predicting which ecological factors constrain species distributions is a fundamental ecological question and critical to forecasting geographic responses to global change. Darwin hypothesised that abiotic factors generally impose species' high-latitude and high-elevation (typically cool) range limits, whereas biotic interactions more often impose species' low-latitude/low-elevation (typically warm) limits, but empirical support has been mixed. Here, we clarify three predictions arising from Darwin's hypothesis and show that previously mixed support is partially due to researchers testing different predictions. Using a comprehensive literature review (885 range limits), we find that biotic interactions, including competition, predation and parasitism, contributed to >60% of range limits and influenced species' warm limits more often than cool limits. Abiotic factors contributed more often than biotic interactions to cool range limits, but temperature contributed frequently to both cool and warm limits. Our results suggest that most range limits will be sensitive to climate warming, but warm-limit responses in particular will depend strongly on biotic interactions.


Assuntos
Mudança Climática , Clima , Animais , Ecossistema , Comportamento Predatório , Temperatura
10.
J Exp Biol ; 224(13)2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34232314

RESUMO

The Arctic is warming at approximately twice the global rate, with well-documented indirect effects on wildlife. However, few studies have examined the direct effects of warming temperatures on Arctic wildlife, leaving the importance of heat stress unclear. Here, we assessed the direct effects of increasing air temperatures on the physiology of thick-billed murres (Uria lomvia), an Arctic seabird with reported mortalities due to heat stress while nesting on sun-exposed cliffs. We used flow-through respirometry to measure the response of body temperature, resting metabolic rate, evaporative water loss and evaporative cooling efficiency (the ratio of evaporative heat loss to metabolic heat production) in murres while experimentally increasing air temperature. Murres had limited heat tolerance, exhibiting: (1) a low maximum body temperature (43.3°C); (2) a moderate increase in resting metabolic rate relative that within their thermoneutral zone (1.57 times); (3) a small increase in evaporative water loss rate relative that within their thermoneutral zone (1.26 times); and (4) a low maximum evaporative cooling efficiency (0.33). Moreover, evaporative cooling efficiency decreased with increasing air temperature, suggesting murres were producing heat at a faster rate than they were dissipating it. Larger murres also had a higher rate of increase in resting metabolic rate and a lower rate of increase in evaporative water loss than smaller murres; therefore, evaporative cooling efficiency declined with increasing body mass. As a cold-adapted bird, murres' limited heat tolerance likely explains their mortality on warm days. Direct effects of overheating on Arctic wildlife may be an important but under-reported impact of climate change.


Assuntos
Termotolerância , Animais , Aves , Regulação da Temperatura Corporal , Temperatura Alta , Perda Insensível de Água
11.
Am Nat ; 195(3): 395-411, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32097037

RESUMO

Adaptation to local conditions can increase species' geographic distributions and rates of diversification, but which components of the environment commonly drive local adaptation-particularly the importance of biotic interactions-is unclear. Biotic interactions should drive local adaptation when they impose consistent divergent selection; if this is common, we expect transplant experiments to detect more frequent and stronger local adaptation when biotic interactions are left intact. We tested this hypothesis using a meta-analysis of transplant experiments from >125 studies (mostly of plants). Overall, local adaptation was common, and biotic interactions affected fitness. Nevertheless, local adaptation was neither more common nor stronger when biotic interactions were left intact, either between experimental treatments within studies (control vs. biotic interactions experimentally manipulated) or between studies that used natural versus biotically altered transplant environments. However, the effect of ameliorating negative interactions varied with latitude, suggesting that interactions may promote local adaptation more often in tropical than in temperate ecosystems, although few tropical studies were available to test this. Our results suggest that biotic interactions often fail to drive local adaptation even though they strongly affect fitness, perhaps because temperate biotic environments are unpredictable at the spatiotemporal scales required for local adaptation.


Assuntos
Adaptação Biológica , Clima , Meio Ambiente , Plantas , Biota , Temperatura
12.
Ecol Lett ; 22(1): 78-88, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30411457

RESUMO

According to theory, edge populations may be poised to expand species' ranges if they are locally adapted to extreme conditions, or ill-suited to colonise beyond-range habitat if their offspring are genetically and competitively inferior. We tested these contrasting predictions by transplanting low-, mid-, and high-elevation (edge) populations of an annual plant throughout and above its elevational distribution. Seed from poor-quality edge habitat (one of two transects) had inferior emergence, but edge seeds also had adaptive phenology (both transects). High-elevation plants flowered earlier, required less heat accumulation to mature seed, and so achieved higher lifetime fitness at and above the range edge. Experimental warming improved fitness above the range, but eliminated the advantage of local cold-edge populations, supporting recent models in which cold-adapted edge populations do not facilitate warming-induced range shifts. The highest above-range fitness was achieved by a 'super edge phenotype' from a neighbouring mountain, suggesting key adaptations exist regionally even if absent from local edge populations.


Assuntos
Aclimatação , Adaptação Fisiológica , Ecossistema , Flores , Plantas
13.
Am Nat ; 189(4): 368-380, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28350500

RESUMO

The biotic and abiotic factors that facilitate or hinder species range expansions are many and complex. We examine the impact of two genetic processes and their interaction on fitness at expanding range edges: local maladaptation resulting from the presence of an environmental gradient and expansion load resulting from increased genetic drift at the range edge. Results from spatially explicit simulations indicate that the presence of an environmental gradient during range expansion reduces expansion load; conversely, increasing expansion load allows only locally adapted populations to persist at the range edge. Increased maladaptation reduces the speed of range expansion, resulting in less genetic drift at the expanding front and more immigration from the range center, therefore reducing expansion load at the range edge. These results may have ramifications for species being forced to shift their ranges because of climate change or other anthropogenic changes. If rapidly changing climate leads to faster expansion as populations track their shifting climatic optima, populations may suffer increased expansion load beyond previous expectations.


Assuntos
Adaptação Fisiológica , Mudança Climática , Deriva Genética , Aclimatação
14.
Am Nat ; 183(2): 157-73, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24464192

RESUMO

Many species' range limits (RL) occur across continuous environmental gradients without obvious barriers imposing them. Such RL are expected to reflect niche limits (NL) and thus to occur where populations cease to be self-sustaining. Transplant experiments comparing fitness within and beyond species' ranges can test this hypothesis, but interpretive power depends strongly on experimental design. We first identify often overlooked aspects of transplant design that are critical to establishing the causes of RL, especially incorporating transplant sites at, and source populations from, the range edge. We then conduct a meta-analysis of published beyond-range transplant experiments (n = 11 tests). Most tests (75%) found that performance declined beyond the range, with the strongest declines detected when the measure of performance was lifetime fitness (83%), suggesting that RL commonly involve niche constraints (declining habitat quality). However, only 46% supported range limits occurring at NL; 26% (mostly geographic RL) fell short of NL with self-sustaining transplants beyond the range, and 23% (all elevational RL) exceeded NL with range-edge populations acting as demographic sinks. These data suggest an important but divergent role for dispersal, which may commonly constrain geographic distributions while extending elevational limits. Meta-analysis results also supported the importance of biotic interactions at RL, particularly the long-held assertion of their role in causing low-elevation and equatorial limits.


Assuntos
Ecossistema , Altitude , Animais , Geografia , Invertebrados , Plantas , Projetos de Pesquisa
15.
Sci Rep ; 14(1): 15193, 2024 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956145

RESUMO

Birds maintain some of the highest body temperatures among endothermic animals. Often deemed a selective advantage for heat tolerance, high body temperatures also limits birds' thermal safety margin before reaching lethal levels. Recent modelling suggests that sustained effort in Arctic birds might be restricted at mild air temperatures, which may require reductions in activity to avoid overheating, with expected negative impacts on reproductive performance. We measured within-individual changes in body temperature in calm birds and then in response to an experimental increase in activity in an outdoor captive population of Arctic, cold-specialised snow buntings (Plectrophenax nivalis), exposed to naturally varying air temperatures (- 15 to 36 °C). Calm buntings exhibited a modal body temperature range from 39.9 to 42.6 °C. However, we detected a significant increase in body temperature within minutes of shifting calm birds to active flight, with strong evidence for a positive effect of air temperature on body temperature (slope = 0.04 °C/ °C). Importantly, by an ambient temperature of 9 °C, flying buntings were already generating body temperatures ≥ 45 °C, approaching the upper thermal limits of organismal performance (45-47 °C). With known limited evaporative heat dissipation capacities in these birds, our results support the recent prediction that free-living buntings operating at maximal sustainable rates will increasingly need to rely on behavioural thermoregulatory strategies to regulate body temperature, to the detriment of nestling growth and survival.


Assuntos
Temperatura Baixa , Aves Canoras , Animais , Regiões Árticas , Aves Canoras/fisiologia , Regulação da Temperatura Corporal/fisiologia , Temperatura Corporal/fisiologia , Cruzamento , Reprodução/fisiologia , Feminino , Masculino , Temperatura
16.
Nat Ecol Evol ; 7(12): 1993-2003, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37932384

RESUMO

Understanding how temperature determines the distribution of life is necessary to assess species' sensitivities to contemporary climate change. Here, we test the importance of temperature in limiting the geographic ranges of ectotherms by comparing the temperatures and areas that species occupy to the temperatures and areas species could potentially occupy on the basis of their physiological thermal tolerances. We find that marine species across all latitudes and terrestrial species from the tropics occupy temperatures that closely match their thermal tolerances. However, terrestrial species from temperate and polar latitudes are absent from warm, thermally tolerable areas that they could potentially occupy beyond their equatorward range limits, indicating that extreme temperature is often not the factor limiting their distributions at lower latitudes. This matches predictions from the hypothesis that adaptation to cold environments that facilitates survival in temperate and polar regions is associated with a performance trade-off that reduces species' abilities to contend in the tropics, possibly due to biotic exclusion. Our findings predict more direct responses to climate warming of marine ranges and cool range edges of terrestrial species.


Assuntos
Mudança Climática , Temperatura Baixa , Temperatura
17.
Nat Ecol Evol ; 7(3): 405-413, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36702858

RESUMO

High-elevation ecosystems are among the few ecosystems worldwide that are not yet heavily invaded by non-native plants. This is expected to change as species expand their range limits upwards to fill their climatic niches and respond to ongoing anthropogenic disturbances. Yet, whether and how quickly these changes are happening has only been assessed in a few isolated cases. Starting in 2007, we conducted repeated surveys of non-native plant distributions along mountain roads in 11 regions from 5 continents. We show that over a 5- to 10-year period, the number of non-native species increased on average by approximately 16% per decade across regions. The direction and magnitude of upper range limit shifts depended on elevation across all regions. Supported by a null-model approach accounting for range changes expected by chance alone, we found greater than expected upward shifts at lower/mid elevations in at least seven regions. After accounting for elevation dependence, significant average upward shifts were detected in a further three regions (revealing evidence for upward shifts in 10 of 11 regions). Together, our results show that mountain environments are becoming increasingly exposed to biological invasions, emphasizing the need to monitor and prevent potential biosecurity issues emerging in high-elevation ecosystems.


Assuntos
Altitude , Ecossistema , Espécies Introduzidas , Plantas , Dispersão Vegetal
18.
Ann Bot ; 109(4): 761-72, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22278414

RESUMO

BACKGROUND AND AIMS: Pollen-collecting bees are among the most important pollinators globally, but are also the most common pollen thieves and can significantly reduce plant reproduction. The pollination efficiency of pollen collectors depends on the frequency of their visits to female(-phase) flowers, contact with stigmas and deposition of pollen of sufficient quantity and quality to fertilize ovules. Here we investigate the relative importance of these components, and the hypothesis that floral and inflorescence characteristics mediate the pollination role of pollen collection by bees. METHODS: For ten Aloe species that differ extensively in floral and inflorescence traits, we experimentally excluded potential bird pollinators to quantify the contributions of insect visitors to pollen removal, pollen deposition and seed production. We measured corolla width and depth to determine nectar accessibility, and the phenology of anther dehiscence and stigma receptivity to quantify herkogamy and dichogamy. Further, we compiled all published bird-exclusion studies of aloes, and compared insect pollination success with floral morphology. KEY RESULTS: Species varied from exclusively insect pollinated, to exclusively bird pollinated but subject to extensive pollen theft by insects. Nectar inaccessibility and strong dichogamy inhibited pollination by pollen-collecting bees by discouraging visits to female-phase (i.e. pollenless) flowers. For species with large inflorescences of pollen-rich flowers, pollen collectors successfully deposited pollen, but of such low quality (probably self-pollen) that they made almost no contribution to seed set. Indeed, considering all published bird-exclusion studies (17 species in total), insect pollination efficiency varied significantly with floral shape. CONCLUSIONS: Species-specific floral and inflorescence characteristics, especially nectar accessibility and dichogamy, control the efficiency of pollen-collecting bees as pollinators of aloes.


Assuntos
Aloe/fisiologia , Abelhas , Animais , Flores/fisiologia , Néctar de Plantas/química , Polinização , África do Sul
19.
Philos Trans R Soc Lond B Biol Sci ; 377(1846): 20210014, 2022 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-35067093

RESUMO

Sexual reproduction often declines towards range edges, reducing fitness, dispersal and adaptive potential. For plants, sexual reproduction is frequently limited by inadequate pollination. While case studies show that pollen limitation can limit plant distributions, the extent to which pollination commonly declines towards plant range edges is unknown. Here, we use global databases of pollen-supplementation experiments and plant occurrence data to test whether pollen limitation increases towards plant range edges, using a phylogenetically controlled meta-analysis. While there was significant pollen limitation across studies, we found little evidence that pollen limitation increases towards plant range edges. Pollen limitation was not stronger towards the tropics, nor at species' equatorward versus poleward range limits. Meta-analysis results are consistent with results from targeted experiments, in which pollen limitation increased significantly towards only 14% of 14 plant range edges, suggesting that pollination contributes to range limits less often than do other interactions. Together, these results suggest pollination is one of the rich variety of potential ecological factors that can contribute to range limits, rather than a generally important constraint on plant distributions. This article is part of the theme issue 'Species' ranges in the face of changing environments (part I)'.


Assuntos
Pólen , Polinização , Flores , Dispersão Vegetal , Plantas , Reprodução
20.
Philos Trans R Soc Lond B Biol Sci ; 377(1848): 20210020, 2022 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-35184598

RESUMO

Species' ranges are limited by both ecological and evolutionary constraints. While there is a growing appreciation that ecological constraints include interactions among species, like competition, we know relatively little about how interactions contribute to evolutionary constraints at species' niche and range limits. Building on concepts from community ecology and evolutionary biology, we review how biotic interactions can influence adaptation at range limits by impeding the demographic conditions that facilitate evolution (which we term a 'demographic pathway to adaptation'), and/or by imposing evolutionary trade-offs with the abiotic environment (a 'trade-offs pathway'). While theory for the former is well-developed, theory for the trade-offs pathway is not, and empirical evidence is scarce for both. Therefore, we develop a model to illustrate how fitness trade-offs along biotic and abiotic gradients could affect the potential for range expansion and niche evolution following ecological release. The model shows that which genotypes are favoured at species' range edges can depend strongly on the biotic context and the nature of fitness trade-offs. Experiments that characterize trade-offs and properly account for biotic context are needed to predict which species will expand their niche or range in response to environmental change. This article is part of the theme issue 'Species' ranges in the face of changing environments (Part II)'.


Assuntos
Aclimatação , Evolução Biológica , Ecossistema
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA