Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Basic Res Cardiol ; 118(1): 8, 2023 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-36862248

RESUMO

Whereas cardiomyocytes (CMs) in the fetal heart divide, postnatal CMs fail to undergo karyokinesis and/or cytokinesis and therefore become polyploid or binucleated, a key process in terminal CM differentiation. This switch from a diploid proliferative CM to a terminally differentiated polyploid CM remains an enigma and seems an obstacle for heart regeneration. Here, we set out to identify the transcriptional landscape of CMs around birth using single cell RNA sequencing (scRNA-seq) to predict transcription factors (TFs) involved in CM proliferation and terminal differentiation. To this end, we established an approach combining fluorescence activated cell sorting (FACS) with scRNA-seq of fixed CMs from developing (E16.5, P1, and P5) mouse hearts, and generated high-resolution single-cell transcriptomic maps of in vivo diploid and tetraploid CMs, increasing the CM resolution. We identified TF-networks regulating the G2/M phases of developing CMs around birth. ZEB1 (Zinc Finger E-Box Binding Homeobox 1), a hereto unknown TF in CM cell cycling, was found to regulate the highest number of cell cycle genes in cycling CMs at E16.5 but was downregulated around birth. CM ZEB1-knockdown reduced proliferation of E16.5 CMs, while ZEB1 overexpression at P0 after birth resulted in CM endoreplication. These data thus provide a ploidy stratified transcriptomic map of developing CMs and bring new insight to CM proliferation and endoreplication identifying ZEB1 as a key player in these processes.


Assuntos
Miócitos Cardíacos , Transcriptoma , Animais , Camundongos , Proliferação de Células , Genes Homeobox , Ploidias , Poliploidia , Homeobox 1 de Ligação a E-box em Dedo de Zinco , Dedos de Zinco
2.
Int J Mol Sci ; 23(3)2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-35163613

RESUMO

Erectile dysfunction is a common complication associated with type 2 diabetes mellitus (T2DM) and after prostatectomy in relation to cancer. The regenerative effect of cultured adipose-derived stem cells (ASCs) for ED therapy has been documented in multiple preclinical trials as well as in recent Pase 1 trials in humans. However, some studies indicate that diabetes negatively affects the mesenchymal stem cell pool, implying that ASCs from T2DM patients could have impaired regenerative capacity. Here, we directly compared ASCs from age-matched diabetic Goto-Kakizaki (ASCGK) and non-diabetic wild type rats (ASCWT) with regard to their phenotypes, proteomes and ability to rescue ED in normal rats. Despite ASCGK exhibiting a slightly lower proliferation rate, ASCGK and ASCWT proteomes were more or less identical, and after injections to corpus cavernosum they were equally efficient in restoring erectile function in a rat ED model entailing bilateral nerve crush injury. Moreover, molecular analysis of the corpus cavernosum tissue revealed that both ASCGK and ASCWT treated rats had increased induction of genes involved in recovering endothelial function. Thus, our finding argues that T2DM does not appear to be a limiting factor for autologous adipose stem cell therapy when correcting for ED.


Assuntos
Diabetes Mellitus Tipo 2/complicações , Disfunção Erétil/terapia , Transplante de Células-Tronco , Tecido Adiposo/citologia , Animais , Células Cultivadas , Disfunção Erétil/etiologia , Masculino , Ratos , Células-Tronco
3.
Apoptosis ; 20(5): 658-70, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25682163

RESUMO

Maintenance of cellular homeostasis requires tight and coordinated control of numerous metabolic pathways, which are governed by interconnected networks of signaling pathways and energy-sensing regulators. Autophagy, a lysosomal degradation pathway by which the cell self-digests its own components, has over the past decade been recognized as an essential part of metabolism. Autophagy not only rids the cell of excessive or damaged organelles, misfolded proteins, and invading microorganisms, it also provides nutrients to maintain crucial cellular functions. Besides serving as essential structural moieties of biomembranes, lipids including sphingolipids are increasingly being recognized as central regulators of a number of important cellular processes, including autophagy. In the present review we describe how sphingolipids, with special emphasis on ceramides and sphingosine-1-phosphate, can act as physiological regulators of autophagy in relation to cellular and organismal growth, survival, and aging.


Assuntos
Autofagia , Esfingolipídeos/metabolismo , Animais , Transporte Biológico , Permeabilidade da Membrana Celular , Humanos , Fusão de Membrana
4.
Stem Cells Transl Med ; 8(7): 671-680, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30920771

RESUMO

Several patient groups undergoing small-diameter (<6 mm) vessel bypass surgery have limited autologous vessels for use as grafts. Tissue-engineered vascular grafts (TEVG) have been suggested as an alternative, but the ideal TEVG remains to be generated, and a systematic overview and meta-analysis of clinically relevant studies is lacking. We systematically searched PubMed and Embase databases for (pre)clinical trials and identified three clinical and 68 preclinical trials ([>rabbit]; 873 TEVGs) meeting the inclusion criteria. Preclinical trials represented low to medium risk of bias, and binary logistic regression revealed that patency was significantly affected by recellularization, TEVG length, TEVG diameter, surface modification, and preconditioning. In contrast, scaffold types were less important. The patency was 63.5%, 89%, and 100% for TEVGs with a median diameter of 3 mm, 4 mm, and 5 mm, respectively. In the group of recellularized TEVGs, patency was not improved by using smooth muscle cells in addition to endothelial cells nor affected by the endothelial origin, but seems to benefit from a long-term (46-240 hours) recellularization time. Finally, data showed that median TEVG length (5 cm) and median follow-up (56 days) used in preclinical settings are relatively inadequate for direct clinical translation. In conclusion, our data imply that future studies should consider a TEVG design that at least includes endothelial recellularization and bioreactor preconditioning, and we suggest that more standard guidelines for testing and reporting TEVGs in large animals should be considered to enable interstudy comparisons and favor a robust and reproducible outcome as well as clinical translation.


Assuntos
Bioprótese , Prótese Vascular , Células Endoteliais/metabolismo , Matriz Extracelular/metabolismo , Miócitos de Músculo Liso/metabolismo , Engenharia Tecidual , Animais , Células Endoteliais/citologia , Humanos , Miócitos de Músculo Liso/citologia , Coelhos
5.
Aging (Albany NY) ; 9(7): 1745-1769, 2017 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-28758895

RESUMO

In yeast, the broadly conserved acyl-CoA-binding protein (ACBP) is a negative regulator of stress resistance and longevity. Here, we have turned to the nematode C. elegans as a model organism in which to determine whether ACBPs play similar roles in multicellular organisms. We systematically inactivated each of the seven C. elegans ACBP paralogs and found that one of them, maa-1 (which encodes membrane-associated ACBP 1), is indeed involved in the regulation of longevity. In fact, loss of maa-1 promotes lifespan extension and resistance to different types of stress. Through genetic and gene expression studies we have demonstrated that HIF-1, a master transcriptional regulator of adaptation to hypoxia, plays a central role in orchestrating the anti-aging response induced by MAA-1 deficiency. This response relies on the activation of molecular chaperones known to contribute to maintenance of the proteome. Our work extends to C. elegans the role of ACBP in aging, implicates HIF-1 in the increase of lifespan of maa-1-deficient worms, and sheds light on the anti-aging function of HIF-1. Given that both ACBP and HIF-1 are highly conserved, our results suggest the possible involvement of these proteins in the age-associated decline in proteostasis in mammals.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiologia , Inibidor da Ligação a Diazepam/metabolismo , Regulação da Expressão Gênica/fisiologia , Fator 1 Induzível por Hipóxia/metabolismo , Longevidade/fisiologia , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Inibidor da Ligação a Diazepam/genética , Deleção de Genes , Fator 1 Induzível por Hipóxia/genética , Longevidade/genética
6.
Cell Syst ; 5(1): 38-52.e4, 2017 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-28734827

RESUMO

Starvation causes comprehensive metabolic changes, which are still not fully understood. Here, we used quantitative proteomics and RNA sequencing to examine the temporal starvation responses in wild-type Caenorhabditis elegans and animals lacking the transcription factor HLH-30. Our findings show that starvation alters the abundance of hundreds of proteins and mRNAs in a temporal manner, many of which are involved in central metabolic pathways, including lipoprotein metabolism. We demonstrate that premature death of hlh-30 animals under starvation can be prevented by knockdown of either vit-1 or vit-5, encoding two different lipoproteins. We further show that the size and number of intestinal lipid droplets under starvation are altered in hlh-30 animals, which can be rescued by knockdown of vit-1. Taken together, this indicates that survival of hlh-30 animals under starvation is closely linked to regulation of intestinal lipid stores. We provide the most detailed poly-omic analysis of starvation responses to date, which serves as a resource for further mechanistic studies of starvation.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/fisiologia , Lipoproteínas/metabolismo , Inanição/metabolismo , Animais , Técnicas de Inativação de Genes , Gotículas Lipídicas , Tamanho da Partícula , Proteômica , Interferência de RNA , Análise de Sequência de RNA , Vitelogeninas/genética
9.
PLoS One ; 8(7): e70087, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23894595

RESUMO

Ceramide and its metabolites constitute a diverse group of lipids, which play important roles as structural entities of biological membranes as well as regulators of cellular growth, differentiation, and development. The C. elegans genome comprises three ceramide synthase genes; hyl-1, hyl-2, and lagr-1. HYL-1 function is required for synthesis of ceramides and sphingolipids containing very long acyl-chains (≥C24), while HYL-2 is required for synthesis of ceramides and sphingolipids containing shorter acyl-chains (≤C22). Here we show that functional loss of HYL-2 decreases lifespan, while loss of HYL-1 or LAGR-1 does not affect lifespan. We show that loss of HYL-1 and LAGR-1 functions extend lifespan in an autophagy-dependent manner, as knock down of the autophagy-associated gene ATG-12 abolishes hyl-1;lagr-1 longevity. The transcription factors PHA-4/FOXA, DAF-16/FOXO, and SKN-1 are also required for the observed lifespan extension, as well as the increased number of autophagosomes in hyl-1;lagr-1 animals. Both autophagic events and the transcription factors PHA-4/FOXA, DAF-16, and SKN-1 have previously been associated with dietary restriction-induced longevity. Accordingly, we find that hyl-1;lagr-1 animals display reduced feeding, increased resistance to heat, and reduced reproduction. Collectively, our data suggest that specific sphingolipids produced by different ceramide synthases have opposing roles in determination of C. elegans lifespan. We propose that loss of HYL-1 and LAGR-1 result in dietary restriction-induced autophagy and consequently prolonged longevity.


Assuntos
Autofagia , Proteínas de Caenorhabditis elegans , Caenorhabditis elegans/enzimologia , Caenorhabditis elegans/crescimento & desenvolvimento , Longevidade , Oxirredutases/deficiência , Animais , Autofagia/genética , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Fatores de Transcrição Forkhead , Técnicas de Silenciamento de Genes , Metabolismo dos Lipídeos , Longevidade/genética , Oxirredutases/genética , Oxirredutases/metabolismo , Fenótipo , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/genética , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Transativadores/genética , Transativadores/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA