Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Bioconjug Chem ; 2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36894324

RESUMO

The site-directed chemical conjugation of antibodies remains an area of great interest and active efforts within the antibody-drug conjugate (ADC) community. We previously reported a unique site modification using a class of immunoglobulin-G (IgG) Fc-affinity reagents to establish a versatile, streamlined, and site-selective conjugation of native antibodies to enhance the therapeutic index of the resultant ADCs. This methodology, termed "AJICAP", successfully modified Lys248 of native antibodies to produce site-specific ADC with a wider therapeutic index than the Food and Drug Administration-approved ADC, Kadcyla. However, the long reaction sequences, including the reduction-oxidation (redox) treatment, increased the aggregation level. In this manuscript, we aimed to present an updated Fc-affinity-mediated site-specific conjugation technology named "AJICAP second generation" without redox treatment utilizing a "one-pot" antibody modification reaction. The stability of Fc affinity reagents was improved owing to structural optimization, enabling the production of various ADCs without aggregation. In addition to Lys248 conjugation, Lys288 conjugated ADCs with homogeneous drug-to-antibody ratio of 2 were produced using different Fc affinity peptide reagent possessing a proper spacer linkage. These two conjugation technologies were used to produce over 20 ADCs from several combinations of antibodies and drug linkers. The in vivo profile of Lys248 and Lys288 conjugated ADCs was also compared. Furthermore, nontraditional ADC production, such as antibody-protein conjugates and antibody-oligonucleotide conjugates, were achieved. These results strongly indicate that this Fc affinity conjugation approach is a promising strategy for manufacturing site-specific antibody conjugates without antibody engineering.

2.
Org Lett ; 26(27): 5597-5601, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38639400

RESUMO

A traceless site-selective conjugation method, "AJICAP-M", was developed for native antibodies at sites using Fc-affinity peptides, focusing on Lys248 or Lys288. It produces antibody-drug conjugates (ADCs) with consistent drug-to-antibody ratios, enhanced stability, and simplified manufacturing. Comparative in vivo assessment demonstrated AJICAP-M's superior stability over traditional ADCs. This technology has been successfully applied to continuous-flow manufacturing, marking the first achievement in site-selective ADC production. This manuscript outlines AJICAP-M's methodology and its effectiveness in ADC production.


Assuntos
Imunoconjugados , Peptídeos , Animais , Humanos , Imunoconjugados/química , Estrutura Molecular , Peptídeos/química , Peptídeos/síntese química , Ubiquitinas/química
3.
J Med Chem ; 67(20): 18124-18138, 2024 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-39410752

RESUMO

Antibody-drug conjugates (ADCs) combine cytotoxic payloads with monoclonal antibodies through chemical linkers. Finding linkers that both enhance circulatory stability and enable effective tumor payload release remains a challenge. The conventional valine-citrulline (Val-Cit) linker is associated with several inherent drawbacks, including hydrophobicity-induced aggregation, a limited drug-antibody ratio (DAR), and premature payload release. This study introduces an exolinker approach, repositioning the cleavable peptide linker at the exo position of the p-aminobenzylcarbamate moiety, as an advancement over conventional linear linkers. This design, which incorporates hydrophilic glutamic acid, addresses the limitations of the Val-Cit platform and improves the ADC in vivo profiles. In vitro and in vivo evaluations showed that exolinker ADCs reduced premature payload release, increased drug-to-antibody ratios, and avoided significant aggregation, even with hydrophobic payloads. Furthermore, the payload remained stably attached to the ADC even in the presence of enzymes like carboxylesterases and human neutrophil elastase, indicating the potential for a favorable safety profile.


Assuntos
Imunoconjugados , Imunoconjugados/química , Imunoconjugados/farmacologia , Imunoconjugados/farmacocinética , Humanos , Animais , Camundongos , Linhagem Celular Tumoral , Interações Hidrofóbicas e Hidrofílicas , Feminino , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Anticorpos Monoclonais/química , Valina/química , Valina/análogos & derivados , Estabilidade de Medicamentos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA