Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 187(10): 2536-2556.e30, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38653237

RESUMO

Cysteine-focused chemical proteomic platforms have accelerated the clinical development of covalent inhibitors for a wide range of targets in cancer. However, how different oncogenic contexts influence cysteine targeting remains unknown. To address this question, we have developed "DrugMap," an atlas of cysteine ligandability compiled across 416 cancer cell lines. We unexpectedly find that cysteine ligandability varies across cancer cell lines, and we attribute this to differences in cellular redox states, protein conformational changes, and genetic mutations. Leveraging these findings, we identify actionable cysteines in NF-κB1 and SOX10 and develop corresponding covalent ligands that block the activity of these transcription factors. We demonstrate that the NF-κB1 probe blocks DNA binding, whereas the SOX10 ligand increases SOX10-SOX10 interactions and disrupts melanoma transcriptional signaling. Our findings reveal heterogeneity in cysteine ligandability across cancers, pinpoint cell-intrinsic features driving cysteine targeting, and illustrate the use of covalent probes to disrupt oncogenic transcription-factor activity.


Assuntos
Cisteína , Neoplasias , Animais , Humanos , Camundongos , Linhagem Celular Tumoral , Cisteína/metabolismo , Cisteína/química , Ligantes , Melanoma/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , NF-kappa B/química , NF-kappa B/metabolismo , Oxirredução , Transdução de Sinais , Fatores de Transcrição SOXE/química , Fatores de Transcrição SOXE/metabolismo
2.
Bioorg Med Chem Lett ; 102: 129676, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38408512

RESUMO

Synthesis of proteolysis targeting chimeras (PROTACs) involves conjugation of an E3 ligase binding ligand to a ligand targeting a protein of interest via a rigid or flexible chemical linker. The choice of linker conjugation site on these ligands can be informed by structural analysis of ligand-target binding modes, the feasibility of synthetic procedures to access specific sites, and computational modeling of predicted ternary complex formations. Small molecules that target bromodomains - epigenetic readers of lysine acetylation - typically offer several potential options for linker conjugation sites. Here we describe how varying the linker attachment site (exit vector) on a CBP/p300 bromodomain ligand along with linker length affects PROTAC degradation activity and ternary complex formation. Using kinetic live cell assays of endogenous CBP and p300 protein abundance and bead-based proximity assays for ternary complexes, we describe the structure-activity relationships of a diverse library of CBP/p300 degraders (dCBPs).


Assuntos
Proteínas , Ubiquitina-Proteína Ligases , Ligantes , Domínios Proteicos , Ligação Proteica , Relação Estrutura-Atividade , Proteólise
3.
Biol Sport ; 41(3): 153-168, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38952917

RESUMO

The aim of this study is to determine the acute effects of resistance and plyometric training on sprint and change of direction (COD) performance in healthy adults and adolescents. A systematic literature search was conducted via Medline, Cinahl, Scopus and SportDiscus databases for studies that investigated: 1) healthy male, female adults, or adolescents; and 2) measured sprint or change of direction performance following resistance and plyometric exercises. Studies were excluded if: 1) resistance or plyometric exercises was not used to induce muscle damage; 2) conducted in animals, infants, elderly; 3) sprint performance and/or agility performance was not measured 24 h post muscle damaging protocol. Study appraisal was completed using the Kmet Quality Scoring for Quantitative Study tool. Forest plots were generated to quantitatively analyse data and report study statistics for statistical significance and heterogeneity. The included studies (n = 20) revealed sprint and COD performance was significantly impaired up to 72 hr following resistance and plyometric exercises; both protocols significantly increased creatine kinase (CK), delayed-onset muscle soreness (DOMS) and decreased countermovement jump (CMJ) up to 72 hr. The systematic review of 20 studies indicated that resistance and plyometric training significantly impaired sprint and COD performance up to 72 hours post-exercise. Both training protocols elevated exercise-induced muscle damage (EIMD) markers (CK, DOMS) and decreased CMJ performance within the same timeframe.

4.
bioRxiv ; 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38952800

RESUMO

Cyclin-dependent kinase 9 (CDK9) coordinates signaling events that regulate RNA polymerase II (Pol II) pause-release states. It is an important co-factor for transcription factors, such as MYC, that drive aberrant cell proliferation when their expression is deregulated. CDK9 modulation offers an approach for attenuating dysregulation in such transcriptional programs. As a result, numerous drug development campaigns to inhibit CDK9 kinase activity have been pursued. More recently, targeted degradation has emerged as an attractive approach. However, comprehensive evaluation of degradation versus inhibition is still critically needed to assess the biological contexts in which degradation might offer superior therapeutic benefits. We validated that CDK9 inhibition triggers a compensatory mechanism that dampens its effect on MYC expression and found that this feedback mechanism was absent when the kinase is degraded. Importantly, CDK9 degradation is more effective than its inhibition for disrupting MYC transcriptional regulatory circuitry likely through the abrogation of both enzymatic and scaffolding functions of CDK9. Highlights: - KI-CDK9d-32 is a highly potent and selective CDK9 degrader. - KI-CDK9d-32 leads to rapid downregulation of MYC protein and mRNA transcripts levels. - KI-CDK9d-32 represses canonical MYC pathways and leads to a destabilization of nucleolar homeostasis. - Multidrug resistance ABCB1 gene emerged as the strongest resistance marker for the CDK9 PROTAC degrader.

5.
bioRxiv ; 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37961514

RESUMO

Cysteine-focused chemical proteomic platforms have accelerated the clinical development of covalent inhibitors of a wide-range of targets in cancer. However, how different oncogenic contexts influence cysteine targeting remains unknown. To address this question, we have developed DrugMap , an atlas of cysteine ligandability compiled across 416 cancer cell lines. We unexpectedly find that cysteine ligandability varies across cancer cell lines, and we attribute this to differences in cellular redox states, protein conformational changes, and genetic mutations. Leveraging these findings, we identify actionable cysteines in NFκB1 and SOX10 and develop corresponding covalent ligands that block the activity of these transcription factors. We demonstrate that the NFκB1 probe blocks DNA binding, whereas the SOX10 ligand increases SOX10-SOX10 interactions and disrupts melanoma transcriptional signaling. Our findings reveal heterogeneity in cysteine ligandability across cancers, pinpoint cell-intrinsic features driving cysteine targeting, and illustrate the use of covalent probes to disrupt oncogenic transcription factor activity.

6.
Sports (Basel) ; 10(9)2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-36136381

RESUMO

To examine the repeated bout effect (RBE) following two identical resistance bouts and its effect on bowling-specific performance in male cricketers. Male cricket pace bowlers (N = 10), who had not undertaken resistance exercises in the past six months, were invited to complete a familiarisation and resistance maximum testing, before participating in the study protocol. The study protocol involved the collection of muscle damage markers, a battery of anaerobic (jump and sprint), and a bowling-specific performance test at baseline, followed by a resistance training bout, and a retest of physical and bowling-specific performance at 24 h (T24) and 48 h (T48) post-training. The study protocol was repeated 7-10 days thereafter. Indirect markers of muscle damage were lower (creatine kinase: 318.7 ± 164.3 U·L-1; muscle soreness: 3 ± 1), whilst drop jump was improved (~47.5 ± 8.1 cm) following the second resistance training bout when compared to the first resistance training bout (creatine kinase: 550.9 ± 242.3 U·L-1; muscle soreness: 4 ± 2; drop jump: ~43.0 ± 9.7 cm). However, sport-specific performance via bowling speed declined (Bout 1: -2.55 ± 3.43%; Bout 2: 2.67 ± 2.41%) whilst run-up time increased (2.34 ± 3.61%; Bout 2: 3.84 ± 4.06%) after each bout of resistance training. Findings suggest that while an initial resistance training bout reduced muscle damage indicators and improved drop jump performance following a second resistance training bout, this RBE trend was not observed for bowling-specific performance. It was suggested that pace bowlers with limited exposure to resistance training should minimise bowling-specific practice for 1-2 days following the initial bouts of their resistance training program.

7.
Sports (Basel) ; 9(7)2021 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-34357937

RESUMO

The current study examined the acute effects of a bout of resistance training on cricket bowling-specific motor performance. Eight sub-elite, resistance-untrained, adolescent male fast bowlers (age 15 ± 1.7 years; height 1.8 ± 0.1 m; weight 67.9 ± 7.9 kg) completed a bout of upper and lower body resistance exercises. Indirect markers of muscle damage (creatine kinase [CK] and delayed onset of muscle soreness [DOMS]), anaerobic performance (15-m sprint and vertical jump), and cricket-specific motor performance (ball speed, run-up time, and accuracy) were measured prior to and 24 (T24) and 48 (T48) hours following the resistance training bout. The resistance training bout significantly increased CK (~350%; effect size [ES] = 1.89-2.24), DOMS (~240%; ES = 1.46-3.77) and 15-m sprint times (~4.0%; ES = 1.33-1.47), whilst significantly reducing vertical jump height (~7.0%; ES = 0.76-0.96) for up to 48 h. The ball speed (~3.0%; ES = 0.50-0.61) and bowling accuracy (~79%; ES = 0.39-0.70) were significantly reduced, whilst run-up time was significantly increased (~3.5%; ES = 0.36-0.50) for up to 24 h. These findings demonstrate that a bout of resistance training evokes exercise-induced muscle damage amongst sub-elite, adolescent male cricketers, which impairs anaerobic performance and bowling-specific motor performance measures. Cricket coaches should be cautious of incorporating bowling sessions within 24-h following a bout of resistance training for sub-elite adolescent fast bowlers, particularly for those commencing a resistance training program.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA