Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Genet ; 20(6): e1011127, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38829907

RESUMO

The cell envelope fortifies bacterial cells against antibiotics and other insults. Species in the Mycobacteriales order have a complex envelope that includes an outer layer of mycolic acids called the mycomembrane (MM) and a cell wall composed of peptidoglycan and arabinogalactan. This envelope architecture is unique among bacteria and contributes significantly to the virulence of pathogenic Mycobacteriales like Mycobacterium tuberculosis. Characterization of pathways that govern envelope biogenesis in these organisms is therefore critical in understanding their biology and for identifying new antibiotic targets. To better understand MM biogenesis, we developed a cell sorting-based screen for mutants defective in the surface exposure of a porin normally embedded in the MM of the model organism Corynebacterium glutamicum. The results revealed a requirement for the conserved σD envelope stress response in porin export and identified MarP as the site-1 protease, respectively, that activate the response by cleaving the membrane-embedded anti-sigma factor. A reporter system revealed that the σD pathway responds to defects in mycolic acid and arabinogalactan biosynthesis, suggesting that the stress response has the unusual property of being induced by activating signals that arise from defects in the assembly of two distinct envelope layers. Our results thus provide new insights into how C. glutamicum and related bacteria monitor envelope integrity and suggest a potential role for members of the σD regulon in protein export to the MM.


Assuntos
Membrana Celular , Parede Celular , Corynebacterium glutamicum , Ácidos Micólicos , Fator sigma , Parede Celular/metabolismo , Parede Celular/genética , Corynebacterium glutamicum/genética , Corynebacterium glutamicum/metabolismo , Ácidos Micólicos/metabolismo , Fator sigma/metabolismo , Fator sigma/genética , Membrana Celular/metabolismo , Estresse Fisiológico , Porinas/metabolismo , Porinas/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Galactanos/metabolismo , Regulação Bacteriana da Expressão Gênica , Peptidoglicano/metabolismo
2.
J Am Chem Soc ; 146(17): 12138-12154, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38635392

RESUMO

Protein lipidation dynamically controls protein localization and function within cellular membranes. A unique form of protein O-fatty acylation in Corynebacterium, termed protein O-mycoloylation, involves the attachment of mycolic acids─unusually large and hydrophobic fatty acids─to serine residues of proteins in these organisms' outer mycomembrane. However, as with other forms of protein lipidation, the scope and functional consequences of protein O-mycoloylation are challenging to investigate due to the inherent difficulties of enriching and analyzing lipidated peptides. To facilitate the analysis of protein lipidation and enable the comprehensive profiling and site mapping of protein O-mycoloylation, we developed a chemical proteomics strategy integrating metabolic labeling, click chemistry, cleavable linkers, and a novel liquid chromatography-tandem mass spectrometry (LC-MS/MS) method employing LC separation and complementary fragmentation methods tailored to the analysis of lipophilic, MS-labile O-acylated peptides. Using these tools in the model organism Corynebacterium glutamicum, we identified approximately 30 candidate O-mycoloylated proteins, including porins, mycoloyltransferases, secreted hydrolases, and other proteins with cell envelope-related functions─consistent with a role for O-mycoloylation in targeting proteins to the mycomembrane. Site mapping revealed that many of the proteins contained multiple spatially proximal modification sites, which occurred predominantly at serine residues surrounded by conformationally flexible peptide motifs. Overall, this study (i) discloses the putative protein O-mycoloylome for the first time, (ii) yields new insights into the undercharacterized proteome of the mycomembrane, which is a hallmark of important pathogens (e.g., Corynebacterium diphtheriae, Mycobacterium tuberculosis), and (iii) provides generally applicable chemical strategies for the proteomic analysis of protein lipidation.


Assuntos
Proteínas de Bactérias , Corynebacterium glutamicum , Proteômica , Proteômica/métodos , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Corynebacterium glutamicum/metabolismo , Corynebacterium glutamicum/química , Ácidos Micólicos/metabolismo , Ácidos Micólicos/química , Espectrometria de Massas em Tandem , Cromatografia Líquida , Acilação , Química Click
3.
Proc Natl Acad Sci U S A ; 118(32)2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34349021

RESUMO

The regulator of capsule synthesis (Rcs) is a complex signaling cascade that monitors gram-negative cell envelope integrity. The outer membrane (OM) lipoprotein RcsF is the sensory component, but how RcsF functions remains elusive. RcsF interacts with the ß-barrel assembly machinery (Bam) complex, which assembles RcsF in complex with OM proteins (OMPs), resulting in RcsF's partial cell surface exposure. Elucidating whether RcsF/Bam or RcsF/OMP interactions are important for its sensing function is challenging because the Bam complex is essential, and partial loss-of-function mutations broadly compromise the OM biogenesis. Our recent discovery that, in the absence of nonessential component BamE, RcsF inhibits function of the central component BamA provided a genetic tool to select mutations that specifically prevent RcsF/BamA interactions. We employed a high-throughput suppressor screen to isolate a collection of such rcsF and bamA mutants and characterized their impact on RcsF/OMP assembly and Rcs signaling. Using these mutants and BamA inhibitors MRL-494L and darobactin, we provide multiple lines of evidence against the model in which RcsF senses Bam complex function. We show that Rcs activation in bam mutants results from secondary OM and lipopolysaccharide defects and that RcsF/OMP assembly is required for this activation, supporting an active role of RcsF/OMP complexes in sensing OM stress.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Complexos Multiproteicos/metabolismo , Cápsulas Bacterianas/metabolismo , Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/genética , Proteínas de Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Genes Supressores , Ensaios de Triagem em Larga Escala , Lipopolissacarídeos/metabolismo , Complexos Multiproteicos/genética , Mutação , Fenilpropionatos/farmacologia
4.
Proc Natl Acad Sci U S A ; 117(31): 18737-18743, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32675245

RESUMO

The outer membrane (OM) of gram-negative bacteria confers innate resistance to toxins and antibiotics. Integral ß-barrel outer membrane proteins (OMPs) function to establish and maintain the selective permeability of the OM. OMPs are assembled into the OM by the ß-barrel assembly machine (BAM), which is composed of one OMP-BamA-and four lipoproteins-BamB, C, D, and E. BamB, C, and E can be removed individually with only minor effects on barrier function; however, depletion of either BamA or BamD causes a global defect in OMP assembly and results in cell death. We have identified a gain-of-function mutation, bamAE470K , that bypasses the requirement for BamD. Although bamD::kan bamAE470K cells exhibit growth and OM barrier defects, they assemble OMPs with surprising robustness. Our results demonstrate that BamD does not play a catalytic role in OMP assembly, but rather functions to regulate the activity of BamA.


Assuntos
Proteínas da Membrana Bacteriana Externa , Membrana Externa Bacteriana , Proteínas de Escherichia coli , Mutação com Ganho de Função/genética , Membrana Externa Bacteriana/química , Membrana Externa Bacteriana/metabolismo , Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Escherichia coli/química , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo
5.
Proc Natl Acad Sci U S A ; 116(43): 21748-21757, 2019 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-31591200

RESUMO

The development of new antimicrobial drugs is a priority to combat the increasing spread of multidrug-resistant bacteria. This development is especially problematic in gram-negative bacteria due to the outer membrane (OM) permeability barrier and multidrug efflux pumps. Therefore, we screened for compounds that target essential, nonredundant, surface-exposed processes in gram-negative bacteria. We identified a compound, MRL-494, that inhibits assembly of OM proteins (OMPs) by the ß-barrel assembly machine (BAM complex). The BAM complex contains one essential surface-exposed protein, BamA. We constructed a bamA mutagenesis library, screened for resistance to MRL-494, and identified the mutation bamAE470K BamAE470K restores OMP biogenesis in the presence of MRL-494. The mutant protein has both altered conformation and activity, suggesting it could either inhibit MRL-494 binding or allow BamA to function in the presence of MRL-494. By cellular thermal shift assay (CETSA), we determined that MRL-494 stabilizes BamA and BamAE470K from thermally induced aggregation, indicating direct or proximal binding to both BamA and BamAE470K Thus, it is the altered activity of BamAE470K responsible for resistance to MRL-494. Strikingly, MRL-494 possesses a second mechanism of action that kills gram-positive organisms. In microbes lacking an OM, MRL-494 lethally disrupts the cytoplasmic membrane. We suggest that the compound cannot disrupt the cytoplasmic membrane of gram-negative bacteria because it cannot penetrate the OM. Instead, MRL-494 inhibits OMP biogenesis from outside the OM by targeting BamA. The identification of a small molecule that inhibits OMP biogenesis at the cell surface represents a distinct class of antibacterial agents.


Assuntos
Antibacterianos/farmacologia , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Escherichia coli/antagonistas & inibidores , Escherichia coli/efeitos dos fármacos , Multimerização Proteica/efeitos dos fármacos , Triazinas/farmacologia , Proteínas da Membrana Bacteriana Externa/antagonistas & inibidores , Proteínas da Membrana Bacteriana Externa/genética , Transporte Biológico/fisiologia , Membrana Celular/efeitos dos fármacos , Permeabilidade da Membrana Celular/fisiologia , Avaliação Pré-Clínica de Medicamentos , Farmacorresistência Bacteriana/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Testes de Sensibilidade Microbiana
6.
Support Care Cancer ; 29(10): 6069-6077, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33788005

RESUMO

PURPOSE: The COVID-19 pandemic has exacerbated cancer treatment disparities, including accessibility to resources. We describe the process and outcomes of a new proactive, virtual nurse-led, resource center navigation model enhanced by using volunteer patient navigators. Using known patient risk factors, this model provides interventions to reduce barriers to care, with an emphasis on non-English-speaking populations. METHODS: Patients were included if they (1) were in active cancer treatment and (2) had one or more known risk factors: distance from cancer hospital, needing complex care, 65 years or older, malignant hematological diagnosis, new treatment start, lives alone, non-English speaker, or a new hospital discharge. Nurse navigators triaged referrals to appropriate team members who identified and addressed barriers to care. RESULTS: The program engaged with 586 adult cancer patients over 1459 encounters. The most common risk factors included distance (59.7%), complex care (48.8%), and new treatment start (43.5%). The most common interventions were core education (69.4%), emotional support (61.2%), and education (35.7%). Statistical differences were found between Spanish-speaking (n = 118) and non-Spanish-speaking patients (n = 468). While Spanish-speaking patients had fewer risk factors (1.95 vs. 2.80, p ≤ .0001), they had nearly double the number of visits (4.27 vs. 2.04, p ≤ .0001) and 69% more interventions (8.26 vs. 4.90, p ≤ .0001). Many patients (42.7%) required follow-up visits. CONCLUSION: We successfully established a new navigation model for the resource center during the pandemic that identified and reduced barriers to care, particularly in the Spanish-speaking population.


Assuntos
COVID-19 , Neoplasias , Navegação de Pacientes , Adulto , Humanos , Neoplasias/epidemiologia , Neoplasias/terapia , Pandemias , Fatores de Risco , SARS-CoV-2
7.
Proc Natl Acad Sci U S A ; 115(10): 2359-2364, 2018 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-29463713

RESUMO

The ß-barrel assembly machine (Bam) complex folds and inserts integral membrane proteins into the outer membrane of Gram-negative bacteria. The two essential components of the complex, BamA and BamD, both interact with substrates, but how the two coordinate with each other during assembly is not clear. To elucidate aspects of this process we slowed the assembly of an essential ß-barrel substrate of the Bam complex, LptD, by changing a conserved residue near the C terminus. This defective substrate is recruited to the Bam complex via BamD but is unable to integrate into the membrane efficiently. Changes in the extracellular loops of BamA partially restore assembly kinetics, implying that BamA fails to engage this defective substrate. We conclude that substrate binding to BamD activates BamA by regulating extracellular loop interactions for folding and membrane integration.


Assuntos
Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Proteínas da Membrana Bacteriana Externa/genética , Proteínas de Escherichia coli/genética , Cinética , Modelos Moleculares , Periplasma/química , Periplasma/metabolismo , Ligação Proteica , Conformação Proteica , Dobramento de Proteína
8.
J Bacteriol ; 202(21)2020 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-32817097

RESUMO

The heteropentomeric ß-barrel assembly machine (BAM complex) is responsible for folding and inserting a diverse array of ß-barrel outer membrane proteins (OMPs) into the outer membrane (OM) of Gram-negative bacteria. The BAM complex contains two essential proteins, the ß-barrel OMP BamA and a lipoprotein BamD, whereas the auxiliary lipoproteins BamBCE are individually nonessential. Here, we identify and characterize three bamA mutations, the E-to-K change at position 470 (bamAE470K ), the A-to-P change at position 496 (bamAA496P ), and the A-to-S change at position 499 (bamAA499S ), that suppress the otherwise lethal ΔbamD, ΔbamB ΔbamC ΔbamE, and ΔbamC ΔbamD ΔbamE mutations. The viability of cells lacking different combinations of BAM complex lipoproteins provides the opportunity to examine the role of the individual proteins in OMP assembly. Results show that, in wild-type cells, BamBCE share a redundant function; at least one of these lipoproteins must be present to allow BamD to coordinate productively with BamA. Besides BamA regulation, BamD shares an additional essential function that is redundant with a second function of BamB. Remarkably, bamAE470K suppresses both, allowing the construction of a BAM complex composed solely of BamAE470K that is able to assemble OMPs in the absence of BamBCDE. This work demonstrates that the BAM complex lipoproteins do not participate in the catalytic folding of OMP substrates but rather function to increase the efficiency of the assembly process by coordinating and regulating the assembly of diverse OMP substrates.IMPORTANCE The folding and insertion of ß-barrel outer membrane proteins (OMPs) are conserved processes in mitochondria, chloroplasts, and Gram-negative bacteria. In Gram-negative bacteria, OMPs are assembled into the outer membrane (OM) by the heteropentomeric ß-barrel assembly machine (BAM complex). In this study, we probe the function of the individual BAM proteins and how they coordinate assembly of a diverse family of OMPs. Furthermore, we identify a gain-of-function bamA mutant capable of assembling OMPs independently of all four other BAM proteins. This work advances our understanding of OMP assembly and sheds light on how this process is distinct in Gram-negative bacteria.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Lipoproteínas/metabolismo , Proteínas da Membrana Bacteriana Externa/genética , Proteínas de Escherichia coli/genética , Lipoproteínas/genética , Mutação , Dobramento de Proteína , Multimerização Proteica
9.
J Bacteriol ; 201(11)2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30858299

RESUMO

The Gram-negative outer membrane (OM) is a selectively permeable asymmetric bilayer that allows vital nutrients to diffuse into the cell but prevents toxins and hydrophobic molecules from entering. Functionally and structurally diverse ß-barrel outer membrane proteins (OMPs) build and maintain the permeability barrier, making the assembly of OMPs crucial for cell viability. In this work, we characterize an assembly-defective mutant of the maltoporin LamB, LamBG439D We show that the folding defect of LamBG439D results in an accumulation of unfolded substrate that is toxic to the cell when the periplasmic protease DegP is removed. Selection for suppressors of this toxicity identified the novel mutant degSA323E allele. The mutant DegSA323E protein contains an amino acid substitution at the PDZ/protease domain interface that results in a partially activated conformation of this protein. This activation increases basal levels of downstream σE stress response signaling. Furthermore, the enhanced σE activity of DegSA323E suppresses a number of other assembly-defective conditions without exhibiting the toxicity associated with high levels of σE activity. We propose that the increased basal levels of σE signaling primes the cell to respond to envelope stress before OMP assembly defects threaten cell viability. This finding addresses the importance of envelope stress responses in monitoring the OMP assembly process and underpins the critical balance between envelope defects and stress response activation.IMPORTANCE Gram-negative bacteria, such as Escherichia coli, inhabit a natural environment that is prone to flux. In order to cope with shifting growth conditions and the changing availability of nutrients, cells must be capable of quickly responding to stress. Stress response pathways allow cells to rapidly shift gene expression profiles to ensure survival in this unpredictable environment. Here we describe a mutant that partially activates the σE stress response pathway. The elevated basal level of this stress response allows the cell to quickly respond to overwhelming stress to ensure cell survival.


Assuntos
Proteínas da Membrana Bacteriana Externa/genética , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Proteínas de Choque Térmico/genética , Proteínas Periplásmicas/genética , Porinas/genética , Receptores Virais/genética , Serina Endopeptidases/genética , Fator sigma/genética , Adaptação Fisiológica/genética , Substituição de Aminoácidos , Proteínas da Membrana Bacteriana Externa/química , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Proteínas de Choque Térmico/deficiência , Viabilidade Microbiana , Modelos Moleculares , Mutação , Periplasma/genética , Periplasma/metabolismo , Porinas/química , Porinas/deficiência , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Receptores Virais/química , Receptores Virais/deficiência , Serina Endopeptidases/deficiência , Fator sigma/metabolismo , Transdução de Sinais , Estresse Fisiológico
10.
Br J Nurs ; 28(6): 362-368, 2019 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-30925245

RESUMO

BACKGROUND:: over the past 10 years higher education institutions (HEIs) have redeveloped their nursing courses so that students follow a degree-level programme. The curriculum requires 50% of the total learning hours to be clinically based. This includes placements within the final year to assess management skills. AIMS:: this study focuses on exploring retrospective experiences of learning and support within the final placements, as reflected upon by newly qualified nurses in one trust. METHOD:: phenomenological one-to-one interviews were used, and data were analysed using Colaizzi's method. FINDINGS:: the study found a positive experience of placements. The level of support final-placement students experienced was found to be dependent on staffing levels, commitment from staff and their passion for teaching. Placements were found to support preparation for practice. The impact of familiarity with a trust in improving transition was also recognised. CONCLUSION:: this study recommends supporting transition through targeted placements based on employment, solid links between the HEI and trusts and increased support and teaching for students.


Assuntos
Adaptação Psicológica , Aprendizagem Baseada em Problemas , Estudantes de Enfermagem/psicologia , Local de Trabalho , Adulto , Bacharelado em Enfermagem , Inglaterra , Feminino , Humanos , Entrevistas como Assunto , Masculino , Medicina Estatal , Adulto Jovem
11.
BMC Evol Biol ; 14(1): 65, 2014 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-24678642

RESUMO

BACKGROUND: Pre-zygotic barriers often involve some form of sexual selection, usually interpreted as female choice, as females are typically the choosier sex. However, males typically show some mate preferences, which are increasingly reported. Here we document previously uncharacterized male courtship behavior (effort and song) and cuticular hydrocarbon (CHC) profiles in the hybridizing crickets Gryllus firmus and G. pennsylvanicus. These two species exhibit multiple barriers to gene exchange that act throughout their life history, including a behavioral barrier that results in increased time to mate in heterospecific pairs. RESULTS: We demonstrated that male mate choice (as courtship effort allocation) plays a more important role in the prezygotic behavioral barrier than previously recognized. In gryllids females ultimately decide whether or not to mate, yet we found males were selective by regulating courtship effort intensity toward the preferred (conspecific) females. Females were also selective by mating with more intensely courting males, which happened to be conspecifics. We report no differences in courtship song between the two species and suggest that the mechanism that allows males to act differentially towards conspecific and heterospecific females is the cuticular hydrocarbon (CHC) composition. CHC profiles differed between males and females of both species, and there were clear differences in CHC composition between female G. firmus and G. pennsylvanicus but not between the males of each species. CONCLUSION: Although many barriers to gene exchange are known in this system, the mechanism behind the mate recognition leading to reduced heterospecific mating remains unknown. The CHC profiles might be the phenotypic cue that allow males to identify conspecifics and thus to adjust their courtship intensity accordingly, leading to differential mating between species.


Assuntos
Gryllidae/fisiologia , Animais , Corte , Feminino , Gryllidae/química , Gryllidae/genética , Hibridização Genética , Hidrocarbonetos/análise , Hidrocarbonetos/metabolismo , Masculino , Preferência de Acasalamento Animal , Reprodução , Caracteres Sexuais , Vocalização Animal
12.
Nat Commun ; 15(1): 5890, 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39003262

RESUMO

Protein turnover is critical for proteostasis, but turnover quantification is challenging, and even in well-studied E. coli, proteome-wide measurements remain scarce. Here, we quantify the turnover rates of ~3200 E. coli proteins under 13 conditions by combining heavy isotope labeling with complement reporter ion quantification and find that cytoplasmic proteins are recycled when nitrogen is limited. We use knockout experiments to assign substrates to the known cytoplasmic ATP-dependent proteases. Surprisingly, none of these proteases are responsible for the observed cytoplasmic protein degradation in nitrogen limitation, suggesting that a major proteolysis pathway in E. coli remains to be discovered. Lastly, we show that protein degradation rates are generally independent of cell division rates. Thus, we present broadly applicable technology for protein turnover measurements and provide a rich resource for protein half-lives and protease substrates in E. coli, complementary to genomics data, that will allow researchers to study the control of proteostasis.


Assuntos
Citoplasma , Proteínas de Escherichia coli , Escherichia coli , Nitrogênio , Proteólise , Escherichia coli/metabolismo , Escherichia coli/genética , Nitrogênio/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Citoplasma/metabolismo , Proteoma/metabolismo , Proteostase , Proteômica/métodos , Marcação por Isótopo , Proteases Dependentes de ATP/metabolismo , Proteases Dependentes de ATP/genética
13.
Qual Health Res ; 23(9): 1188-201, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23917801

RESUMO

Colorectal cancer (CRC) is one of the most prevalent cancers worldwide, and an ideal target for early detection and prevention through cancer screening. Unfortunately, rates of participation in screening are less than adequate. In this article we explore why people who were offered a fecal immunochemical test for CRC decided to participate or not, and for those who did participate, what influenced them to take action and complete the test. We conducted four focus groups and 30 telephone interviews with 63 people. The main reason people decided to screen was "wanting to know" their CRC status, which operated on a continuum ranging from wanting to know, through varying degrees of ambivalence, to not wanting to know. The majority of participants expressed ambivalence about CRC screening, and the main cue to action was the opportunity to screen without being too inconvenienced.


Assuntos
Neoplasias Colorretais/prevenção & controle , Neoplasias Colorretais/psicologia , Detecção Precoce de Câncer/psicologia , Aceitação pelo Paciente de Cuidados de Saúde/psicologia , Idoso , Atitude Frente a Saúde , Neoplasias Colorretais/diagnóstico , Diagnóstico Precoce , Feminino , Grupos Focais , Humanos , Intenção , Entrevistas como Assunto , Masculino , Pessoa de Meia-Idade , Pesquisa Qualitativa , Fatores de Risco , Austrália do Sul
14.
Nature ; 440(7087): 1045-9, 2006 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-16625196

RESUMO

Chromosome 17 is unusual among the human chromosomes in many respects. It is the largest human autosome with orthology to only a single mouse chromosome, mapping entirely to the distal half of mouse chromosome 11. Chromosome 17 is rich in protein-coding genes, having the second highest gene density in the genome. It is also enriched in segmental duplications, ranking third in density among the autosomes. Here we report a finished sequence for human chromosome 17, as well as a structural comparison with the finished sequence for mouse chromosome 11, the first finished mouse chromosome. Comparison of the orthologous regions reveals striking differences. In contrast to the typical pattern seen in mammalian evolution, the human sequence has undergone extensive intrachromosomal rearrangement, whereas the mouse sequence has been remarkably stable. Moreover, although the human sequence has a high density of segmental duplication, the mouse sequence has a very low density. Notably, these segmental duplications correspond closely to the sites of structural rearrangement, demonstrating a link between duplication and rearrangement. Examination of the main classes of duplicated segments provides insight into the dynamics underlying expansion of chromosome-specific, low-copy repeats in the human genome.


Assuntos
Cromossomos Humanos Par 17/genética , Evolução Molecular , Animais , Composição de Bases , Duplicação Gênica , Humanos , Elementos Nucleotídeos Longos e Dispersos/genética , Camundongos , Análise de Sequência de DNA , Elementos Nucleotídeos Curtos e Dispersos/genética , Sintenia/genética
15.
Sci Rep ; 12(1): 4454, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35292703

RESUMO

With an increasing human population access to ruminant products is an important factor in global food supply. While ruminants contribute to climate change, climate change could also affect ruminant production. Here we investigated how the plant response to climate change affects forage quality and subsequent rumen fermentation. Models of near future climate change (2050) predict increases in temperature, CO2, precipitation and altered weather systems which will produce stress responses in field crops. We hypothesised that pre-exposure to altered climate conditions causes compositional changes and also primes plant cells such that their post-ingestion metabolic response to the rumen is altered. This "stress memory" effect was investigated by screening ten forage grass varieties in five differing climate scenarios, including current climate (2020), future climate (2050), or future climate plus flooding, drought or heat shock. While varietal differences in fermentation were detected in terms of gas production, there was little effect of elevated temperature or CO2 compared with controls (2020). All varieties consistently showed decreased digestibility linked to decreased methane production as a result of drought or an acute flood treatment. These results indicate that efforts to breed future forage varieties should target tolerance of acute stress rather than long term climate.


Assuntos
Mudança Climática , Poaceae , Animais , Dióxido de Carbono/metabolismo , Fermentação , Humanos , Melhoramento Vegetal , Rúmen/metabolismo , Ruminantes
16.
Semin Arthritis Rheum ; 56: 152070, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35870222

RESUMO

OBJECTIVE: To summarize proceedings of a workshop convened to discuss the current state of science in the disease of osteoarthritis (OA), identify the knowledge gaps, and examine the developmental and regulatory challenges in bringing these products to market. DESIGN: Summary of the one-day workshop held virtually on June 22nd, 2021. RESULTS: Speakers selected by the Planning Committee presented data on the current approach to assessment of OA therapies, biomarkers in OA drug development, and the assessment of disease progression and long-term benefit. CONCLUSIONS: Demonstrated by numerous failed clinical trials, OA is a challenging disease for which to develop therapeutics. The challenge is magnified by the slow time of onset of disease and the need for clinical trials of long duration and/or large sample size to demonstrate the effect of an intervention. The OA science community, including academia, pharmaceutical companies, regulatory agencies, and patient communities, must continue to develop and test better clinical endpoints that meaningfully reflect disease modification related to long-term patient benefit.


Assuntos
Osteoartrite , Biomarcadores , Progressão da Doença , Desenvolvimento de Medicamentos , Humanos , Osteoartrite/tratamento farmacológico
17.
J Med Educ Curric Dev ; 8: 23821205211035231, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34368457

RESUMO

BACKGROUND: A 1-year time-gap between first- and second-year neuroanatomy courses was created at our institution as a result of restructuring the curriculum from systems-based to an integrated format. Additionally, neuroanatomy hours decreased significantly (48.8%) when transitioning to an integrated curriculum, similar to other medical schools. Competency-based eLearning in medical education has shown promising results with decreasing overall learning time and improving accuracy. To date, competency-based eLearning has not yet been explored in neuroanatomy education. OBJECTIVE: The purpose of this study is to develop and assess a novel competency-based neuroanatomy eLearning intervention for second-year medical students designed to bridge a 1-year time-gap, without adding significant instructional hours, in an integrated curriculum. METHODS: A competency-based eLearning intervention encompassing the major tracts, brainstem anatomy, and an interactive case featuring a simulated patient experience was developed in the Articulate Storyline® platform. Student usage data, single-session course evaluations, and a focus group were used to evaluate the module's effectiveness. RESULTS: Student usage data showed an average completion time of M = 2:59:25 hours which fit within the scheduled 3-hour timeframe. Students rated the module's overall effectiveness as M = 3.65 (out of 4) on a single-session evaluation. A focus group provided qualitative feedback suggesting improvements to the eLearning module in the domains of content, mechanics, and timing. CONCLUSION: A competency-based neuroanatomy eLearning intervention shows promising initial results to bridge a 1-year educational gap within an integrated curriculum. Overall, students described this educational tool as helpful and outlined ways in which to improve this resource.

18.
J Clin Transl Sci ; 5(1): e122, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34267949

RESUMO

INTRODUCTION: Research career development awards (CDAs) facilitate development of clinician-scientists. This study compared the academic achievements of individuals in a structured institutional "pre-K" CDA program, the Mayo Clinic Kern Scholars program, with individuals who applied for but were not admitted to the Kern program ("Kern applicants"), and awardees of other unstructured internal CDAs. METHODS: This was a longitudinal cohort study of clinicians engaged in research at Mayo Clinic between 2010 and 2019. The primary outcome was time to the 15th new peer-reviewed publication after the program start, adjusted for baseline number of publications. Secondarily, we described successful awarding of federal funding by the NIH or VA. RESULTS: The median (IQR) number of baseline publications was highest among Kern Scholars compared to Kern Applicants or other CDA awardees [16 (12, 29) vs 5 (1, 11) and 8 (5, 16); P < 0.001]. After adjustment for baseline publications, the time to 15th new publication was significantly shorter for Kern Scholars than for the two comparator groups (P<0.001). Similar findings were observed with total new publications within 5 years (P < 0.001), as well as number of new first-/last-author publications within 5 years (P < 0.001). The overall frequency of K-awards, R-awards (or equivalent), or any funding were similar between groups, with the exception of R03 awards, which were significantly more common among Kern Scholars (P = 0.002). CONCLUSION: The Kern Scholars program is a successful training model for clinician-scientists that demonstrated comparatively greater acceleration of scholarly productivity than other internal CDA programs.

19.
R Soc Open Sci ; 8(8): 210666, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34457346

RESUMO

Inhibitory control training effects on behaviour (e.g. 'healthier' food choices) can be driven by changes in affective evaluations of trained stimuli, and theoretical models indicate that changes in action tendencies may be a complementary mechanism. In this preregistered study, we investigated the effects of food-specific go/no-go training on action tendencies, liking and impulsive choices in healthy participants. In the training task, energy-dense foods were assigned to one of three conditions: 100% inhibition (no-go), 0% inhibition (go) or 50% inhibition (control). Automatic action tendencies and liking were measured pre- and post-training for each condition. We found that training did not lead to changes in approach bias towards trained foods (go and no-go relative to control), but we warrant caution in interpreting this finding as there are important limitations to consider for the employed approach-avoidance task. There was only anecdotal evidence for an effect on food liking, but there was evidence for contingency learning during training, and participants were on average less likely to choose a no-go food compared to a control food after training. We discuss these findings from both a methodological and theoretical standpoint and propose that the mechanisms of action behind training effects be investigated further.

20.
BMJ Case Rep ; 13(12)2020 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-33303503

RESUMO

A man in his early 50s presented with jaundice, mild shortness of breath on exertion and dark urine. He had had coryzal symptoms 2 weeks prior to admission. Medical history included obstructive sleep apnoea and hypertension. His initial blood tests showed a mild hyperbilirubinaemia and acute kidney injury stage 1. Chest X-ray and CT pulmonary angiogram were negative for features suggestive of COVID-19. He later developed a drop in haemoglobin and repeat bloods showed markedly raised lactate dehydrogenase and positive direct antiglobulin test. These results were felt to be consistent with a haemolytic anaemia. A nasopharyngeal swab came back positive for COVID-19. We suspect the cause of his symptoms was an autoimmune haemolytic anaemia secondary to COVID-19 which has recently been described in European cohorts.


Assuntos
Anemia Hemolítica Autoimune/diagnóstico , Anemia Hemolítica Autoimune/etiologia , Teste para COVID-19 , COVID-19/diagnóstico , COVID-19/complicações , Dor no Peito/etiologia , Hemoglobinúria/etiologia , Humanos , Icterícia/etiologia , Masculino , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA