Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Cell ; 187(9): 2143-2157.e15, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38670072

RESUMO

A central question for regenerative neuroscience is whether synthetic neural circuits, such as those built from two species, can function in an intact brain. Here, we apply blastocyst complementation to selectively build and test interspecies neural circuits. Despite approximately 10-20 million years of evolution, and prominent species differences in brain size, rat pluripotent stem cells injected into mouse blastocysts develop and persist throughout the mouse brain. Unexpectedly, the mouse niche reprograms the birth dates of rat neurons in the cortex and hippocampus, supporting rat-mouse synaptic activity. When mouse olfactory neurons are genetically silenced or killed, rat neurons restore information flow to odor processing circuits. Moreover, they rescue the primal behavior of food seeking, although less well than mouse neurons. By revealing that a mouse can sense the world using neurons from another species, we establish neural blastocyst complementation as a powerful tool to identify conserved mechanisms of brain development, plasticity, and repair.


Assuntos
Neurônios , Animais , Camundongos , Ratos , Neurônios/metabolismo , Neurônios/citologia , Neurônios/fisiologia , Blastocisto/metabolismo , Blastocisto/citologia , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Encéfalo/citologia , Encéfalo/fisiologia , Feminino , Hipocampo/citologia , Hipocampo/fisiologia , Especificidade da Espécie , Camundongos Endogâmicos C57BL , Masculino
2.
Cell ; 179(2): 373-391.e27, 2019 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-31585079

RESUMO

Cells regulate gene expression in response to salient external stimuli. In neurons, depolarization leads to the expression of inducible transcription factors (ITFs) that direct subsequent gene regulation. Depolarization encodes both a neuron's action potential (AP) output and synaptic inputs, via excitatory postsynaptic potentials (EPSPs). However, it is unclear if distinct types of electrical activity can be transformed by an ITF into distinct modes of genomic regulation. Here, we show that APs and EPSPs in mouse hippocampal neurons trigger two spatially segregated and molecularly distinct induction mechanisms that lead to the expression of the ITF NPAS4. These two pathways culminate in the formation of stimulus-specific NPAS4 heterodimers that exhibit distinct DNA binding patterns. Thus, NPAS4 differentially communicates increases in a neuron's spiking output and synaptic inputs to the nucleus, enabling gene regulation to be tailored to the type of depolarizing activity along the somato-dendritic axis of a neuron.


Assuntos
Potenciais de Ação , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Potenciais Pós-Sinápticos Excitadores , Neurônios/metabolismo , Ativação Transcricional , Regiões 3' não Traduzidas , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Região CA1 Hipocampal/citologia , Região CA1 Hipocampal/metabolismo , Região CA1 Hipocampal/fisiologia , Células Cultivadas , Feminino , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/fisiologia , Multimerização Proteica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley
4.
J Neurosci ; 33(8): 3424-33, 2013 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-23426670

RESUMO

The CA1 region of the hippocampus receives distinct patterns of afferent input to distal (near subiculum) and proximal (near CA2) zones. Specifically, distal CA1 receives a direct projection from cells in the lateral entorhinal cortex that are sensitive to objects, whereas proximal CA1 is innervated by cells in the medial entorhinal cortex that are responsive to space. This suggests that neurons in different areas along the proximodistal axis of CA1 of the hippocampus will be functionally distinct. The current experiment investigated this possibility by monitoring behavior-induced cell activity across the CA1 axis using Arc mRNA imaging methods that compared adult and old rats in two conditions: (1) exploration of the same environment containing the same objects twice (AA) or (2) exploration of two different environments that contained identical objects (AB). The hypothesis was that CA1 place cells should show field remapping in the condition in which environments were changed, but the extent of remapping was expected to differ between proximal and distal regions and between age groups. In fact, neurons in the proximal region of CA1 in adult animals exhibited a greater degree of remapping than did distal CA1 cells when the environment changed, suggesting that cells receiving input from the medial entorhinal cortex are more sensitive to spatial context. However, in old rats, there were no differences in remapping across the proximodistal CA1 axis. Together, these data suggest that distal and proximal CA1 may be functionally distinct and differentially vulnerable to normative aging processes.


Assuntos
Envelhecimento/fisiologia , Região CA1 Hipocampal/fisiologia , Proteínas do Citoesqueleto/genética , Comportamento Exploratório/fisiologia , Genes Precoces/fisiologia , Proteínas do Tecido Nervoso/genética , Transcrição Gênica/fisiologia , Envelhecimento/genética , Animais , Mapeamento Encefálico/métodos , Masculino , Aprendizagem em Labirinto/fisiologia , Imagem Molecular/métodos , RNA Mensageiro/biossíntese , Distribuição Aleatória , Ratos , Ratos Endogâmicos F344
5.
Dev Biol ; 367(1): 25-39, 2012 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-22564796

RESUMO

The layered cortex of the cerebellum is folded along the anterior-posterior axis into lobules separated by fissures, allowing the large number of cells needed for advanced cerebellar functions to be packed into a small volume. During development, the cerebellum begins as a smooth ovoid structure with two progenitor zones, the ventricular zone and upper rhombic lip, which give rise to distinct cell types in the mature cerebellum. Initially, the cerebellar primordium is divided into five cardinal lobes, which are subsequently further subdivided by fissures. The cellular processes and genes that regulate the formation of a normal pattern of fissures are poorly understood. The engrailed genes (En1 and En2) are expressed in all cerebellar cell types and are critical for regulating formation of specific fissures. However, the cerebellar cell types that En1 and En2 act in to control growth and/or patterning of fissures has not been determined. We conditionally eliminated En2 or En1 and En2 either in both progenitor zones and their descendents or in the two complementary sets of cells derived from each progenitor zone. En2 was found to be required only transiently in the progenitor zones and their immediate descendents to regulate formation of three fissures and for general growth of the cerebellum. In contrast, En1 and En2 have overlapping functions in the cells derived from each progenitor zone in regulating formation of additional fissures and for extensive cerebellar growth. Furthermore, En1/2 function in ventricular zone-derived cells plays a more significant role in determining the timing of initiation and positioning of fissures, whereas in upper rhombic lip-derived cells the genes are more important in regulating cerebellar growth. Our studies reveal the complex manner in which the En genes control cerebellar growth and foliation in distinct cell types.


Assuntos
Linhagem da Célula , Córtex Cerebelar/citologia , Córtex Cerebelar/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Animais , Córtex Cerebelar/metabolismo , Camundongos , Camundongos Knockout
6.
Elife ; 122023 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-37862092

RESUMO

The assembly of the mammalian brain is orchestrated by temporally coordinated waves of gene expression. Post-transcriptional regulation by microRNAs (miRNAs) is a key aspect of this program. Indeed, deletion of neuron-enriched miRNAs induces strong developmental phenotypes, and miRNA levels are altered in patients with neurodevelopmental disorders. However, the mechanisms used by miRNAs to instruct brain development remain largely unexplored. Here, we identified miR-218 as a critical regulator of hippocampal assembly. MiR-218 is highly expressed in the hippocampus and enriched in both excitatory principal neurons (PNs) and GABAergic inhibitory interneurons (INs). Early life inhibition of miR-218 results in an adult brain with a predisposition to seizures. Changes in gene expression in the absence of miR-218 suggest that network assembly is impaired. Indeed, we find that miR-218 inhibition results in the disruption of early depolarizing GABAergic signaling, structural defects in dendritic spines, and altered intrinsic membrane excitability. Conditional knockout of Mir218-2 in INs, but not PNs, is sufficient to recapitulate long-term instability. Finally, de-repressing Kif21b and Syt13, two miR-218 targets, phenocopies the effects on early synchronous network activity induced by miR-218 inhibition. Taken together, the data suggest that miR-218 orchestrates formative events in PNs and INs to produce stable networks.


Assuntos
MicroRNAs , Animais , Adulto , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Neurônios/metabolismo , Hipocampo/metabolismo , Interneurônios/metabolismo , Encéfalo/metabolismo , Mamíferos/genética
8.
Curr Opin Neurobiol ; 57: 54-61, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30743177

RESUMO

Non-coding RNAs have emerged as potent regulators of numerous cellular processes. In neurons and circuits, these molecules serve especially critical functions that ensure neural activity is maintained within appropriate physiological parameters. Their targets include synaptic proteins, ion channels, neurotransmitter receptors, and components of essential signaling cascades. Here, we discuss how several species of non-coding RNAs (ncRNAs) regulate intrinsic excitability and synaptic transmission, both during development and in mature circuits. Furthermore, we present the relationships between aberrant ncRNA expression and psychiatric disorders. The research presented here demonstrates how ncRNAs can be useful tools for elucidating fundamental neurobiology mechanisms and identifying the key molecular players.


Assuntos
Rede Nervosa , Transdução de Sinais , Redes Neurais de Computação , Neurônios , RNA não Traduzido
9.
Elife ; 72018 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-30052197

RESUMO

Experience-dependent expression of immediate-early gene transcription factors (IEG-TFs) can transiently change the transcriptome of active neurons and initiate persistent changes in cellular function. However, the impact of IEG-TFs on circuit connectivity and function is poorly understood. We investigate the specificity with which the IEG-TF NPAS4 governs experience-dependent changes in inhibitory synaptic input onto CA1 pyramidal neurons (PNs). We show that novel sensory experience selectively enhances somatic inhibition mediated by cholecystokinin-expressing basket cells (CCKBCs) in an NPAS4-dependent manner. NPAS4 specifically increases the number of synapses made onto PNs by individual CCKBCs without altering synaptic properties. Additionally, we find that sensory experience-driven NPAS4 expression enhances depolarization-induced suppression of inhibition (DSI), a short-term form of cannabinoid-mediated plasticity expressed at CCKBC synapses. Our results indicate that CCKBC inputs are a major target of the NPAS4-dependent transcriptional program in PNs and that NPAS4 is an important regulator of plasticity mediated by endogenous cannabinoids.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Canabinoides/farmacologia , Colecistocinina/metabolismo , Hipocampo/citologia , Inibição Neural/efeitos dos fármacos , Sinapses/metabolismo , Animais , Região CA1 Hipocampal/citologia , Diferenciação Celular/efeitos dos fármacos , Interneurônios/efeitos dos fármacos , Interneurônios/metabolismo , Camundongos Endogâmicos C57BL , Parvalbuminas/metabolismo , Células Piramidais/efeitos dos fármacos , Células Piramidais/fisiologia , Sinapses/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos
10.
Behav Neurosci ; 125(6): 836-47, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22122147

RESUMO

Normal aging causes a decline in object recognition. Importantly, lesions of the perirhinal cortex produce similar deficits and also lead to object discrimination impairments when the test objects share common features, suggesting that the perirhinal cortex participates in perceptual discrimination. The current experiments investigated the ability of young and aged animals to distinguish between objects that shared features with tasks with limited mnemonic demands. In the first experiment, young and old rats performed a variant of the spontaneous object recognition task in which there was a minimal delay between the sample and the test phase. When the test objects did not share any features ("Easy" perceptual discrimination) both young and aged rats correctly identified the novel object. When the test objects contained overlapping features, however, only the young rats showed an exploratory preference for the novel object. In Experiment 2, young and aged monkeys were tested on an object discrimination task. When the object pairs were dissimilar, both the young and aged monkeys learned to select the rewarded object quickly. In contrast, when LEGOs® were used to create object pairs with overlapping features, the aged monkeys took significantly longer than did the young animals to learn to discriminate between the rewarded and the unrewarded object. Together, these data indicate that behaviors requiring the perirhinal cortex are disrupted in advanced age, and suggest that at least some of these impairments may be explained by changes in high-level perceptual processing in advanced age.


Assuntos
Envelhecimento/fisiologia , Córtex Cerebral/fisiologia , Aprendizagem em Labirinto/fisiologia , Reconhecimento Psicológico/fisiologia , Animais , Aprendizagem por Discriminação/fisiologia , Feminino , Macaca radiata , Masculino , Ratos , Ratos Endogâmicos F344 , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA