Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(18): e2120241119, 2022 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-35452330

RESUMO

SignificanceDue to active plate tectonics, there are no direct rock archives covering the first ca. 500 million y of Earth's history. Therefore, insights into Hadean geodynamics rely on indirect observations from geochemistry. We present a high-precision 182W dataset for rocks from the Kaapvaal Craton, southern Africa, revealing the presence of Hadean protocrustal remnants in Earth's mantle. This has broad implications for geochemists, geophysicists, and modelers, as it bridges contrasting 182W isotope patterns in Archean and modern mantle-derived rocks. The data reveal the origin of seismically and isotopically anomalous domains in the deep mantle and also provide firm evidence for the operation of silicate differentiation processes during the first 60 million y of Earth's history.

2.
Proc Natl Acad Sci U S A ; 118(2)2021 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-33443147

RESUMO

Although Earth has a convecting mantle, ancient mantle reservoirs that formed within the first 100 Ma of Earth's history (Hadean Eon) appear to have been preserved through geologic time. Evidence for this is based on small anomalies of isotopes such as 182W, 142Nd, and 129Xe that are decay products of short-lived nuclide systems. Studies of such short-lived isotopes have typically focused on geological units with a limited age range and therefore only provide snapshots of regional mantle heterogeneities. Here we present a dataset for short-lived 182Hf-182W (half-life 9 Ma) in a comprehensive rock suite from the Pilbara Craton, Western Australia. The samples analyzed preserve a unique geological archive covering 800 Ma of Archean history. Pristine 182W signatures that directly reflect the W isotopic composition of parental sources are only preserved in unaltered mafic samples with near canonical W/Th (0.07 to 0.26). Early Paleoarchean, mafic igneous rocks from the East Pilbara Terrane display a uniform pristine µ182W excess of 12.6 ± 1.4 ppm. From ca 3.3Ga onward, the pristine 182W signatures progressively vanish and are only preserved in younger rocks of the craton that tap stabilized ancient lithosphere. Given that the anomalous 182W signature must have formed by ca 4.5 Ga, the mantle domain that was tapped by magmatism in the Pilbara Craton must have been convectively isolated for nearly 1.2 Ga. This finding puts lower bounds on timescale estimates for localized convective homogenization in early Earth's interior and on the widespread emergence of plate tectonics that are both important input parameters in many physical models.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA