Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Nature ; 543(7643): 65-71, 2017 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-28199314

RESUMO

The diagnosis of pancreatic neuroendocrine tumours (PanNETs) is increasing owing to more sensitive detection methods, and this increase is creating challenges for clinical management. We performed whole-genome sequencing of 102 primary PanNETs and defined the genomic events that characterize their pathogenesis. Here we describe the mutational signatures they harbour, including a deficiency in G:C > T:A base excision repair due to inactivation of MUTYH, which encodes a DNA glycosylase. Clinically sporadic PanNETs contain a larger-than-expected proportion of germline mutations, including previously unreported mutations in the DNA repair genes MUTYH, CHEK2 and BRCA2. Together with mutations in MEN1 and VHL, these mutations occur in 17% of patients. Somatic mutations, including point mutations and gene fusions, were commonly found in genes involved in four main pathways: chromatin remodelling, DNA damage repair, activation of mTOR signalling (including previously undescribed EWSR1 gene fusions), and telomere maintenance. In addition, our gene expression analyses identified a subgroup of tumours associated with hypoxia and HIF signalling.


Assuntos
Carcinoma Neuroendócrino/genética , Genoma Humano/genética , Genômica , Neoplasias Pancreáticas/genética , Sequência de Bases , Proteínas de Ligação a Calmodulina/genética , Montagem e Desmontagem da Cromatina/genética , Aberrações Cromossômicas , Variações do Número de Cópias de DNA/genética , DNA Glicosilases/genética , Análise Mutacional de DNA , Reparo do DNA/genética , Feminino , Mutação em Linhagem Germinativa/genética , Humanos , Masculino , Proteína EWS de Ligação a RNA , Proteínas de Ligação a RNA/genética , Serina-Treonina Quinases TOR/metabolismo , Telômero/genética , Telômero/metabolismo
3.
Blood ; 129(18): 2479-2492, 2017 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-28270450

RESUMO

Hematopoietic stem and progenitor cells (HSPCs) are vulnerable to endogenous damage and defects in DNA repair can limit their function. The 2 single-stranded DNA (ssDNA) binding proteins SSB1 and SSB2 are crucial regulators of the DNA damage response; however, their overlapping roles during normal physiology are incompletely understood. We generated mice in which both Ssb1 and Ssb2 were constitutively or conditionally deleted. Constitutive Ssb1/Ssb2 double knockout (DKO) caused early embryonic lethality, whereas conditional Ssb1/Ssb2 double knockout (cDKO) in adult mice resulted in acute lethality due to bone marrow failure and intestinal atrophy featuring stem and progenitor cell depletion, a phenotype unexpected from the previously reported single knockout models of Ssb1 or Ssb2 Mechanistically, cDKO HSPCs showed altered replication fork dynamics, massive accumulation of DNA damage, genome-wide double-strand breaks enriched at Ssb-binding regions and CpG islands, together with the accumulation of R-loops and cytosolic ssDNA. Transcriptional profiling of cDKO HSPCs revealed the activation of p53 and interferon (IFN) pathways, which enforced cell cycling in quiescent HSPCs, resulting in their apoptotic death. The rapid cell death phenotype was reproducible in in vitro cultured cDKO-hematopoietic stem cells, which were significantly rescued by nucleotide supplementation or after depletion of p53. Collectively, Ssb1 and Ssb2 control crucial aspects of HSPC function, including proliferation and survival in vivo by resolving replicative stress to maintain genomic stability.


Assuntos
Proliferação de Células/fisiologia , Quebras de DNA de Cadeia Dupla , Instabilidade Genômica/fisiologia , Células-Tronco Hematopoéticas/metabolismo , Proteínas Supressoras da Sinalização de Citocina/metabolismo , Animais , Sobrevivência Celular/fisiologia , Ilhas de CpG/fisiologia , Células-Tronco Hematopoéticas/citologia , Camundongos , Camundongos Knockout , Proteínas Supressoras da Sinalização de Citocina/genética , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
4.
Hum Mol Genet ; 18(21): 4102-17, 2009 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-19643912

RESUMO

Aprataxin, defective in the neurodegenerative disorder ataxia oculomotor apraxia type 1 (AOA1), is a DNA repair protein that processes the product of abortive ligations, 5' adenylated DNA. In addition to its interaction with the single-strand break repair protein XRCC1, aprataxin also interacts with poly-ADP ribose polymerase 1 (PARP-1), a key player in the detection of DNA single-strand breaks. Here, we reveal reduced expression of PARP-1, apurinic endonuclease 1 (APE1) and OGG1 in AOA1 cells and demonstrate a requirement for PARP-1 in the recruitment of aprataxin to sites of DNA breaks. While inhibition of PARP activity did not affect aprataxin activity in vitro, it retarded its recruitment to sites of DNA damage in vivo. We also demonstrate the presence of elevated levels of oxidative DNA damage in AOA1 cells coupled with reduced base excision and gap filling repair efficiencies indicative of a synergy between aprataxin, PARP-1, APE-1 and OGG1 in the DNA damage response. These data support both direct and indirect modulating functions for aprataxin on base excision repair.


Assuntos
Dano ao DNA , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas Nucleares/metabolismo , Poli(ADP-Ribose) Polimerases/metabolismo , Animais , Sítios de Ligação , Linhagem Celular , Células Cultivadas , DNA Glicosilases/genética , DNA Glicosilases/metabolismo , Reparo do DNA , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/genética , Proteínas de Ligação a DNA/genética , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HeLa , Humanos , Peróxido de Hidrogênio/farmacologia , Immunoblotting , Camundongos , Camundongos Knockout , Microscopia Confocal , Proteínas Nucleares/genética , Estresse Oxidativo , Poli(ADP-Ribose) Polimerases/genética , Ligação Proteica , Mapeamento de Interação de Proteínas , Ataxias Espinocerebelares/genética , Ataxias Espinocerebelares/metabolismo , Ataxias Espinocerebelares/patologia
5.
Int J Biochem Cell Biol ; 99: 28-37, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29549047

RESUMO

BACKGROUND AND AIMS: 5T4 is a transmembrane glycoprotein with limited expression in normal adult tissues and expression in some solid tumours. It is unclear whether 5T4 is preferentially expressed by stem or differentiated cell types. Modes of 5T4 regulation are unknown despite its ongoing development as a cancer immunotherapy target. Our aims were to clarify the differentiation status of 5T4 expressing cells in breast cancer and to understand the mechanism underlying 5T4 membrane presentation. METHODS AND RESULTS: We analysed 5T4 expression in breast cancer cell populations by flow cytometery and found that 5T4 is highly expressed on differentiated cells, where it localizes to focal adhesions. Using immunoprecipitation and mass spectrometry, we identified interactions between 5T4 and the membrane trafficking proteins Rab11, Rab18 and ARF6. Mechanistically we found that Rab11 and Rab18 have oppositional roles in controlling expression and surface presentation of 5T4. 5T4 depletion stabilizes Rab11 protein expression with a consequent stimulation transferrin surface labelling, indicating that 5T4 represses endocytic activity. IMPLICATIONS: Successful immunotherapeutic targeting of 5T4 requires surface presentation and different immunotherapy strategies require surface presentation versus endocytosis. While breast cancer cells with high 5T4 surface expression and rapid cell surface turnover would be susceptible to antibody-drug conjugates that rely on intracellular release, 5T4 positive cells with lower expression or lower turnover may still be responsive to T-cell mediated approaches. We find that endocytosis of 5T4 is strongly Rab11 dependent and as such Rab11 activity could affect the success or failure of 5T4-targetted immunotherapy, particularly for antibody-drug conjugate approaches. In fact, 5T4 itself represses Rab11 expression. This newly uncovered relationship between Rab11 and 5T4 suggests that breast tumours with high 5T4 expression may not have efficient endocytic uptake of 5T4-targetted immunotherapeutics. This should be considered when selecting amongst the different types of immunotherapies.


Assuntos
Neoplasias da Mama/metabolismo , Glicoproteínas de Membrana/metabolismo , Domínios e Motivos de Interação entre Proteínas , Proteínas rab de Ligação ao GTP/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Diferenciação Celular , Membrana Celular/metabolismo , Feminino , Humanos , Glicoproteínas de Membrana/genética , Transporte Proteico , Células Tumorais Cultivadas , Proteínas rab de Ligação ao GTP/genética
6.
Methods Mol Biol ; 1599: 163-181, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28477119

RESUMO

The ATM kinase is a master regulator of the DNA damage response, and can interact with more than 700 proteins in response to DNA damage. These interactions play a critical role in fine-tuning the response of ATM to multiple cellular stressors, and can play both a positive or negative role in regulating its activity. Here, we detail using protein-protein interaction methods, including co-immunoprecipitation and Glutathione-S-transferase (GST) fusion protein pull-down assays to understand the molecular interactions of ATM. These assays give valuable functional insights into the role of ATM, as they are easy to establish within the laboratory, are not overly laborious, and are easily reproducible.


Assuntos
Glutationa Transferase/metabolismo , Dano ao DNA/genética , Humanos , Imunoprecipitação , Ligação Proteica , Fatores de Transcrição/metabolismo
7.
Mol Oncol ; 11(5): 470-490, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28173629

RESUMO

Activating KRAS mutations drive colorectal cancer tumorigenesis and influence response to anti-EGFR-targeted therapy. Despite recent advances in understanding Ras signaling biology and the revolution in therapies for melanoma using BRAF inhibitors, no targeted agents have been effective in KRAS-mutant cancers, mainly due to activation of compensatory pathways. Here, by leveraging the largest synthetic lethal genetic interactome in yeast, we identify that KRAS-mutated colorectal cancer cells have augmented homologous recombination repair (HRR) signaling. We found that KRAS mutation resulted in slowing and stalling of the replication fork and accumulation of DNA damage. Moreover, we found that KRAS-mutant HCT116 cells have an increase in MYC-mediated RAD51 expression with a corresponding increase in RAD51 recruitment to irradiation-induced DNA double-strand breaks (DSBs) compared to genetically complemented isogenic cells. MYC depletion using RNA interference significantly reduced IR-induced RAD51 foci formation and HRR. On the contrary, overexpression of either HA-tagged wild-type (WT) MYC or phospho-mutant S62A increased RAD51 protein levels and hence IR-induced RAD51 foci. Likewise, depletion of RAD51 selectively induced apoptosis in HCT116-mutant cells by increasing DSBs. Pharmacological inhibition targeting HRR signaling combined with PARP inhibition selectivity killed KRAS-mutant cells. Interestingly, these differences were not seen in a second isogenic pair of KRAS WT and mutant cells (DLD-1), likely due to their nondependency on the KRAS mutation for survival. Our data thus highlight a possible mechanism by which KRAS-mutant-dependent cells drive HRR in vitro by upregulating MYC-RAD51 expression. These data may offer a promising therapeutic vulnerability in colorectal cancer cells harboring otherwise nondruggable KRAS mutations, which warrants further investigation in vivo.


Assuntos
Neoplasias Colorretais/genética , Recombinação Homóloga , Proteínas Proto-Oncogênicas p21(ras)/genética , Rad51 Recombinase/genética , Saccharomyces cerevisiae/genética , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Neoplasias Colorretais/tratamento farmacológico , Quebras de DNA de Cadeia Dupla , Dano ao DNA , Proteínas de Ligação a DNA/genética , Relação Dose-Resposta a Droga , Receptores ErbB/genética , Células HCT116 , Humanos , Mutação , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , RNA Interferente Pequeno/genética , Rad51 Recombinase/metabolismo , Fatores de Transcrição/genética
8.
PLoS One ; 8(9): e73880, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24040105

RESUMO

The prostate cancer antigen gene 3 (PCA3) is embedded in an intron of a second gene BMCC1 (Bcl2-/adenovirus E1B nineteen kDa-interacting protein 2 (BNIP-2) and Cdc42GAP homology BCH motif-containing molecule at the carboxyl terminal region 1) which is also upregulated in prostate cancer. BMCC1 was initially annotated as two genes (C9orf65/PRUNE and BNIPXL) on either side of PCA3 but our data suggest that it represents a single gene coding for a high molecular weight protein. Here we demonstrate for the first time the expression of a >300 kDa BMCC1 protein (BMCC1-1) in prostate cancer and melanoma cell lines. This protein was found exclusively in the microsomal fraction and localised to cytoplasmic vesicles. We also observed expression of BMCC1 protein in prostate cancer sections using immunohistology. GST pull down, immunoprecipitation and mass spectrometry protein interaction studies identified multiple members of the Adaptor Related Complex 2 (AP-2) as BMCC1 interactors. Consistent with a role for BMCC1 as an AP-2 interacting endosomal protein, BMCC1 co-localised with ß-adaptin at the perinuclear region of the cell. BMCC1 also showed partial co-localisation with the early endosome small GTP-ase Rab-5 as well as strong co-localisation with internalised pulse-chase labelled transferrin (Tf), providing evidence that BMCC1 is localised to functional endocytic vesicles. BMCC1 knockdown did not affect Tf uptake and AP-2 knockdown did not disperse BMCC1 vesicular distribution, excluding an essential role for BMCC1 in canonical AP-2 mediated endocytic uptake. Instead, we posit a novel role for BMCC1 in post-endocytic trafficking. This study provides fundamental characterisation of the BMCC1 complex in prostate cancer cells and for the first time implicates it in vesicle trafficking.


Assuntos
Complexo 2 de Proteínas Adaptadoras/metabolismo , Endossomos/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias da Próstata/metabolismo , Animais , Linhagem Celular Tumoral , Expressão Gênica , Humanos , Masculino , Camundongos , Proteínas de Neoplasias/genética , Especificidade de Órgãos/genética , Neoplasias da Próstata/genética , Ligação Proteica , Mapeamento de Interação de Proteínas , Transporte Proteico , Vesículas Transportadoras/metabolismo
10.
J Biol Chem ; 281(20): 13939-48, 2006 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-16547001

RESUMO

Ataxia with oculomotor apraxia type 1 (AOA1) is an early onset autosomal recessive spinocerebellar ataxia with a defect in the protein Aprataxin, implicated in the response of cells to DNA damage. We describe here the expression of a recombinant form of Aprataxin and show that it has dual DNA binding and nucleotide hydrolase activities. This protein binds to double-stranded DNA with high affinity but is also capable of binding double-stranded RNA and single-strand DNA, with increased affinity for hairpin structures. No increased binding was observed with a variety of DNA structures mimicking intermediates in DNA repair. The DNA binding observed here was not dependent on zinc, and the addition of exogenous zinc abolished DNA binding. We also demonstrate that Aprataxin hydrolyzes with similar efficiency the model histidine triad nucleotide-binding protein substrate, AMPNH2, and the Fragile histidine triad protein substrate, Ap4A. These activities were significantly reduced in the presence of duplex DNA and to a lesser extent in the presence of single-strand DNA, and removal of the N-terminal Forkhead associated domain did not alter activity. Finally, comparison of sequence relationships between the histidine triad superfamily members shows that Aprataxin forms a distinct branch in this superfamily. In addition to its capacity for nucleotide binding and hydrolysis, the observation that it also binds DNA and RNA adds a new dimension to this superfamily of proteins and provides further support for a role for Aprataxin in the cellular response to DNA damage.


Assuntos
Proteínas de Ligação a DNA/fisiologia , Histidina/química , Hidrolases/metabolismo , Proteínas Nucleares/fisiologia , DNA/química , Reparo do DNA , DNA de Cadeia Simples/química , Proteínas de Ligação a DNA/metabolismo , Fosfatos de Dinucleosídeos/química , Humanos , Hidrolases/química , Proteínas Nucleares/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , RNA/química , RNA de Cadeia Dupla/química , Proteínas Recombinantes/química , Saccharomyces cerevisiae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA