Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
J Phys Chem A ; 116(9): 2283-91, 2012 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-22296223

RESUMO

We analyze the interplay between proton transfer in the hydrogen-bond bridge, O···H···O, and lattice dynamics in the model system tetraacetylethane (TAE) (CH(3)CO)(2)CH═CH(COCH(3))(2) using density functional theory. Lattice dynamics calculations and molecular dynamics simulations are validated against neutron scattering data. Hindrance to the cooperative reorientation of neighboring methyl groups at low temperatures gives a preferred O atom for the bridging proton. The amplitude of methyl torsions becomes larger with increasing temperature, so that the free-energy minimum for the proton becomes flat over 0.2 Å. For the isolated molecule, however, we show an almost temperature-independent symmetric double-well potential persists. This difference arises from the much higher barriers to methyl torsion in the crystal that make the region of torsional phase space that is most crucial for symmetrization poorly accessible. Consequently, the proton-transfer potential remains asymmetric though flat at the base, even at room temperature in the solid.

2.
Inorg Chem ; 49(20): 9400-8, 2010 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-20839845

RESUMO

In 1906, the preparation of "molybdic acid hydrate" was published by Arthur Rosenheim. Over the past 40 years, a multitude of isostructural compounds, which exist within a wide phase range of the system MoO3−NH3−H2O, have been published. The reported molecular formulas of "hexagonal molybdenum oxide" varied from MoO3 to MoO3·0.33NH3 to MoO3·nH2O (0.09 ≤ n ≤ 0.69) to MoO3·mNH3·nH2O (0.09 ≤ m ≤ 0.20; 0.18 ≤ n ≤ 0.60). Samples, prepared by the acidification route were investigated using thermal analysis coupled online to a mass spectrometer for evolved gas analysis, X-ray powder diffraction, Fourier transform infrared, Raman, magic-angle-spinning 1H- and 15N NMR spectroscopy, and incoherent inelastic neutron scattering. A comprehensive characterization of these samples will lead to a better understanding of their structure and physical properties as well as uncover the underlying relationship between the various compositions. The synthesized polymeric parent samples can be represented by the structural formula (NH4)(x∞)(3)[Mo(y square 1−y)O(3y)(OH)(x)(H2O)(m−n)]·nH2O with 0.10 ≤ x ≤ 0.14, 0.84 ≤ y ≤ 0.88, and m + n ≥ 3 − x − 3y. The X-ray study of a selected monocrystal confirmed the presence of the well-known 3D framework of edge- and corner-sharing MoO6 octahedra. The colorless monocrystal crystallizes in the hexagonal system with space group P6(3)/m, Z = 6, and unit cell parameters of a = 10.527(1) Å, c = 3.7245(7) Å, V = 357.44(8) Å3, and ρ = 3.73 g·cm(−3). The structure of the prepared monocrystal can best be described by the structural formula (NH4)(0.13∞)(3)[Mo(0.86 square 0.14)O2.58(OH)0.13(H2O)(0.29−n)]·nH2O, which is consistent with the existence of one vacancy (square) for six molybdenum sites. The sample MoO3·0.326NH3·0.343H2O, prepared by the ammoniation of a partially dehydrated MoO3·0.170NH3·0.153H2O with dry gaseous ammonia, accommodates NH3 in the hexagonal tunnels, in addition to [NH4]+ cations and H2O. The "chimie douce" reaction of MoO3·0.155NH3·0.440H2O with a 1:1 mixture of NO/NO2 at 100 °C resulted in the synthesis of MoO3·0.539H2O. This material is of great interest as a host of various molecules and cations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA