Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Am J Physiol Lung Cell Mol Physiol ; 326(3): L377-L392, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38290992

RESUMO

Sphingosine kinase 1 (SPHK1) has been shown to play a key role in the pathogenesis of asthma where SPHK1-generated sphingosine-1-phosphate (S1P) is known to mediate innate and adaptive immunity while promoting mast cell degranulation. Goblet cell metaplasia (GCM) contributes to airway obstruction in asthma and has been demonstrated in animal models. We investigated the role of PF543, a SPHK1-specific inhibitor, in preventing the pathogenesis of GCM using a murine (C57BL/6) model of allergen-induced acute asthma. Treatment with PF543 before triple allergen exposure (DRA: House dust mite, Ragweed pollen, and Aspergillus) reduced inflammation, eosinophilic response, and GCM followed by reduced airway hyperreactivity to intravenous methacholine. Furthermore, DRA exposure was associated with increased expression of SPHK1 in the airway epithelium which was reduced by PF543. DRA-induced reduction of acetylated α-tubulin in airway epithelium was associated with an increased expression of NOTCH2 and SPDEF which was prevented by PF543. In vitro studies using human primary airway epithelial cells showed that inhibition of SPHK1 using PF543 prevented an allergen-induced increase of both NOTCH2 and SPDEF. siRNA silencing of SPHK1 prevented the allergen-induced increase of both NOTCH2 and SPDEF. NOTCH2 silencing was associated with a reduction of SPDEF but not that of SPHK1 upon allergen exposure. Our studies demonstrate that inhibition of SPHK1 protected allergen-challenged airways by preventing GCM and airway hyperreactivity, associated with downregulation of the NOTCH2-SPDEF signaling pathway. This suggests a potential novel link between SPHK1, GCM, and airway remodeling in asthma.NEW & NOTEWORTHY The role of SPHK1-specific inhibitor, PF543, in preventing goblet cell metaplasia (GCM) and airway hyperreactivity (AHR) is established in an allergen-induced mouse model. This protection was associated with the downregulation of NOTCH2-SPDEF signaling pathway, suggesting a novel link between SPHK1, GCM, and AHR.


Assuntos
Asma , Células Caliciformes , Lisofosfolipídeos , Fosfotransferases (Aceptor do Grupo Álcool) , Pirrolidinas , Esfingosina/análogos & derivados , Sulfonas , Animais , Humanos , Camundongos , Células Caliciformes/metabolismo , Camundongos Endogâmicos C57BL , Asma/patologia , Epitélio/metabolismo , Fatores de Transcrição/metabolismo , Metaplasia/metabolismo , Metaplasia/patologia , Alérgenos , Metanol
2.
Pediatr Res ; 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38914764

RESUMO

The systematic review and meta-analysis of newborn animal models by Irene Lok et al. is the first to extensively summarize the literature regarding postnatal systemic corticosteroid use on lung development of newborn rodent models. The meta-analysis showed that the use of postnatal corticosteroids resulted in a reduction in body weight along with persistent alveolar simplification. The most frequently used corticosteroid was dexamethasone. Corticosteroids have been extensively used in clinical trials in preterm newborns. Trials using early systemic administration of corticosteroids reduced the rate of BPD or mortality with no increase in the rates of cerebral palsy. Use of late systemic corticosteroids (administered >7 days after birth) also reduced the rate of BPD, mortality, and combined outcome of mortality or BPD. Late systemic corticosteroids showed no impact on the rates of neurodevelopmental outcomes in later childhood. It is important to note that later stages of inflammation leading to a more severe form of BPD continues to be a problem with no clear therapy in sight. The authors made a critical point in their paper - the negative effects of steroids were greater in the normal lung control animals than in the injured. This conveys caution in using steroids in a prophylactic manner. IMPACT: Use of systemic corticosteroids in clinical trials have shown good response in preterm neonates evidenced by reduced rate of bronchopulmonary dysplasia. Rodent models have not shown a similar beneficial response. Use of systemic corticosteroids have caused greater arrest of lung development in rodent models with normal lungs compared to those with lung damage.

3.
Thorax ; 77(1): 47-57, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-33883249

RESUMO

INTRODUCTION: Neonatal lung injury as a consequence of hyperoxia (HO) therapy and ventilator care contribute to the development of bronchopulmonary dysplasia (BPD). Increased expression and activity of lysyl oxidase (LOX), a key enzyme that cross-links collagen, was associated with increased sphingosine kinase 1 (SPHK1) in human BPD. We, therefore, examined closely the link between LOX and SPHK1 in BPD. METHOD: The enzyme expression of SPHK1 and LOX were assessed in lung tissues of human BPD using immunohistochemistry and quantified (Halo). In vivo studies were based on Sphk1-/- and matched wild type (WT) neonatal mice exposed to HO while treated with PF543, an inhibitor of SPHK1. In vitro mechanistic studies used human lung microvascular endothelial cells (HLMVECs). RESULTS: Both SPHK1 and LOX expressions were increased in lungs of patients with BPD. Tracheal aspirates from patients with BPD had increased LOX, correlating with sphingosine-1-phosphate (S1P) levels. HO-induced increase of LOX in lungs were attenuated in both Sphk1-/- and PF543-treated WT mice, accompanied by reduced collagen staining (sirius red). PF543 reduced LOX activity in both bronchoalveolar lavage fluid and supernatant of HLMVECs following HO. In silico analysis revealed STAT3 as a potential transcriptional regulator of LOX. In HLMVECs, following HO, ChIP assay confirmed increased STAT3 binding to LOX promoter. SPHK1 inhibition reduced phosphorylation of STAT3. Antibody to S1P and siRNA against SPNS2, S1P receptor 1 (S1P1) and STAT3 reduced LOX expression. CONCLUSION: HO-induced SPHK1/S1P signalling axis plays a critical role in transcriptional regulation of LOX expression via SPNS2, S1P1 and STAT3 in lung endothelium.


Assuntos
Hiperóxia , Lesão Pulmonar , Animais , Células Endoteliais , Humanos , Camundongos , Fosfotransferases (Aceptor do Grupo Álcool) , Proteína-Lisina 6-Oxidase , Fator de Transcrição STAT3
4.
Int J Mol Sci ; 23(3)2022 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-35163176

RESUMO

Premature infants are born with developing lungs burdened by surfactant deficiency and a dearth of antioxidant defense systems. Survival rate of such infants has significantly improved due to advances in care involving mechanical ventilation and oxygen supplementation. However, a significant subset of such survivors develops the chronic lung disease, Bronchopulmonary dysplasia (BPD), characterized by enlarged, simplified alveoli and deformed airways. Among a host of factors contributing to the pathogenesis is oxidative damage induced by exposure of the developing lungs to hyperoxia. Recent data indicate that hyperoxia induces aberrant sphingolipid signaling, leading to mitochondrial dysfunction and abnormal reactive oxygen species (ROS) formation (ROS). The role of sphingolipids such as ceramides and sphingosine 1-phosphate (S1P), in the development of BPD emerged in the last decade. Both ceramide and S1P are elevated in tracheal aspirates of premature infants of <32 weeks gestational age developing BPD. This was faithfully reflected in the murine models of hyperoxia and BPD, where there is an increased expression of sphingolipid metabolites both in lung tissue and bronchoalveolar lavage. Treatment of neonatal pups with a sphingosine kinase1 specific inhibitor, PF543, resulted in protection against BPD as neonates, accompanied by improved lung function and reduced airway remodeling as adults. This was accompanied by reduced mitochondrial ROS formation. S1P receptor1 induced by hyperoxia also aggravates BPD, revealing another potential druggable target in this pathway for BPD. In this review we aim to provide a detailed description on the role played by sphingolipid signaling in hyperoxia induced lung injury and BPD.


Assuntos
Displasia Broncopulmonar/metabolismo , Displasia Broncopulmonar/patologia , Lesão Pulmonar/metabolismo , Esfingolipídeos/fisiologia , Remodelação das Vias Aéreas , Animais , Animais Recém-Nascidos , Ceramidas/metabolismo , Modelos Animais de Doenças , Humanos , Hiperóxia/metabolismo , Hiperóxia/fisiopatologia , Lactente , Recém-Nascido , Pulmão/patologia , Lesão Pulmonar/patologia , Lisofosfolipídeos/metabolismo , Metanol/farmacologia , Camundongos , Estresse Oxidativo/fisiologia , Alvéolos Pulmonares/metabolismo , Pirrolidinas/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Esfingolipídeos/metabolismo , Esfingosina/análogos & derivados , Esfingosina/metabolismo , Sulfonas/farmacologia
5.
J Biol Chem ; 295(38): 13393-13406, 2020 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-32732285

RESUMO

Lysocardiolipin acyltransferase (LYCAT), a cardiolipin (CL)-remodeling enzyme, is crucial for maintaining normal mitochondrial function and vascular development. Despite the well-characterized role for LYCAT in the regulation of mitochondrial dynamics, its involvement in lung cancer, if any, remains incompletely understood. In this study, in silico analysis of TCGA lung cancer data sets revealed a significant increase in LYCAT expression, which was later corroborated in human lung cancer tissues and immortalized lung cancer cell lines via indirect immunofluorescence and immunoblotting, respectively. Stable knockdown of LYCAT in NSCLC cell lines not only reduced CL and increased monolyso-CL levels but also reduced in vivo tumor growth, as determined by xenograft studies in athymic nude mice. Furthermore, blocking LYCAT activity using a LYCAT mimetic peptide attenuated cell migration, suggesting a novel role for LYCAT activity in promoting NSCLC. Mechanistically, the pro-proliferative effects of LYCAT were mediated by an increase in mitochondrial fusion and a G1/S cell cycle transition, both of which are linked to increased cell proliferation. Taken together, these results demonstrate a novel role for LYCAT in promoting NSCLC and suggest that targeting LYCAT expression or activity in NSCLC may provide new avenues for the therapeutic treatment of lung cancer.


Assuntos
1-Acilglicerol-3-Fosfato O-Aciltransferase/metabolismo , Carcinoma Pulmonar de Células não Pequenas/enzimologia , Proliferação de Células , Neoplasias Pulmonares/enzimologia , Mitocôndrias/metabolismo , Proteínas de Neoplasias/metabolismo , 1-Acilglicerol-3-Fosfato O-Aciltransferase/genética , Células A549 , Animais , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Cardiolipinas/genética , Cardiolipinas/metabolismo , Xenoenxertos , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Nus , Mitocôndrias/genética , Proteínas de Neoplasias/genética , Transplante de Neoplasias
6.
Am J Physiol Lung Cell Mol Physiol ; 319(3): L497-L512, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32697651

RESUMO

Hyperoxia (HO)-induced lung injury contributes to bronchopulmonary dysplasia (BPD) in preterm newborns. Intractable wheezing seen in BPD survivors is associated with airway remodeling (AWRM). Sphingosine kinase 1 (SPHK1)/sphingosine-1-phosphate (S1P) signaling promotes HO-mediated neonatal BPD; however, its role in the sequela of AWRM is not known. We noted an increased concentration of S1P in tracheal aspirates of neonatal infants with severe BPD, and earlier, demonstrated that Sphk1-/- mice showed protection against HO-induced BPD. The role of SPHK1/S1P in promoting AWRM following exposure of neonates to HO was investigated in a murine model. Therapy using PF543, the specific SPHK1 inhibitor, during neonatal HO reduced alveolar simplification followed by reduced AWRM in adult mice. This was associated with reduced airway hyperreactivity to intravenous methacholine. Neonatal HO exposure was associated with increased expression of SPHK1 in lung tissue of adult mice, which was reduced with PF543 therapy in the neonatal stage. This was accompanied by amelioration of HO-induced reduction of E-cadherin in airway epithelium. This may be suggestive of arrested partial epithelial mesenchymal transition (EMT) induced by HO. In vitro studies using human primary airway epithelial cells (HAEpCs) showed that SPHK1 inhibition or deletion restored HO-induced reduction in E-cadherin and reduced formation of mitochondrial reactive oxygen species (mtROS). Blocking mtROS with MitoTempo attenuated HO-induced partial EMT of HAEpCs. These results collectively support a therapeutic role for PF543 in preventing HO-induced BPD in neonates and the long-term sequela of AWRM, thus conferring a long-term protection resulting in improved lung development and function.


Assuntos
Remodelação das Vias Aéreas/efeitos dos fármacos , Displasia Broncopulmonar/tratamento farmacológico , Hiperóxia/tratamento farmacológico , Metanol/análogos & derivados , Pirrolidinas/farmacologia , Animais , Animais Recém-Nascidos , Displasia Broncopulmonar/induzido quimicamente , Modelos Animais de Doenças , Hiperóxia/induzido quimicamente , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Metanol/farmacologia , Camundongos Knockout , Fosfotransferases (Aceptor do Grupo Álcool)/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Sulfonas
7.
Allergy ; 75(2): 357-369, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31385613

RESUMO

BACKGROUND: A new approach targeting aeroallergen sensing in the early events of mucosal immunity could have greater benefit. The CSF1-CSF1R pathway has a critical role in trafficking allergens to regional lymph nodes through activating dendritic cells. Intervention in this pathway could prevent allergen sensitization and subsequent Th2 allergic inflammation. OBJECTIVE: To examine the therapeutic effectiveness of CSF1 and CSF1R inhibition for blocking the dendritic cell function of sensing aeroallergens. METHODS: We adopted a model of chronic asthma induced by a panel of three naturally occurring allergens and novel delivery system of CSF1R inhibitor encapsulated nanoprobe. RESULTS: Selective depletion of CSF1 in airway epithelial cells abolished the production of allergen-reactive IgE, resulting in prevention of new asthma development as well as reversal of established allergic lung inflammation. CDPL-GW nanoprobe containing GW2580, a selective CSF1R inhibitor, showed favorable pharmacokinetics for inhalational treatment and intranasal insufflation delivery of CDPL-GW nanoprobe ameliorated asthma pathologies including allergen-specific serum IgE production, allergic lung and airway inflammation and airway hyper-responsiveness (AHR) with minimal pulmonary adverse reaction. CONCLUSION: The inhibition of the CSF1-CSF1R signaling pathway effectively suppresses sensitization to aeroallergens and consequent allergic lung inflammation in a murine model of chronic asthma. CSF1R inhibition is a promising new target for the treatment of allergic asthma.


Assuntos
Anisóis/administração & dosagem , Anisóis/farmacologia , Asma/tratamento farmacológico , Sistemas de Liberação de Medicamentos/métodos , Fator Estimulador de Colônias de Macrófagos/antagonistas & inibidores , Fator Estimulador de Colônias de Macrófagos/metabolismo , Pirimidinas/administração & dosagem , Pirimidinas/farmacologia , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/metabolismo , Alérgenos/imunologia , Alérgenos/farmacologia , Animais , Asma/induzido quimicamente , Modelos Animais de Doenças , Feminino , Imunoglobulina E/biossíntese , Fator Estimulador de Colônias de Macrófagos/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Nanoestruturas/administração & dosagem , Compostos de Amônio Quaternário/administração & dosagem , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Ácidos Sulfônicos/administração & dosagem , Resultado do Tratamento
8.
J Allergy Clin Immunol ; 143(2): 669-680.e12, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-29778505

RESUMO

BACKGROUND: Chemokine signaling through CCR3 is a key regulatory pathway for eosinophil recruitment into tissues associated with allergic inflammation and asthma. To date, none of the CCR3 antagonists have shown efficacy in clinical trials. One reason might be their unbiased mode of inhibition that prevents receptor internalization, leading to drug tolerance. OBJECTIVE: We sought to develop a novel peptide nanoparticle CCR3 inhibitor (R321) with a biased mode of inhibition that would block G protein signaling but enable or promote receptor internalization. METHODS: Self-assembly of R321 peptide into nanoparticles and peptide binding to CCR3 were analyzed by means of dynamic light scattering and nuclear magnetic resonance. Inhibitory activity on CCR3 signaling was assessed in vitro by using flow cytometry, confocal microscopy, and Western blot analysis in a CCR3+ eosinophil cell line and blood eosinophils. In vivo effects of R321 were assessed by using a triple-allergen mouse asthma model. RESULTS: R321 self-assembles into nanoparticles and binds directly to CCR3, altering receptor function. Half-maximal inhibitory concentration values for eotaxin-induced chemotaxis of blood eosinophils are in the low nanomolar range. R321 inhibits only the early phase of extracellular signal-regulated kinase 1/2 activation and not the late phase generally associated with ß-arrestin recruitment and receptor endocytosis, promoting CCR3 internalization and degradation. In vivo R321 effectively blocks eosinophil recruitment into the blood, lungs, and airways and prevents airway hyperresponsiveness in a mouse eosinophilic asthma model. CONCLUSIONS: R321 is a potent and selective antagonist of the CCR3 signaling cascade. Inhibition through a biased mode of antagonism might hold significant therapeutic promise by eluding the formation of drug tolerance.


Assuntos
Eosinófilos/imunologia , Hipersensibilidade/tratamento farmacológico , Pulmão/imunologia , Nanopartículas/uso terapêutico , Peptídeos/uso terapêutico , Receptores CCR3/antagonistas & inibidores , Hipersensibilidade Respiratória/tratamento farmacológico , Alérgenos/imunologia , Linhagem Celular , Movimento Celular , Proteínas de Ligação ao GTP/antagonistas & inibidores , Humanos , Espectroscopia de Ressonância Magnética , Ligação Proteica , Transdução de Sinais
9.
Int J Mol Sci ; 21(6)2020 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-32192225

RESUMO

The sphingosine kinase 1 (SPHK1)/sphingosine-1-phosphate (S1P) signaling axis is emerging as a key player in the development of idiopathic pulmonary fibrosis (IPF) and bleomycin (BLM)-induced lung fibrosis in mice. Recent evidence implicates the involvement of the Hippo/Yes-associated protein (YAP) 1 pathway in lung diseases, including IPF, but its plausible link to the SPHK1/S1P signaling pathway is unclear. Herein, we demonstrate the increased co-localization of YAP1 with the fibroblast marker FSP1 in the lung fibroblasts of BLM-challenged mice, and the genetic deletion of Sphk1 in mouse lung fibroblasts (MLFs) reduced YAP1 localization in fibrotic foci. The PF543 inhibition of SPHK1 activity in mice attenuated YAP1 co-localization with FSP1 in lung fibroblasts. In vitro, TGF-ß stimulated YAP1 translocation to the nucleus in primary MLFs, and the deletion of Sphk1 or inhibition with PF543 attenuated TGF-ß-mediated YAP1 nuclear localization. Moreover, the PF543 inhibition of SPHK1, or the verteporfin inhibition of YAP1, decreased the TGF-ß- or BLM-induced mitochondrial reactive oxygen species (mtROS) in human lung fibroblasts (HLFs) and the expression of fibronectin (FN) and alpha-smooth muscle actin (α-SMA). Furthermore, scavenging mtROS with MitoTEMPO attenuated the TGF-ß-induced expression of FN and α-SMA. The addition of the S1P antibody to HLFs reduced TGF-ß- or S1P-mediated YAP1 activation, mtROS, and the expression of FN and α-SMA. These results suggest a role for SPHK1/S1P signaling in TGF-ß-induced YAP1 activation and mtROS generation, resulting in fibroblast activation, a critical driver of pulmonary fibrosis.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Fibrose Pulmonar Idiopática/metabolismo , Lisofosfolipídeos/metabolismo , Mitocôndrias/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Esfingosina/análogos & derivados , Fatores de Transcrição/metabolismo , Transporte Ativo do Núcleo Celular , Proteínas Adaptadoras de Transdução de Sinal , Células Epiteliais Alveolares/metabolismo , Animais , Bleomicina/efeitos adversos , Fibroblastos/metabolismo , Fibronectinas/genética , Fibronectinas/metabolismo , Deleção de Genes , Expressão Gênica , Via de Sinalização Hippo , Humanos , Fibrose Pulmonar Idiopática/etiologia , Imuno-Histoquímica , Metanol/análogos & derivados , Metanol/farmacologia , Camundongos , Fosfotransferases (Aceptor do Grupo Álcool)/antagonistas & inibidores , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Pirrolidinas/farmacologia , Esfingosina/metabolismo , Sulfonas , Fator de Crescimento Transformador beta1/metabolismo , Proteínas de Sinalização YAP
10.
Int J Mol Sci ; 21(16)2020 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-32764262

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a chronic disease for which novel approaches are urgently required. We reported increased sphingosine kinase 1 (SPHK1) in IPF lungs and that SPHK1 inhibition using genetic and pharmacologic approaches reduces murine bleomycin-induced pulmonary fibrosis. We determined whether PF543, a specific SPHK1 inhibitor post bleomycin or asbestos challenge mitigates lung fibrosis by reducing mitochondrial (mt) DNA damage and pro-fibrotic monocyte recruitment-both are implicated in the pathobiology of pulmonary fibrosis. Bleomycin (1.5 U/kg), crocidolite asbestos (100 µg/50 µL) or controls was intratracheally instilled in Wild-Type (C57Bl6) mice. PF543 (1 mg/kg) or vehicle was intraperitoneally injected once every two days from day 7-21 following bleomycin and day 14-21 or day 30-60 following asbestos. PF543 reduced bleomycin- and asbestos-induced pulmonary fibrosis at both time points as well as lung expression of profibrotic markers, lung mtDNA damage, and fibrogenic monocyte recruitment. In contrast to human lung fibroblasts, asbestos augmented lung epithelial cell (MLE) mtDNA damage and PF543 was protective. Post-exposure PF543 mitigates pulmonary fibrosis in part by reducing lung epithelial cell mtDNA damage and monocyte recruitment. We reason that SPHK1 signaling may be an innovative therapeutic target for managing patients with IPF and other forms of lung fibrosis.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Fibrose Pulmonar Idiopática/tratamento farmacológico , Metanol/análogos & derivados , Fibrose Pulmonar/tratamento farmacológico , Pirrolidinas/farmacologia , Proteínas Adaptadoras de Transdução de Sinal/antagonistas & inibidores , Células Epiteliais Alveolares/efeitos dos fármacos , Animais , Amianto/toxicidade , Bleomicina/farmacologia , Dano ao DNA/efeitos dos fármacos , DNA Mitocondrial/efeitos dos fármacos , DNA Mitocondrial/genética , Humanos , Fibrose Pulmonar Idiopática/genética , Fibrose Pulmonar Idiopática/patologia , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Metanol/farmacologia , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/genética , Monócitos/efeitos dos fármacos , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/genética , Fibrose Pulmonar/patologia , Transdução de Sinais/efeitos dos fármacos , Sulfonas
11.
BMC Genomics ; 20(1): 984, 2019 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-31842752

RESUMO

BACKGROUND: Pseudomonas aeruginosa (PA) is an opportunistic Gram-negative bacterium that causes serious life threatening and nosocomial infections including pneumonia. PA has the ability to alter host genome to facilitate its invasion, thus increasing the virulence of the organism. Sphingosine-1- phosphate (S1P), a bioactive lipid, is known to play a key role in facilitating infection. Sphingosine kinases (SPHK) 1&2 phosphorylate sphingosine to generate S1P in mammalian cells. We reported earlier that Sphk2-/- mice offered significant protection against lung inflammation, compared to wild type (WT) animals. Therefore, we profiled the differential expression of genes between the protected group of Sphk2-/- and the wild type controls to better understand the underlying protective mechanisms related to the Sphk2 deletion in lung inflammatory injury. Whole transcriptome shotgun sequencing (RNA-Seq) was performed on mouse lung tissue using NextSeq 500 sequencing system. RESULTS: Two-way analysis of variance (ANOVA) analysis was performed and differentially expressed genes following PA infection were identified using whole transcriptome of Sphk2-/- mice and their WT counterparts. Pathway (PW) enrichment analyses of the RNA seq data identified several signaling pathways that are likely to play a crucial role in pneumonia caused by PA such as those involved in: 1. Immune response to PA infection and NF-κB signal transduction; 2. PKC signal transduction; 3. Impact on epigenetic regulation; 4. Epithelial sodium channel pathway; 5. Mucin expression; and 6. Bacterial infection related pathways. Our genomic data suggests a potential role for SPHK2 in PA-induced pneumonia through elevated expression of inflammatory genes in lung tissue. Further, validation by RT-PCR on 10 differentially expressed genes showed 100% concordance in terms of vectoral changes as well as significant fold change. CONCLUSION: Using Sphk2-/- mice and differential gene expression analysis, we have shown here that S1P/SPHK2 signaling could play a key role in promoting PA pneumonia. The identified genes promote inflammation and suppress others that naturally inhibit inflammation and host defense. Thus, targeting SPHK2/S1P signaling in PA-induced lung inflammation could serve as a potential therapy to combat PA-induced pneumonia.


Assuntos
Deleção de Genes , Perfilação da Expressão Gênica/métodos , Redes Reguladoras de Genes , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Infecções por Pseudomonas/prevenção & controle , Pseudomonas aeruginosa/patogenicidade , Análise de Variância , Animais , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Pulmão/imunologia , Pulmão/microbiologia , Camundongos , Infecções por Pseudomonas/genética , Infecções por Pseudomonas/imunologia , RNA-Seq , Virulência
12.
Thorax ; 74(6): 579-591, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30723184

RESUMO

INTRODUCTION: Dysregulated sphingolipid metabolism has been implicated in the pathogenesis of various pulmonary disorders. Nuclear sphingosine-1-phosphate (S1P) has been shown to regulate histone acetylation, and therefore could mediate pro-inflammatory genes expression. METHODS: Profile of sphingolipid species in bronchoalveolar lavage fluids and lung tissue of mice challenged with Pseudomonas aeruginosa (PA) was investigated. The role of nuclear sphingosine kinase (SPHK)2 and S1P in lung inflammatory injury by PA using genetically engineered mice was determined. RESULTS: Genetic deletion of Sphk2, but not Sphk1, in mice conferred protection from PA-mediated lung inflammation. PA infection stimulated phosphorylation of SPHK2 and its localisation in epithelial cell nucleus, which was mediated by protein kinase C (PKC) δ. Inhibition of PKC δ or SPHK2 activity reduced PA-mediated acetylation of histone H3 and H4, which was necessary for the secretion of pro-inflammatory cytokines, interleukin-6 and tumour necrosis factor-α. The clinical significance of the findings is supported by enhanced nuclear localisation of p-SPHK2 in the epithelium of lung specimens from patients with cystic fibrosis (CF). CONCLUSIONS: Our studies define a critical role for nuclear SPHK2/S1P signalling in epigenetic regulation of bacterial-mediated inflammatory lung injury. Targeting SPHK2 may represent a potential strategy to reduce lung inflammatory pulmonary disorders such as pneumonia and CF.


Assuntos
Lesão Pulmonar/genética , Lesão Pulmonar/microbiologia , Lisofosfolipídeos/metabolismo , Infecções por Pseudomonas/genética , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/patogenicidade , Esfingosina/análogos & derivados , Animais , Líquido da Lavagem Broncoalveolar , Citocinas/metabolismo , Epigênese Genética , Inflamação/genética , Inflamação/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais , Esfingosina/metabolismo
14.
J Cell Biochem ; 119(8): 6337-6353, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29377310

RESUMO

Phospholipids, sphingolipids, and cholesterol are integral components of eukaryotic cell organelles, including the nucleus. Recent evidence shows characteristic features of nuclear lipid composition and signaling, which are distinct from that of the cytoplasm and plasma membrane. While the nuclear phosphoinositol lipid signaling in cell cycle regulation and differentiation has been well described, there is a paucity on the role of nuclear sphingolipids and sphingolipid signaling in different physiological and pathophysiological human conditions. In this prospective, we describe the role of sphingolipids and specifically focus on the sphingoid bases, such as sphingosine, ceramide, and sphingosine-1-phosphate (S1P) generation and catabolism in nuclear signaling and function. Particularly, S1P generated in the nucleus by phosphorylation of SPHK2 modulates HDAC activity either by direct binding or through activation of nuclear reactive oxygen species and regulates cell cycle and pro-inflammatory gene expression. Potential implication of association of SPHK2 with the co-repressor complexes and generation of S1P in the nucleus on chromatin remodeling under normal and pathological conditions is discussed. A better understanding of sphingolipid signaling in the nucleus will facilitate the design and development of new and novel therapeutic approaches to modulate expression of pro-inflammatory and cell cycle dependent genes in human pathologies such as cancer, bacterial lung infection, neurodegeneration, and cystic fibrosis.


Assuntos
Núcleo Celular/metabolismo , Epigênese Genética , Lisofosfolipídeos/metabolismo , Transdução de Sinais , Esfingosina/análogos & derivados , Animais , Ciclo Celular , Núcleo Celular/genética , Núcleo Celular/patologia , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Humanos , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Lisofosfolipídeos/genética , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Esfingosina/genética , Esfingosina/metabolismo
15.
Curr Top Membr ; 82: 1-31, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30360778

RESUMO

Sphingolipids, first described in the brain in 1884, are important structural components of biological membranes of all eukaryotic cells. In recent years, several lines of evidence support the critical role of sphingolipids such as sphingosine, sphingosine-1-phosphate (S1P), and ceramide as anti- or pro-inflammatory bioactive lipid mediators in a variety of human pathologies including pulmonary and vascular disorders. Among the sphingolipids, S1P is a naturally occurring agonist that exhibits potent barrier enhancing property in the endothelium by signaling via G protein-coupled S1P1 receptor. S1P, S1P analogs, and other barrier enhancing agents such as HGF, oxidized phospholipids, and statins also utilize the S1P/S1P1 signaling pathway to generate membrane protrusions or lamellipodia, which have been implicated in resealing of endothelial gaps and maintenance of barrier integrity. A better understanding of sphingolipids mediated regulation of lamellipodia formation and barrier enhancement of the endothelium will be critical for the development of sphingolipid-based therapies to alleviate pulmonary disorders such as sepsis-, radiation-, and mechanical ventilation-induced acute lung injury.


Assuntos
Endotélio Vascular/metabolismo , Pseudópodes/metabolismo , Transdução de Sinais , Esfingolipídeos/metabolismo , Lesão Pulmonar Aguda/tratamento farmacológico , Endotélio Vascular/efeitos dos fármacos , Humanos , Lisofosfolipídeos/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Pseudópodes/patologia , Espécies Reativas de Oxigênio/metabolismo , Sinvastatina/farmacologia , Sinvastatina/uso terapêutico , Esfingosina/análogos & derivados , Esfingosina/metabolismo
16.
Int J Mol Sci ; 19(1)2018 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-29301259

RESUMO

Mechanical ventilation (MV) performed in respiratory failure patients to maintain lung function leads to ventilator-induced lung injury (VILI). This study investigates the role of sphingolipids and sphingolipid metabolizing enzymes in VILI using a rodent model of VILI and alveolar epithelial cells subjected to cyclic stretch (CS). MV (0 PEEP (Positive End Expiratory Pressure), 30 mL/kg, 4 h) in mice enhanced sphingosine-1-phosphate lyase (S1PL) expression, and ceramide levels, and decreased S1P levels in lung tissue, thereby leading to lung inflammation, injury and apoptosis. Accumulation of S1P in cells is a balance between its synthesis catalyzed by sphingosine kinase (SphK) 1 and 2 and catabolism mediated by S1P phosphatases and S1PL. Thus, the role of S1PL and SphK1 in VILI was investigated using Sgpl1+/- and Sphk1-/- mice. Partial genetic deletion of Sgpl1 protected mice against VILI, whereas deletion of SphK1 accentuated VILI in mice. Alveolar epithelial MLE-12 cells subjected to pathophysiological 18% cyclic stretch (CS) exhibited increased S1PL protein expression and dysregulation of sphingoid bases levels as compared to physiological 5% CS. Pre-treatment of MLE-12 cells with S1PL inhibitor, 4-deoxypyridoxine, attenuated 18% CS-induced barrier dysfunction, minimized cell apoptosis and cytokine secretion. These results suggest that inhibition of S1PL that increases S1P levels may offer protection against VILI.


Assuntos
Aldeído Liases/metabolismo , Esfingolipídeos/metabolismo , Lesão Pulmonar Induzida por Ventilação Mecânica/metabolismo , Aldeído Liases/genética , Animais , Apoptose , Linhagem Celular , Citocinas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo
17.
J Biol Chem ; 291(53): 27187-27203, 2016 12 30.
Artigo em Inglês | MEDLINE | ID: mdl-27864331

RESUMO

Hepatocyte growth factor (HGF) signaling via c-Met is known to promote endothelial cell motility and angiogenesis. We have previously reported that HGF stimulates lamellipodia formation and motility of human lung microvascular endothelial cells (HLMVECs) via PI3K/Akt signal transduction and reactive oxygen species generation. Here, we report a role for HGF-induced intracellular sphingosine-1-phosphate (S1P) generation catalyzed by sphingosine kinase 1 (SphK1), S1P transporter, spinster homolog 2 (Spns2), and S1P receptor, S1P1, in lamellipodia formation and perhaps motility of HLMVECs. HGF stimulated SphK1 phosphorylation and enhanced intracellular S1P levels in HLMVECs, which was blocked by inhibition of SphK1. HGF enhanced co-localization of SphK1/p-SphK1 with actin/cortactin in lamellipodia and down-regulation or inhibition of SphK1 attenuated HGF-induced lamellipodia formation in HLMVECs. In addition, down-regulation of Spns2 also suppressed HGF-induced lamellipodia formation, suggesting a key role for inside-out S1P signaling. The HGF-mediated phosphorylation of SphK1 and its localization in lamellipodia was dependent on c-Met and ERK1/2 signaling, but not the PI3K/Akt pathway; however, blocking PI3K/Akt signaling attenuated HGF-mediated phosphorylation of Spns2. Down-regulation of S1P1, but not S1P2 or S1P3, with specific siRNA attenuated HGF-induced lamellipodia formation. Further, HGF enhanced association of Spns2 with S1P1 that was blocked by inhibiting SphK1 activity with PF-543. Moreover, HGF-induced migration of HLMVECs was attenuated by down-regulation of Spns2. Taken together, these results suggest that HGF/c-Met-mediated lamellipodia formation, and perhaps motility is dependent on intracellular generation of S1P via activation and localization of SphK1 to cell periphery and Spns2-mediated extracellular transportation of S1P and its inside-out signaling via S1P1.


Assuntos
Proteínas de Transporte de Ânions/metabolismo , Movimento Celular , Endotélio Vascular/citologia , Fator de Crescimento de Hepatócito/metabolismo , Pulmão/citologia , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Pseudópodes/metabolismo , Células Cultivadas , Cortactina/metabolismo , Endotélio Vascular/metabolismo , Humanos , Pulmão/metabolismo , Lisofosfolipídeos/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-met/metabolismo , Receptores de Lisoesfingolipídeo/metabolismo , Transdução de Sinais , Esfingosina/análogos & derivados , Esfingosina/metabolismo
18.
BMC Genomics ; 18(1): 664, 2017 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-28851267

RESUMO

BACKGROUND: Sphingosine- 1-Phosphate (S1P) is a bioactive lipid and an intracellular as well as an extracellular signaling molecule. S1P ligand specifically binds to five related cell surface G-protein-coupled receptors (S1P1-5). S1P levels are tightly regulated by its synthesis catalyzed by sphingosine kinases (SphKs) 1 & 2 and catabolism by S1P phosphatases, lipid phosphate phosphatases and S1P lyase. We previously reported that knock down of SphK1 (Sphk1 -/- ) in a neonatal mouse BPD model conferred significant protection against hyperoxia induced lung injury. To better understand the underlying molecular mechanisms, genome-wide gene expression profiling was performed on mouse lung tissue using Affymetrix MoGene 2.0 array. RESULTS: Two-way ANOVA analysis was performed and differentially expressed genes under hyperoxia were identified using Sphk1 -/- mice and their wild type (WT) equivalents. Pathway (PW) enrichment analyses identified several signaling pathways that are likely to play a key role in hyperoxia induced lung injury in the neonates. These included signaling pathways that were anticipated such as those involved in lipid signaling, cell cycle regulation, DNA damage/apoptosis, inflammation/immune response, and cell adhesion/extracellular matrix (ECM) remodeling. We noted hyperoxia induced downregulation of the expression of genes related to mitotic spindle formation in the WT which was not observed in Sphk1 -/- neonates. Our data clearly suggests a role for SphK1 in neonatal hyperoxic lung injury through elevated inflammation and apoptosis in lung tissue. Further, validation by RT-PCR on 24 differentially expressed genes showed 83% concordance both in terms of fold change and vectorial changes. Our findings are in agreement with previously reported human BPD microarray data and completely support our published in vivo findings. In addition, the data also revealed a significant role for additional unanticipitated signaling pathways involving Wnt and GADD45. CONCLUSION: Using SphK1 knockout mice and differential gene expression analysis, we have shown here that S1P/SphK1 signaling plays a key role in promoting hyperoxia induced DNA damage, inflammation, apoptosis and ECM remodeling in neonatal lungs. It also appears to suppress pro-survival cellular responses involved in normal lung development. We therefore propose SphK1 as a therapeutic target for the development drugs to combat BPD.


Assuntos
Displasia Broncopulmonar/complicações , Perfilação da Expressão Gênica , Hiperóxia/etiologia , Hiperóxia/genética , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Animais , Animais Recém-Nascidos , Apoptose/genética , Displasia Broncopulmonar/tratamento farmacológico , Ciclo Celular/genética , Modelos Animais de Doenças , Deleção de Genes , Humanos , Hiperóxia/patologia , Lisofosfolipídeos/metabolismo , Camundongos , Terapia de Alvo Molecular , Análise de Sequência com Séries de Oligonucleotídeos , Fosfotransferases (Aceptor do Grupo Álcool)/deficiência , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Transdução de Sinais , Esfingosina/análogos & derivados , Esfingosina/metabolismo , Transcrição Gênica
19.
Am J Physiol Lung Cell Mol Physiol ; 311(2): L337-51, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27343196

RESUMO

Hyperoxia-induced lung injury adversely affects ICU patients and neonates on ventilator assisted breathing. The underlying culprit appears to be reactive oxygen species (ROS)-induced lung damage. The major contributor of hyperoxia-induced ROS is activation of the multiprotein enzyme complex NADPH oxidase. Sphingosine-1-phosphate (S1P) signaling is known to be involved in hyperoxia-mediated ROS generation; however, the mechanism(s) of S1P-induced NADPH oxidase activation is unclear. Here, we investigated various steps in the S1P signaling pathway mediating ROS production in response to hyperoxia in lung endothelium. Of the two closely related sphingosine kinases (SphKs)1 and 2, which synthesize S1P from sphingosine, only Sphk1(-/-) mice conferred protection against hyperoxia-induced lung injury. S1P is metabolized predominantly by S1P lyase and partial deletion of Sgpl1 (Sgpl1(+/-)) in mice accentuated lung injury. Hyperoxia stimulated S1P accumulation in human lung microvascular endothelial cells (HLMVECs), and downregulation of S1P transporter spinster homolog 2 (Spns2) or S1P receptors S1P1&2, but not S1P3, using specific siRNA attenuated hyperoxia-induced p47(phox) translocation to cell periphery and ROS generation in HLMVECs. These results suggest a role for Spns2 and S1P1&2 in hyperoxia-mediated ROS generation. In addition, p47(phox) (phox:phagocyte oxidase) activation and ROS generation was also reduced by PF543, a specific SphK1 inhibitor in HLMVECs. Our data indicate a novel role for Spns2 and S1P1&2 in the activation of p47(phox) and production of ROS involved in hyperoxia-mediated lung injury in neonatal and adult mice.


Assuntos
Células Endoteliais/enzimologia , Hiperóxia/enzimologia , NADPH Oxidases/metabolismo , Aldeído Liases/metabolismo , Animais , Proteínas de Transporte de Ânions/metabolismo , Células Cultivadas , Endotélio Vascular/patologia , Ativação Enzimática , Feminino , Humanos , Pulmão/irrigação sanguínea , Lisofosfolipídeos/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microvasos/patologia , Transporte Proteico , Espécies Reativas de Oxigênio/metabolismo , Esfingosina/análogos & derivados , Esfingosina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA