Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Small ; 18(26): e2108063, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35633287

RESUMO

DNA origami (DO) nanotechnology enables the construction of precise nanostructures capable of functionalization with small molecule drugs, nucleic acids, and proteins, suggesting a promising platform for biomedical applications. Despite the potential for drug and vaccine delivery, the impact of DO vehicles on immunogenicity in vivo is not well understood. Here, two DO vehicles, a flat triangle and a nanorod, at varying concentrations are evaluated in vitro and with a repeated dosing regimen administered at a high dose in vivo to study early and late immunogenicity. The studies show normal CD11b+ myeloid cell populations preferentially internalize DO in vitro. DO structures distribute well systemically in vivo, elicit a modest pro-inflammatory immune response that diminishes over time and are nontoxic as shown by weight, histopathology, lack of cytokine storm, and a complete biochemistry panel at the day 10 end point. The results take critical steps to characterize the biological response to DO and suggest that DO vehicles represent a promising platform for drug delivery and vaccine development where immunogenicity should be a key consideration.


Assuntos
Nanoestruturas , DNA/química , Sistemas de Liberação de Medicamentos/métodos , Nanoestruturas/química , Nanotecnologia/métodos , Conformação de Ácido Nucleico , Preparações Farmacêuticas , Proteínas
2.
N Engl J Med ; 374(4): 323-32, 2016 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-26641137

RESUMO

BACKGROUND: Irreversible inhibition of Bruton's tyrosine kinase (BTK) by ibrutinib represents an important therapeutic advance for the treatment of chronic lymphocytic leukemia (CLL). However, ibrutinib also irreversibly inhibits alternative kinase targets, which potentially compromises its therapeutic index. Acalabrutinib (ACP-196) is a more selective, irreversible BTK inhibitor that is specifically designed to improve on the safety and efficacy of first-generation BTK inhibitors. METHODS: In this uncontrolled, phase 1-2, multicenter study, we administered oral acalabrutinib to 61 patients who had relapsed CLL to assess the safety, efficacy, pharmacokinetics, and pharmacodynamics of acalabrutinib. Patients were treated with acalabrutinib at a dose of 100 to 400 mg once daily in the dose-escalation (phase 1) portion of the study and 100 mg twice daily in the expansion (phase 2) portion. RESULTS: The median age of the patients was 62 years, and patients had received a median of three previous therapies for CLL; 31% had chromosome 17p13.1 deletion, and 75% had unmutated immunoglobulin heavy-chain variable genes. No dose-limiting toxic effects occurred during the dose-escalation portion of the study. The most common adverse events observed were headache (in 43% of the patients), diarrhea (in 39%), and increased weight (in 26%). Most adverse events were of grade 1 or 2. At a median follow-up of 14.3 months, the overall response rate was 95%, including 85% with a partial response and 10% with a partial response with lymphocytosis; the remaining 5% of patients had stable disease. Among patients with chromosome 17p13.1 deletion, the overall response rate was 100%. No cases of Richter's transformation (CLL that has evolved into large-cell lymphoma) and only one case of CLL progression have occurred. CONCLUSIONS: In this study, the selective BTK inhibitor acalabrutinib had promising safety and efficacy profiles in patients with relapsed CLL, including those with chromosome 17p13.1 deletion. (Funded by the Acerta Pharma and others; ClinicalTrials.gov number, NCT02029443.).


Assuntos
Antineoplásicos/administração & dosagem , Benzamidas/administração & dosagem , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Proteínas Tirosina Quinases/antagonistas & inibidores , Pirazinas/administração & dosagem , Administração Oral , Tirosina Quinase da Agamaglobulinemia , Idoso , Antineoplásicos/efeitos adversos , Antineoplásicos/farmacocinética , Benzamidas/efeitos adversos , Benzamidas/farmacocinética , Deleção Cromossômica , Diarreia/induzido quimicamente , Intervalo Livre de Doença , Relação Dose-Resposta a Droga , Feminino , Cefaleia/induzido quimicamente , Humanos , Leucemia Linfocítica Crônica de Células B/genética , Masculino , Pessoa de Meia-Idade , Inibidores de Proteínas Quinases/administração & dosagem , Inibidores de Proteínas Quinases/efeitos adversos , Inibidores de Proteínas Quinases/farmacocinética , Pirazinas/efeitos adversos , Pirazinas/farmacocinética , Recidiva
3.
Int Immunol ; 30(8): 375-383, 2018 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-29868798

RESUMO

Acute myeloid leukemia (AML) remains a significant health problem, with poor outcomes despite chemotherapy and bone marrow transplants. Although one form of AML, acute promyelocytic leukemia (APL), is successfully treated with all-trans retinoic acid (ATRA), this drug is seemingly ineffective against all other forms of AML. Here, we show that ATRA up-regulates CD38 expression on AML blasts to sufficient levels that promote antibody-mediated fratricide following the addition of anti-CD38 daratumumab (DARA). The combination of ATRA plus DARA induced Fc-dependent conjugate formation and cytotoxicity among AML blasts in vitro. Combination treatment also led to reduction in tumor volume and resulted in increased overall survival in murine engraftment models of AML. These results suggest that, although ATRA does not induce differentiation of non-APL, it may be effective as a therapy in conjunction with DARA.


Assuntos
Anticorpos Monoclonais/farmacologia , Antineoplásicos/farmacologia , Leucemia Mieloide Aguda/tratamento farmacológico , Tretinoína/farmacologia , Anticorpos Monoclonais/química , Anticorpos Monoclonais/uso terapêutico , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Quimioterapia Combinada , Humanos , Leucemia Mieloide Aguda/patologia , Tretinoína/química , Tretinoína/uso terapêutico , Células Tumorais Cultivadas
4.
Blood ; 123(8): 1207-13, 2014 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-24311722

RESUMO

Chronic lymphocytic leukemia (CLL) is characterized by constitutive activation of the B-cell receptor (BCR) signaling pathway, but variable responsiveness of the BCR to antigen ligation. Bruton's tyrosine kinase (BTK) shows constitutive activity in CLL and is the target of irreversible inhibition by ibrutinib, an orally bioavailable kinase inhibitor that has shown outstanding activity in CLL. Early clinical results in CLL with other reversible and irreversible BTK inhibitors have been less promising, however, raising the question of whether BTK kinase activity is an important target of ibrutinib and also in CLL. To determine the role of BTK in CLL, we used patient samples and the Eµ-TCL1 (TCL1) transgenic mouse model of CLL, which results in spontaneous leukemia development. Inhibition of BTK in primary human CLL cells by small interfering RNA promotes apoptosis. Inhibition of BTK kinase activity through either targeted genetic inactivation or ibrutinib in the TCL1 mouse significantly delays the development of CLL, demonstrating that BTK is a critical kinase for CLL development and expansion and thus an important target of ibrutinib. Collectively, our data confirm the importance of kinase-functional BTK in CLL.


Assuntos
Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Leucemia Linfocítica Crônica de Células B/enzimologia , Proteínas Tirosina Quinases/metabolismo , Pirazóis/farmacologia , Pirimidinas/farmacologia , Adenina/análogos & derivados , Adulto , Tirosina Quinase da Agamaglobulinemia , Animais , Apoptose/efeitos dos fármacos , Apoptose/imunologia , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/imunologia , Modelos Animais de Doenças , Feminino , Humanos , Leucemia Linfocítica Crônica de Células B/genética , Masculino , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Piperidinas , Proteínas Tirosina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/genética , RNA Interferente Pequeno/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/imunologia
5.
Blood ; 122(19): 3308-16, 2013 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-24009233

RESUMO

Membrane antigens are critical to the pathogenesis of chronic lymphocytic leukemia (CLL) as they facilitate microenvironment homing, proliferation, and survival. Targeting the CLL membrane and associated signaling patterns is a current focus of therapeutic development. Many tumor membrane targets are simultaneously targeted by humoral immunity, thus forming recognizable immunoglobulin responses. We sought to use this immune response to identify novel membrane-associated targets for CLL. Using a novel strategy, we interrogated CLL membrane-specific autologous immunoglobulin G reactivity. Our analysis unveiled lymphocyte cytosolic protein 1 (LCP1), a lymphocyte-specific target that is highly expressed in CLL. LCP1 plays a critical role in B-cell biology by crosslinking F-actin filaments, thereby solidifying cytoskeletal structures and providing a scaffold for critical signaling pathways. Small interfering RNA knockdown of LCP1 blocked migration toward CXCL12 in transwell assays and to bone marrow in an in vivo xenotransplant model, confirming a role for LCP1 in leukemia migration. Furthermore, we demonstrate that the Bruton's tyrosine kinase inhibitor ibrutinib or the PI3K inhibitor idelalisib block B-cell receptor induced activation of LCP1. Our data demonstrate a novel strategy to identify cancer membrane target antigens using humoral anti-tumor immunity. In addition, we identify LCP1 as a membrane-associated target in CLL with confirmed pathogenic significance. This clinical trial was registered at clinicaltrials.gov; study ID number: OSU-0025 OSU-0156.


Assuntos
Linfócitos B/metabolismo , Membrana Celular/metabolismo , Quimiocina CXCL12/genética , Exossomos/metabolismo , Regulação Leucêmica da Expressão Gênica , Leucemia Linfocítica Crônica de Células B/genética , Proteínas dos Microfilamentos/genética , Animais , Linfócitos B/patologia , Biotinilação , Transplante de Medula Óssea , Linhagem Celular Tumoral , Membrana Celular/patologia , Movimento Celular , Quimiocina CXCL12/metabolismo , Exossomos/patologia , Humanos , Leucemia Linfocítica Crônica de Células B/metabolismo , Leucemia Linfocítica Crônica de Células B/patologia , Camundongos , Camundongos SCID , Proteínas dos Microfilamentos/antagonistas & inibidores , Proteínas dos Microfilamentos/deficiência , Ligação Proteica , Proteoma/genética , Proteoma/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Receptores de Antígenos de Linfócitos B , Transdução de Sinais , Transplante Heterólogo
7.
BMC Cancer ; 14: 84, 2014 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-24517413

RESUMO

BACKGROUND: While microRNA (miRNA) expression is known to be altered in a variety of human malignancies contributing to cancer development and progression, the potential role of miRNA dysregulation in malignant mast cell disease has not been previously explored. The purpose of this study was to investigate the potential contribution of miRNA dysregulation to the biology of canine mast cell tumors (MCTs), a well-established spontaneous model of malignant mast cell disease. METHODS: We evaluated the miRNA expression profiles from biologically low-grade and biologically high-grade primary canine MCTs using real-time PCR-based TaqMan Low Density miRNA Arrays and performed real-time PCR to evaluate miR-9 expression in primary canine MCTs, malignant mast cell lines, and normal bone marrow-derived mast cells (BMMCs). Mouse mast cell lines and BMMCs were transduced with empty or pre-miR-9 expressing lentiviral constructs and cell proliferation, caspase 3/7 activity, and invasion were assessed. Transcriptional profiling of cells overexpressing miR-9 was performed using Affymetrix GeneChip Mouse Gene 2.0 ST arrays and real-time PCR was performed to validate changes in mRNA expression. RESULTS: Our data demonstrate that unique miRNA expression profiles correlate with the biological behavior of primary canine MCTs and that miR-9 expression is increased in biologically high grade canine MCTs and malignant cell lines compared to biologically low grade tumors and normal canine BMMCs. In transformed mouse malignant mast cell lines expressing either wild-type (C57) or activating (P815) KIT mutations and mouse BMMCs, miR-9 overexpression significantly enhanced invasion but had no effect on cell proliferation or apoptosis. Transcriptional profiling of normal mouse BMMCs and P815 cells possessing enforced miR-9 expression demonstrated dysregulation of several genes, including upregulation of CMA1, a protease involved in activation of matrix metalloproteases and extracellular matrix remodeling. CONCLUSIONS: Our findings demonstrate that unique miRNA expression profiles correlate with the biological behavior of canine MCTs. Furthermore, dysregulation of miR-9 is associated with MCT metastasis potentially through the induction of an invasive phenotype, identifying a potentially novel pathway for therapeutic intervention.


Assuntos
Regulação Neoplásica da Expressão Gênica , Mastócitos/metabolismo , MicroRNAs/biossíntese , Invasividade Neoplásica , Animais , Células da Medula Óssea/metabolismo , Células da Medula Óssea/patologia , Linhagem Celular Tumoral , Cães , Humanos , Mastócitos/patologia , Camundongos , Camundongos Endogâmicos C57BL , Invasividade Neoplásica/patologia
8.
J Vet Diagn Invest ; 36(1): 86-94, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37837199

RESUMO

Immunophenotyping of canine large-cell lymphoma (LCL) for B-cell and T-cell surface antigens is commonly performed to better predict the clinical outcome. Expression of surface antigen CD3 is associated with T-cell malignancies; surface antigen CD20 is expressed on B cells. However, a small subset of canine LCLs expresses both CD3 and CD20 (CD3+/CD20+); this form of lymphoma remains poorly defined at the molecular level. In a retrospective study, we aimed to better characterize immunophenotypic properties and antigen receptor clonality of CD3+/CD20+ LCL. We selected formalin-fixed, paraffin-embedded tissues from 10 cases of CD3+/CD20+ LCL and breed-matched controls of peripheral large T-cell lymphoma (PTCL) and diffuse large B-cell lymphoma (DLBCL). Using PCR for antigen receptor rearrangement (PARR), we identified monoclonal T-cell receptor gamma (TCRγ) rearrangements in all CD3+/CD20+ cases. Three of 10 cases had monoclonal rearrangements in the immunoglobulin heavy chain (IgH), supportive of cross-lineage rearrangement. There was no significant difference in the frequency of antigen receptor rearrangement between CD3+/CD20+ and PTCL cases. In comparison with DLBCL, CD3+/CD20+ LCL had TCRγ rearrangement more frequently and IgH rearrangement less frequently, respectively. Immunolabeling of the B-cell marker PAX5 occurred less frequently in all CD3+/CD20+ LCL cases compared to the DLBCL controls. Immunolabeling for BCL-2 was robust, regardless of immunophenotype. Nuclear Ki67 positivity was variable in CD3+/CD20+ cases, indicating a heterogeneity in proliferation. Overall, cases of canine CD3+/CD20+ LCL had properties similar to PTCL, suggesting a similar histogenesis of these 2 subsets.


Assuntos
Doenças do Cão , Linfoma Difuso de Grandes Células B , Linfoma de Células T Periférico , Animais , Cães , Estudos Retrospectivos , Linfoma Difuso de Grandes Células B/genética , Linfoma Difuso de Grandes Células B/veterinária , Linfoma de Células T Periférico/veterinária , Receptores de Antígenos , Antígenos de Superfície , Doenças do Cão/patologia
9.
Exp Hematol Oncol ; 13(1): 27, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38438856

RESUMO

Acute myeloid leukemia (AML) is a highly aggressive hematologic cancer with poor survival across a broad range of molecular subtypes. Development of efficacious and well-tolerable therapies encompassing the range of mutations that can arise in AML remains an unmet need. The bromo- and extra-terminal domain (BET) family of proteins represents an attractive therapeutic target in AML due to their crucial roles in many cellular functions, regardless of any specific mutation. Many BET inhibitors (BETi) are currently in pre-clinical and early clinical development, but acquisition of resistance continues to remain an obstacle for the drug class. Novel methods to circumvent this development of resistance could be instrumental for the future use of BET inhibitors in AML, both as monotherapy and in combination. To date, many investigations into possible drug combinations of BETi with CDK inhibitors have focused on CDK9, which has a known physical and functional interaction with the BET protein BRD4. Therefore, we wished to investigate possible synergy and additive effects between inhibitors of these targets in AML. Here, we describe combination therapy with the multi-CDK inhibitor dinaciclib and the BETi PLX51107 in pre-clinical models of AML. Dinaciclib and PLX51107 demonstrate additive effects in AML cell lines, primary AML samples, and in vivo. Further, we demonstrate novel activity of dinaciclib through inhibition of the canonical/ß-catenin dependent Wnt signaling pathway, a known resistance mechanism to BETi in AML. We show dinaciclib inhibits Wnt signaling at multiple levels, including downregulation of ß-catenin, the Wnt co-receptor LRP6, as well as many Wnt pathway components and targets. Moreover, dinaciclib sensitivity remains unaffected in a setting of BET resistance, demonstrating similar inhibitory effects on Wnt signaling when compared to BET-sensitive cells. Ultimately, our results demonstrate rationale for combination CDKi and BETi in AML. In addition, our novel finding of Wnt signaling inhibition could have potential implications in other cancers where Wnt signaling is dysregulated and demonstrates one possible approach to circumvent development of BET resistance in AML.

10.
Cancers (Basel) ; 15(11)2023 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-37297008

RESUMO

Epstein-Barr virus (EBV) is a ubiquitous herpes virus associated with various cancers. EBV establishes latency with life-long persistence in memory B-cells and can reactivate lytic infection placing immunocompromised individuals at risk for EBV-driven lymphoproliferative disorders (EBV-LPD). Despite the ubiquity of EBV, only a small percentage of immunocompromised patients (~20%) develop EBV-LPD. Engraftment of immunodeficient mice with peripheral blood mononuclear cells (PBMCs) from healthy EBV-seropositive donors leads to spontaneous, malignant, human B-cell EBV-LPD. Only about 20% of EBV+ donors induce EBV-LPD in 100% of engrafted mice (High-Incidence, HI), while another 20% of donors never generate EBV-LPD (No-Incidence, NI). Here, we report HI donors to have significantly higher basal T follicular helper (Tfh) and regulatory T-cells (Treg), and depletion of these subsets prevents/delays EBV-LPD. Transcriptomic analysis of CD4+ T cells from ex vivo HI donor PBMC revealed amplified cytokine and inflammatory gene signatures. HI vs. NI donors showed a marked reduction in IFNγ production to EBV latent and lytic antigen stimulation. In addition, we observed abundant myeloid-derived suppressor cells in HI donor PBMC that decreased CTL proliferation in co-cultures with autologous EBV+ lymphoblasts. Our findings identify potential biomarkers that may identify individuals at risk for EBV-LPD and suggest possible strategies for prevention.

11.
Nat Commun ; 14(1): 97, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36609611

RESUMO

Richter's Transformation (RT) is a poorly understood and fatal progression of chronic lymphocytic leukemia (CLL) manifesting histologically as diffuse large B-cell lymphoma. Protein arginine methyltransferase 5 (PRMT5) is implicated in lymphomagenesis, but its role in CLL or RT progression is unknown. We demonstrate herein that tumors uniformly overexpress PRMT5 in patients with progression to RT. Furthermore, mice with B-specific overexpression of hPRMT5 develop a B-lymphoid expansion with increased risk of death, and Eµ-PRMT5/TCL1 double transgenic mice develop a highly aggressive disease with transformation that histologically resembles RT; where large-scale transcriptional profiling identifies oncogenic pathways mediating PRMT5-driven disease progression. Lastly, we report the development of a SAM-competitive PRMT5 inhibitor, PRT382, with exclusive selectivity and optimal in vitro and in vivo activity compared to available PRMT5 inhibitors. Taken together, the discovery that PRMT5 drives oncogenic pathways promoting RT provides a compelling rationale for clinical investigation of PRMT5 inhibitors such as PRT382 in aggressive CLL/RT cases.


Assuntos
Leucemia Linfocítica Crônica de Células B , Linfoma Difuso de Grandes Células B , Animais , Camundongos , Leucemia Linfocítica Crônica de Células B/genética , Leucemia Linfocítica Crônica de Células B/patologia , Linfoma Difuso de Grandes Células B/patologia
12.
J Hematol Oncol ; 14(1): 101, 2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34187548

RESUMO

KPT-9274 is a phase 1 first-in-class dual PAK4/NAMPT inhibitor for solid tumor and non-Hodgkin's lymphoma. It demonstrates pre-clinical efficacy toward a broad spectrum of acute myeloid leukemia (AML) subtypes by inhibiting NAMPT-dependent NAD+ production. NAMPT is the rate-limiting enzyme in the salvage metabolic pathway leading to NAD+ generation. Tumor cells which are deficient in de novo pathway enzyme NAPRT1 are addicted to NAMPT. In clinical trials, treatment with NAMPT inhibitors resulted in dose-limiting toxicities. In order to dissect the mechanism of toxicity, mice were treated with KPT-9274 and resulting toxicities were characterized histopathologically and biochemically. KPT-9274 treatment caused gender-dependent stomach and kidney injuries and anemia. Female mice treated with KPT-9274 had EPO deficiency and associated impaired erythropoiesis. KPT-9274 treatment suppressed SIRT3 expression and concomitantly upregulated acetyl-manganese superoxide dismutase (MnSOD) in IMCD3 cells, providing a mechanistic basis for observed kidney toxicity. Importantly, niacin supplementation mitigated KPT-9274-caused kidney injury and EPO deficiency without affecting its efficacy. Altogether, our study delineated the mechanism of KPT-9274-mediated toxicity and sheds light onto developing strategies to improve the tolerability of this important anti-AML inhibitor.


Assuntos
Acrilamidas/efeitos adversos , Aminopiridinas/efeitos adversos , Anemia/induzido quimicamente , Antineoplásicos/efeitos adversos , Nefropatias/induzido quimicamente , Nicotinamida Fosforribosiltransferase/antagonistas & inibidores , Acetilação/efeitos dos fármacos , Anemia/etiologia , Anemia/metabolismo , Anemia/patologia , Animais , Eritropoese/efeitos dos fármacos , Feminino , Humanos , Nefropatias/etiologia , Nefropatias/metabolismo , Nefropatias/patologia , Masculino , Camundongos , Nicotinamida Fosforribosiltransferase/metabolismo , Fatores Sexuais , Sirtuína 3/metabolismo , Superóxido Dismutase/metabolismo
13.
J Hematol Oncol ; 14(1): 36, 2021 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-33627156

RESUMO

B-cell receptor (BCR) antagonists such as the BTK inhibitor ibrutinib have proven to effectively target chronic lymphocytic leukemia (CLL) tumor cells, leading to impressive response rates in these patients. However patients do still relapse on ibrutinib, and the progressive disease is often quite aggressive requiring immediate treatment. Several strategies are being pursued to treat patients who relapse on ibrutinib therapy. As the most common form of relapse is the development of a mutant form of BTK which limits ibrutinib binding, agents which lead to degradation of the BTK protein are a promising strategy. Our study explores the efficacy of the Hsp90 inhibitor, SNX-5422, in CLL. The SNX Hsp90 inhibitor was effective in primary CLL cells, as well as B-cell lines expressing either BTK wild type or C481 mutant BTK, which has been identified as the primary resistance mechanism to ibrutinib in CLL patients. Furthermore the combination of SNX-5422 and ibrutinib provided a remarkable in vivo survival benefit in the Eµ-TCL1 mouse model of CLL compared to the vehicle or single agent groups (51 day median survival in the vehicle and ibrutinib groups versus 100 day median survival in the combination). We report here preclinical data suggesting that the Hsp90 inhibitor SNX-5422, which has been pursued in clinical trials in both solid tumor and hematological malignancies, is a potential therapy for ibrutinib resistant CLL.


Assuntos
Adenina/análogos & derivados , Antineoplásicos/uso terapêutico , Benzamidas/uso terapêutico , Glicina/uso terapêutico , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Indazóis/uso terapêutico , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Piperidinas/uso terapêutico , Adenina/farmacologia , Adenina/uso terapêutico , Animais , Antineoplásicos/farmacologia , Benzamidas/farmacologia , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Glicina/farmacologia , Humanos , Indazóis/farmacologia , Leucemia Linfocítica Crônica de Células B/patologia , Camundongos , Piperidinas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico
14.
J Hematol Oncol ; 14(1): 17, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33451349

RESUMO

BACKGROUND: Exportin 1 (XPO1/CRM1) is a key mediator of nuclear export with relevance to multiple cancers, including chronic lymphocytic leukemia (CLL). Whole exome sequencing has identified hot-spot somatic XPO1 point mutations which we found to disrupt highly conserved biophysical interactions in the NES-binding groove, conferring novel cargo-binding abilities and forcing cellular mis-localization of critical regulators. However, the pathogenic role played by change-in-function XPO1 mutations in CLL is not fully understood. METHODS: We performed a large, multi-center retrospective analysis of CLL cases (N = 1286) to correlate nonsynonymous mutations in XPO1 (predominantly E571K or E571G; n = 72) with genetic and epigenetic features contributing to the overall outcomes in these patients. We then established a mouse model with over-expression of wildtype (wt) or mutant (E571K or E571G) XPO1 restricted to the B cell compartment (Eµ-XPO1). Eµ-XPO1 mice were then crossed with the Eµ-TCL1 CLL mouse model. Lastly, we determined crystal structures of XPO1 (wt or E571K) bound to several selective inhibitors of nuclear export (SINE) molecules (KPT-185, KPT-330/Selinexor, and KPT-8602/Eltanexor). RESULTS: We report that nonsynonymous mutations in XPO1 associate with high risk genetic and epigenetic features and accelerated CLL progression. Using the newly-generated Eµ-XPO1 mouse model, we found that constitutive B-cell over-expression of wt or mutant XPO1 could affect development of a CLL-like disease in aged mice. Furthermore, concurrent B-cell expression of XPO1 with E571K or E571G mutations and TCL1 accelerated the rate of leukemogenesis relative to that of Eµ-TCL1 mice. Lastly, crystal structures of E571 or E571K-XPO1 bound to SINEs, including Selinexor, are highly similar, suggesting that the activity of this class of compounds will not be affected by XPO1 mutations at E571 in patients with CLL. CONCLUSIONS: These findings indicate that mutations in XPO1 at E571 can drive leukemogenesis by priming the pre-neoplastic lymphocytes for acquisition of additional genetic and epigenetic abnormalities that collectively result in neoplastic transformation.


Assuntos
Regulação Leucêmica da Expressão Gênica , Carioferinas/genética , Leucemia Linfocítica Crônica de Células B/genética , Mutação , Receptores Citoplasmáticos e Nucleares/genética , Animais , Epigênese Genética , Feminino , Humanos , Masculino , Camundongos Endogâmicos C57BL , Modelos Moleculares , Estudos Retrospectivos , Transcriptoma , Proteína Exportina 1
15.
Nat Commun ; 12(1): 6338, 2021 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-34732719

RESUMO

Rare, recurrent balanced translocations occur in a variety of cancers but are often not functionally interrogated. Balanced translocations with the immunoglobulin heavy chain locus (IGH; 14q32) in chronic lymphocytic leukemia (CLL) are infrequent but have led to the discovery of pathogenic genes including CCND1, BCL2, and BCL3. Following identification of a t(X;14)(q28;q32) translocation that placed the mature T cell proliferation 1 gene (MTCP1) adjacent to the immunoglobulin locus in a CLL patient, we hypothesized that this gene may have previously unrecognized importance. Indeed, here we report overexpression of human MTCP1 restricted to the B cell compartment in mice produces a clonal CD5+/CD19+ leukemia recapitulating the major characteristics of human CLL and demonstrates favorable response to therapeutic intervention with ibrutinib. We reinforce the importance of genetic interrogation of rare, recurrent balanced translocations to identify cancer driving genes via the story of MTCP1 as a contributor to CLL pathogenesis.


Assuntos
Leucemia Linfocítica Crônica de Células B/genética , Leucemia Linfocítica Crônica de Células B/metabolismo , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Translocação Genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Proteína 3 do Linfoma de Células B , Ciclina D1 , Feminino , Regulação da Expressão Gênica , Genes de Cadeia Pesada de Imunoglobulina , Humanos , Cadeias Pesadas de Imunoglobulinas/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Oncogenes/genética , Proteínas Proto-Oncogênicas c-bcl-2
16.
J Hematol Oncol ; 13(1): 139, 2020 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-33076970

RESUMO

Acute myeloid leukemia (AML) is a heterogeneous and complex disease, and treatments for this disease have not been curative for the majority of patients. In younger patients, internal tandem duplication of FLT3 (FLT3-ITD) is a common mutation for which two inhibitors (midostaurin and gilteritinib) with varied potency and specificity for FLT3 are clinically approved. However, the high rate of relapse or failed initial response of AML patients suggests that the addition of a second targeted therapy may be necessary to improve efficacy. Using an unbiased large-scale CRISPR screen, we genetically identified BCL2 knockout as having synergistic effects with an approved FLT3 inhibitor. Here, we provide supportive studies that validate the therapeutic potential of the combination of FLT3 inhibitors with venetoclax in vitro and in vivo against multiple models of FLT3-ITD-driven AML. Our unbiased approach provides genetic validation for co-targeting FLT3 and BCL2 and repurposes CRISPR screening data, utilizing the genome-wide scope toward mechanistic understanding.


Assuntos
Leucemia Mieloide Aguda/terapia , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas c-bcl-2/genética , Tirosina Quinase 3 Semelhante a fms/antagonistas & inibidores , Compostos de Anilina/uso terapêutico , Animais , Antineoplásicos/uso terapêutico , Compostos Bicíclicos Heterocíclicos com Pontes/uso terapêutico , Sistemas CRISPR-Cas , Linhagem Celular Tumoral , Feminino , Técnicas de Inativação de Genes , Terapia Genética , Humanos , Leucemia Mieloide Aguda/genética , Camundongos SCID , Pirazinas/uso terapêutico , Estaurosporina/análogos & derivados , Estaurosporina/uso terapêutico , Sulfonamidas/uso terapêutico
17.
Blood Adv ; 3(8): 1255-1266, 2019 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-30987970

RESUMO

Prostate apoptosis response 4 (Par-4) is a tumor suppressor that prevents proliferation and induces cell death in several solid tumors. However, its role in B-cell malignancies has not been elucidated. To describe the role of Par-4 in chronic lymphocytic leukemia (CLL) pathogenesis, we developed a B-cell-specific human Par-4-overexpressing mouse model of CLL using the TCL1 leukemia model. While Par-4 transgenic mice did not display any obvious defects in B-cell development or function, disease burden as evidenced by abundance of CD19+CD5+ B cells in the peripheral blood was significantly reduced in Par-4 × TCL1 mice compared with TCL1 littermates. This conferred a survival advantage on the Par-4-overexpressing mice. In addition, a B-cell-specific knockout model displayed the opposite effect, where lack of Par-4 expression resulted in accelerated disease progression and abbreviated survival in the TCL1 model. Histological and flow cytometry-based analysis of spleen and bone marrow upon euthanasia revealed comparable levels of malignant B-cell infiltration in Par-4 × TCL1 and TCL1 individuals, indicating delayed but pathologically normal disease progression in Par-4 × TCL1 mice. In vivo analysis of splenic B-cell proliferation by 5-ethynyl-2-deoxyuridine incorporation indicated >50% decreased expansion of CD19+CD5+ cells in Par-4 × TCL1 mice compared with TCL1 littermates. Moreover, reduced nuclear p65 levels were observed in Par-4 × TCL1 splenic B cells compared with TCL1, suggesting suppressed NF-κB signaling. These findings have identified an in vivo antileukemic role for Par-4 through an NF-κB-dependent mechanism in TCL1-mediated CLL-like disease progression.


Assuntos
Proteínas Reguladoras de Apoptose/biossíntese , Carcinogênese/metabolismo , Leucemia Linfocítica Crônica de Células B/metabolismo , Neoplasias Experimentais/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Transdução de Sinais , Proteínas Supressoras de Tumor/metabolismo , Animais , Carcinogênese/genética , Humanos , Leucemia Linfocítica Crônica de Células B/genética , Leucemia Linfocítica Crônica de Células B/patologia , Camundongos , Camundongos Transgênicos , Neoplasias Experimentais/genética , Neoplasias Experimentais/patologia , Proteínas Proto-Oncogênicas/genética , Proteínas Supressoras de Tumor/genética
18.
J Clin Invest ; 129(1): 122-136, 2019 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-30457982

RESUMO

Targeted therapy with small molecules directed at essential survival pathways in leukemia represents a major advance, including the phosphatidylinositol-3'-kinase (PI3K) p110δ inhibitor idelalisib. Here, we found that genetic inactivation of p110δ (p110δD910A/D910A) in the Eµ-TCL1 murine chronic lymphocytic leukemia (CLL) model impaired B cell receptor signaling and B cell migration, and significantly delayed leukemia pathogenesis. Regardless of TCL1 expression, p110δ inactivation led to rectal prolapse in mice resembling autoimmune colitis in patients receiving idelalisib. Moreover, we showed that p110δ inactivation in the microenvironment protected against CLL and acute myeloid leukemia. After receiving higher numbers of TCL1 leukemia cells, half of p110δD910A/D910A mice spontaneously recovered from high disease burden and resisted leukemia rechallenge. Despite disease resistance, p110δD910A/D910A mice exhibited compromised CD4+ and CD8+ T cell response, and depletion of CD4+ or CD8+ T cells restored leukemia. Interestingly, p110δD910A/D910A mice showed significantly impaired Treg expansion that associated with disease clearance. Reconstitution of p110δD910A/D910A mice with p110δWT/WT Tregs reversed leukemia resistance. Our findings suggest that p110δ inhibitors may have direct antileukemic and indirect immune-activating effects, further supporting that p110δ blockade may have a broader immune-modulatory role in types of leukemia that are not sensitive to p110δ inhibition.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Classe I de Fosfatidilinositol 3-Quinases/imunologia , Tolerância Imunológica , Leucemia Linfoide/imunologia , Mutação de Sentido Incorreto , Neoplasias Experimentais/imunologia , Linfócitos T Reguladores/imunologia , Substituição de Aminoácidos , Animais , Linfócitos T CD8-Positivos/patologia , Classe I de Fosfatidilinositol 3-Quinases/genética , Ativação Enzimática/genética , Ativação Enzimática/imunologia , Leucemia Linfoide/genética , Leucemia Linfoide/patologia , Leucemia Linfoide/terapia , Camundongos , Camundongos Transgênicos , Neoplasias Experimentais/genética , Neoplasias Experimentais/patologia , Neoplasias Experimentais/terapia , Linfócitos T Reguladores/patologia
19.
Leuk Lymphoma ; 60(10): 2498-2507, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-30821551

RESUMO

Mantle cell lymphoma (MCL) is an aggressive B-cell malignancy for which novel therapeutics with improved efficacy are greatly needed. To provide support for clinical immune checkpoint blockade, we comprehensively evaluated the expression of therapeutically targetable immune checkpoint molecules on primary MCL cells. MCL cells showed constitutive expression of Programmed Death 1 (PD-1) and Programmed Death Ligand 1 (PD-L1), variable CD200, absent PD-L2, Lymphocyte Activation Gene 3 (LAG-3), and Cytotoxic T-cell Associated Protein 4 (CTLA-4). Effector cells from MCL patients expressed PD-1. Co-culture of MCL cells with T-cells induced PD-L1 surface expression, a phenomenon regulated by IFNγ and CD40:CD40L interaction. Induction of PD-L1 was attenuated by concurrent treatment with ibrutinib or duvelisib, suggesting BTK and PI3K are important mediators of PD-L1 expression. Overall, our data provide further insight into the expression of checkpoint molecules in MCL and support the use of PD-L1 blocking antibodies in MCL patients.


Assuntos
Biomarcadores Tumorais , Regulação Neoplásica da Expressão Gênica , Linfoma de Célula do Manto/genética , Antígeno B7-H1/genética , Antígeno CTLA-4/genética , Humanos , Linfoma de Célula do Manto/imunologia , Linfoma de Célula do Manto/metabolismo , Receptor de Morte Celular Programada 1/genética , Receptores de Antígenos de Linfócitos B/metabolismo , Transdução de Sinais , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Transcrição Gênica
20.
Clin Cancer Res ; 25(20): 6260-6273, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31296529

RESUMO

PURPOSE: Aberrant Myc expression is a major factor in the pathogenesis of aggressive lymphoma, and these lymphomas, while clinically heterogeneous, often are resistant to currently available treatments and have poor survival. Myc expression can also be seen in aggressive lymphomas that are observed in the context of CLL, and we sought to develop a mouse model that could be used to study therapeutic strategies for aggressive lymphoma in the context of CLL. EXPERIMENTAL DESIGN: We crossed the Eµ-TCL1 mouse model with the Eµ-Myc mouse model to investigate the clinical phenotype associated with B-cell-restricted expression of these oncogenes. The resulting malignancy was then extensively characterized, from both a clinical and biologic perspective. RESULTS: Eµ-TCL1xMyc mice uniformly developed highly aggressive lymphoid disease with histologically, immunophenotypically, and molecularly distinct concurrent CLL and B-cell lymphoma, leading to a significantly reduced lifespan. Injection of cells from diseased Eµ-TCL1xMyc into WT mice established a disease similar to that in the double-transgenic mice. Both Eµ-TCL1xMyc mice and mice with disease after adoptive transfer failed to respond to ibrutinib. Effective and durable disease control was, however, observed by selective inhibition of nuclear export protein exportin-1 (XPO1) using a compound currently in clinical development for relapsed/refractory malignancies, including CLL and lymphoma. CONCLUSIONS: The Eµ-TCL1xMyc mouse is a new preclinical tool for testing experimental drugs for aggressive B-cell lymphoma, including in the context of CLL.


Assuntos
Leucemia Linfocítica Crônica de Células B/genética , Linfoma de Células B/genética , Neoplasias Primárias Múltiplas/genética , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas/genética , Tirosina Quinase da Agamaglobulinemia/antagonistas & inibidores , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Modelos Animais de Doenças , Resistencia a Medicamentos Antineoplásicos , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Feminino , Humanos , Carioferinas/antagonistas & inibidores , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Leucemia Linfocítica Crônica de Células B/patologia , Linfoma de Células B/tratamento farmacológico , Linfoma de Células B/patologia , Masculino , Camundongos , Camundongos Transgênicos , Neoplasias Primárias Múltiplas/patologia , Estudo de Prova de Conceito , Receptores Citoplasmáticos e Nucleares/antagonistas & inibidores , Células Tumorais Cultivadas/transplante , Proteína Exportina 1
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA