Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Clin Sci (Lond) ; 136(12): 911-934, 2022 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-35723259

RESUMO

Shortly after birth, mammalian cardiomyocytes (CM) exit the cell cycle and cease to proliferate. The inability of adult CM to replicate renders the heart particularly vulnerable to injury. Restoration of CM proliferation would be an attractive clinical target for regenerative therapies that can preserve contractile function and thus prevent the development of heart failure. Our review focuses on recent progress in understanding the tight regulation of signaling pathways and their downstream molecular mechanisms that underly the inability of CM to proliferate in vivo. In this review, we describe the temporal expression of cell cycle activators e.g., cyclin/Cdk complexes and their inhibitors including p16, p21, p27 and members of the retinoblastoma gene family during gestation and postnatal life. The differential impact of members of the E2f transcription factor family and microRNAs on the regulation of positive and negative cell cycle factors is discussed. This review also highlights seminal studies that identified the coordination of signaling mechanisms that can potently activate CM cell cycle re-entry including the Wnt/Ctnnb1, Hippo, Pi3K-Akt and Nrg1-Erbb2/4 pathways. We also present an up-to-date account of landmark studies analyzing the effect of various genes such as Argin, Dystrophin, Fstl1, Meis1, Pitx2 and Pkm2 that are responsible for either inhibition or activation of CM cell division. All these reports describe bona fide therapeutically targets that could guide future clinical studies toward cardiac repair.


Assuntos
Miócitos Cardíacos , Fosfatidilinositol 3-Quinases , Animais , Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , Divisão Celular , Proliferação de Células , Mamíferos , Miócitos Cardíacos/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo
2.
Proc Natl Acad Sci U S A ; 114(9): 2331-2336, 2017 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-28193895

RESUMO

The tumor suppressor Trp53 (p53) inhibits cell growth after acute stress by regulating gene transcription. The mammalian genome contains hundreds of p53-binding sites. However, whether p53 participates in the regulation of cardiac tissue homeostasis under normal conditions is not known. To examine the physiologic role of p53 in adult cardiomyocytes in vivo, Cre-loxP-mediated conditional gene targeting in adult mice was used. Genome-wide transcriptome analyses of conditional heart-specific p53 knockout mice were performed. Genome-wide annotation and pathway analyses of >5,000 differentially expressed transcripts identified many p53-regulated gene clusters. Correlative analyses identified >20 gene sets containing more than 1,000 genes relevant to cardiac architecture and function. These transcriptomic changes orchestrate cardiac architecture, excitation-contraction coupling, mitochondrial biogenesis, and oxidative phosphorylation capacity. Interestingly, the gene expression signature in p53-deficient hearts confers resistance to acute biomechanical stress. The data presented here demonstrate a role for p53, a previously unrecognized master regulator of the cardiac transcriptome. The complex contributions of p53 define a biological paradigm for the p53 regulator network in the heart under physiological conditions.


Assuntos
Cardiomegalia/genética , Insuficiência Cardíaca/genética , Miócitos Cardíacos/metabolismo , Transcriptoma , Proteína Supressora de Tumor p53/genética , Animais , Apoptose , Fenômenos Biomecânicos , Cardiomegalia/metabolismo , Cardiomegalia/patologia , Proliferação de Células , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/patologia , Homeostase , Masculino , Camundongos , Camundongos Knockout , Miócitos Cardíacos/patologia , Transdução de Sinais , Estresse Mecânico , Proteína Supressora de Tumor p53/deficiência
3.
Clin Sci (Lond) ; 131(13): 1375-1392, 2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-28645928

RESUMO

Cardiomyopathies represent a heterogeneous group of diseases that negatively affect heart function. Primary cardiomyopathies specifically target the myocardium, and may arise from genetic [hypertrophic cardiomyopathy (HCM), arrhythmogenic right ventricular cardiomyopathy/dysplasia (ARVC/D), mitochondrial cardiomyopathy] or genetic and acquired [dilated cardiomyopathy (DCM), restrictive cardiomyopathy (RCM)] etiology. Modern genomics has identified mutations that are common in these populations, while in vitro and in vivo experimentation with these mutations have provided invaluable insight into the molecular mechanisms native to these diseases. For example, increased myosin heavy chain (MHC) binding and ATP utilization lead to the hypercontractile sarcomere in HCM, while abnormal protein-protein interaction and impaired Ca2+ flux underlie the relaxed sarcomere of DCM. Furthermore, expanded access to genetic testing has facilitated identification of potential risk factors that appear through inheritance and manifest sometimes only in the advanced stages of the disease. In this review, we discuss the genetic and molecular abnormalities unique to and shared between these primary cardiomyopathies and discuss some of the important advances made using more traditional basic science experimentation.


Assuntos
Cardiomiopatias/genética , Mutação , Cardiomiopatias/fisiopatologia , Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/fisiopatologia , Cardiomiopatia Hipertrófica/genética , Cardiomiopatia Hipertrófica/fisiopatologia , Cardiomiopatia Restritiva/genética , Cardiomiopatia Restritiva/fisiopatologia , Predisposição Genética para Doença , Humanos , Miopatias Mitocondriais/genética , Miopatias Mitocondriais/fisiopatologia , Neurotransmissores/fisiologia , Sarcômeros/fisiologia
4.
Proc Natl Acad Sci U S A ; 110(15): 6085-90, 2013 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-23530187

RESUMO

Oxidative stress is caused by an imbalance between the production of reactive oxygen species (ROS) and the ability of an organism to eliminate these toxic intermediates. Although the Parkinson-susceptibility gene, Parkinson protein 7/DJ-1 (DJ-1), has been linked to the regulation of oxidative stress, the exact mechanism by which this occurs and its in vivo relevance have remained elusive. In the heart, oxidative stress is a major contributor to the development of heart failure (HF). Therefore, we hypothesized that DJ-1 inhibits the pathological consequences of ROS production in the heart, the organ with the highest oxidative burden. We report that DJ-1 is highly expressed in normal heart tissue but is markedly reduced in end-stage human HF. DJ-1-deficient mice subjected to oxidative stress by transaortic banding exhibited exaggerated cardiac hypertrophy and susceptibility to developing HF. This was accompanied by a Trp53 (p53)-dependent decrease in capillary density, an excessive oxidation of DNA, and increased cardiomyocyte apoptosis, key events in the development of HF. Impaired mitochondrial biogenesis and progressive respiratory chain deficiency were also evident in cardiomyocytes lacking DJ-1. Our results provide compelling in vivo evidence that DJ-1 is a unique and nonredundant antioxidant that functions independent of other antioxidative pathways in the cellular defense against ROS.


Assuntos
Predisposição Genética para Doença , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Miocárdio/metabolismo , Proteínas Oncogênicas/fisiologia , Estresse Oxidativo , Angiotensina II/metabolismo , Animais , Antioxidantes/metabolismo , Apoptose , Regulação para Baixo , Ecocardiografia , Feminino , Humanos , Masculino , Camundongos , Camundongos Knockout , Microscopia de Fluorescência , Miócitos Cardíacos/citologia , Peroxirredoxinas , Proteína Desglicase DJ-1 , Espécies Reativas de Oxigênio
5.
Proc Natl Acad Sci U S A ; 108(23): 9572-7, 2011 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-21606348

RESUMO

Oxidative stress is caused by an imbalance between reactive oxygen species (ROS) production and the ability of an organism to eliminate these toxic intermediates. Mutations in PTEN-inducible kinase 1 (PINK1) link mitochondrial dysfunction, increased sensitivity to ROS, and apoptosis in Parkinson's disease. Whereas PINK1 has been linked to the regulation of oxidative stress, the exact mechanism by which this occurs has remained elusive. Oxidative stress with associated mitochondrial dysfunction leads to cardiac dysfunction and heart failure (HF). We hypothesized that loss of PINK1 in the heart would have deleterious consequences on mitochondrial function. Here, we observed that PINK1 protein levels are markedly reduced in end-stage human HF. We also report that PINK1 localizes exclusively to the mitochondria. PINK1(-/-) mice develop left ventricular dysfunction and evidence of pathological cardiac hypertrophy as early as 2 mo of age. Of note, PINK1(-/-) mice have greater levels of oxidative stress and impaired mitochondrial function. There were also higher degrees of fibrosis, cardiomyocyte apoptosis, and a reciprocal reduction in capillary density associated with this baseline cardiac phenotype. Collectively, our in vivo data demonstrate that PINK1 activity is crucial for postnatal myocardial development, through its role in maintaining mitochondrial function, and redox homeostasis in cardiomyocytes. In conclusion, PINK1 possesses a distinct, nonredundant function in the surveillance and maintenance of cardiac tissue homeostasis.


Assuntos
Insuficiência Cardíaca/enzimologia , Miocárdio/enzimologia , Proteínas Quinases/metabolismo , Adulto , Animais , Animais Recém-Nascidos , Western Blotting , Cardiomegalia/enzimologia , Cardiomegalia/genética , Cardiomegalia/patologia , Células Cultivadas , Feminino , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/patologia , Humanos , Masculino , Potencial da Membrana Mitocondrial , Camundongos , Camundongos Knockout , Microscopia de Fluorescência , Pessoa de Meia-Idade , Mutação , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Proteínas Quinases/genética , Ratos , Ratos Wistar , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Tempo , Disfunção Ventricular Esquerda/enzimologia , Disfunção Ventricular Esquerda/genética , Disfunção Ventricular Esquerda/patologia
6.
CJC Open ; 4(12): 1043-1052, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36562012

RESUMO

Background: Doxorubicin-induced cardiomyopathy (DICM) is one of the complications that can limit treatment for a significant number of cancer patients. In animal models, the administration of statins can prevent the development of DICM. Therefore, the use of statins with anthracyclines potentially could enable cancer patients to complete their chemotherapy without added cardiotoxicity. The precise mechanism mediating the cardioprotection is not well understood. The purpose of this study is to determine the molecular mechanism by which rosuvastatin confers cardioprotection in a mouse model of DICM. Methods: Rosuvastatin was intraperitoneally administered into adult male mice at 100 µg/kg daily for 7 days, followed by a single intraperitoneal doxorubicin injection at 10 mg/kg. Animals continued to receive rosuvastatin daily for an additional 14 days. Cardiac function was assessed by echocardiography. Optical calcium mapping was performed on retrograde Langendorff perfused isolated hearts. Ventricular tissue samples were analyzed by immunofluorescence microscopy, Western blotting, and quantitative polymerase chain reaction. Results: Exposure to doxorubicin resulted in significantly reduced fractional shortening (27.4% ± 1.11% vs 40% ± 5.8% in controls; P < 0.001) and re-expression of the fetal gene program. However, we found no evidence of maladaptive cardiac hypertrophy or adverse ventricular remodeling in mice exposed to this dose of doxorubicin. In contrast, rosuvastatin-doxorubicin-treated mice maintained their cardiac function (39% ± 1.26%; P < 0.001). Mechanistically, the effect of rosuvastatin was associated with activation of Akt and phosphorylation of phospholamban with preserved sarcoplasmic/endoplasmic reticulum Ca2+ transporting 2 (SERCA2)-mediated Ca2+ reuptake. These effects occurred independently of perturbations in ryanodine receptor 2 function. Conclusions: Rosuvastatin counteracts the cardiotoxic effects of doxorubicin by directly targeting sarcoplasmic calcium cycling.


Contexte: La cardiomyopathie induite par la doxorubicine (CMID) est l'une des complications pouvant limiter le traitement d'un nombre considérable de patients atteints de cancer. Dans des modèles animaux, l'administration de statines peut prévenir l'apparition d'une CMID. Ainsi, l'utilisation de statines avec les anthracyclines pourrait vraisemblablement permettre aux patients de compléter leur chimiothérapie en évitant une cardiotoxicité supplémentaire. Le mécanisme précis qui sous-tend cet effet cardioprotecteur n'est pas entièrement élucidé. Cette étude a pour objectif de déterminer dans un modèle murin de CMID le mécanisme moléculaire par lequel la rosuvastatine confère une cardioprotection. Méthodologie: La rosuvastatine a été administrée par voie intrapéritonéale à des souris adultes mâles à une dose de 100 µg/kg par jour pendant sept jours, suivie d'une dose unique de doxorubicine de 10 mg/kg administrée par injection intrapéritonéale. Les animaux poursuivaient ensuite le traitement par la rosuvastatine une fois par jour pendant 14 jours supplémentaires. La fonction cardiaque a été mesurée par échocardiographie. Une cartographie optique du calcium a été réalisée sur des cœurs isolés soumis à une perfusion rétrograde selon la méthode de Langendorff. Des échantillons de tissu ventriculaire ont été analysés par microscopie en immunofluorescence, par buvardage de western et par mesure quantitative de l'amplification en chaîne par polymérase. Résultats: L'exposition à la doxorubicine a entraîné une diminution significative de la fraction de raccourcissement (27,4 % ± 1,11 % vs 40 % ± 5,8 % dans le groupe témoin; p < 0,001) et la réexpression du programme génique fœtal. Toutefois, aucune hypertrophie cardiaque inadaptée ni aucun remodelage ventriculaire indésirable n'ont été observés chez les souris ayant été exposées à la dose de doxorubicine étudiée. En revanche, la fonction cardiaque a été préservée chez les souris traitées par l'association rosuvastatine-doxorubicine (39 % ± 1,26 %; p < 0,001). Sur le plan du mode d'action, l'effet de la rosuvastatine a été associé à une activation de l'Akt et à une phosphorylation du phospholambane, avec préservation du recaptage de Ca2+ médié par la pompe SERCA2 (sarcoplasmic/endoplasmic reticulum Ca 2+ transporting 2). Ces effets sont survenus indépendamment des perturbations de la fonction du récepteur RyR2 (ryanodine receptor 2). Conclusions: La rosuvastatine neutralise les effets cardiotoxiques de la doxorubicine en ciblant directement la circulation sarcoplasmique du calcium.

7.
Cell Death Differ ; 28(4): 1398-1417, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33288902

RESUMO

Adult mammalian cardiomyocytes (CM) are postmitotic, differentiated cells that cannot re-enter the cell cycle after any appreciable injury. Therefore, understanding the factors required to induce CM proliferation for repair is of great clinical importance. While expression of muscle pyruvate kinase 2 (Pkm2), a cytosolic enzyme catalyzing the final step in glycolysis, is high in end-stage heart failure (HF), the loss of Pkm2 promotes proliferation in some cellular systems, in vivo. We hypothesized that in the adult heart CM proliferation may require low Pkm2 activity. Thus, we investigated the potential for Pkm2 to regulate CM proliferation in a mouse model of myocardial infarction (MI) employing inducible, cardiac-specific Pkm2 gene knockout (Pkm2KOi) mice. We found a lack of cardiac hypertrophy or expression of the fetal gene program in Pkm2KOi mice post MI, as compared to vehicle control animals (P < 0.01), correlating with smaller infarct size, improved mitochondrial (mt) function, enhanced angiogenesis, reduced degree of CM apoptosis, and reduced oxidative stress post MI. There was significantly higher numbers of dividing CM in the infarct zone between 3-9 days post MI (P < 0.001). Mechanistically, we determined that Pkm2 interacts with ß-catenin (Ctnnb1) in the cytoplasm of CM, inhibiting Ctnnb1 phosphorylation at serine 552 and tyrosine 333, by Akt. In the absence of Pkm2, Ctnnb1 translocates to the nucleus leading to transcriptional activation of proliferation-associated target genes. All these effects are abrogated by genetic co-deletion of Pkm2 and Ctnnb1. Collectively, this work supports a novel antiproliferative function for Pkm2 in CM through the sequestration of Ctnnb1 in the cytoplasm of CM whereas loss of Pkm2 is essential for CM proliferation. Reducing cardiac Pkm2 expression may provide a useful strategy for cardiac repair after MI in patients.


Assuntos
Proteínas de Transporte/metabolismo , Ciclo Celular/fisiologia , Proteínas de Membrana/metabolismo , Infarto do Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Hormônios Tireóideos/metabolismo , Animais , Apoptose , Diferenciação Celular , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Infarto do Miocárdio/patologia , Fosforilação , beta Catenina/metabolismo , Proteínas de Ligação a Hormônio da Tireoide
8.
Circ Res ; 100(1): 50-60, 2007 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-17158337

RESUMO

Statins are widely used clinical drugs that exert beneficial growth-suppressive effects in patients with cardiac hypertrophy. We investigated the role of the cell cycle inhibitor p21(CIP1/WAF1) (p21) in statin-dependent inhibition of hypertrophic growth in postmitotic cardiomyocytes. We demonstrate that lovastatin fails to inhibit cardiac hypertrophy to angiotensin II in p21(-/-) mice and that reconstitution of p21 function by TAT.p21 protein transduction can rescue statin action in these otherwise normally developed animals. Lovastatin specifically recruits the forkhead box FoxO3a transcription factor to the p21 promoter, mediating transcriptional transactivation of the p21 gene as analyzed in isolated primary cardiomyocytes. Lovastatin also stimulates protein kinase B/Akt kinase activity, and Akt-dependent phosphorylation forces p21 in the cytoplasm, where it inhibits Rho-kinases contributing to the suppression of cardiomyocyte hypertrophy. Loss of p21 or FoxO3a by RNA interference causes a general inhibition of lovastatin signal transduction. These results suggest that p21 functions as FoxO3a downstream target to mediate an statin-derived anti-hypertrophic response. Taken together, our genetic and biochemical data delineate an essential function of p21 for statin-dependent inhibition of cardiac myocyte hypertrophy.


Assuntos
Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Inibidores de Hidroximetilglutaril-CoA Redutases/metabolismo , Miócitos Cardíacos/metabolismo , Transdução de Sinais , Animais , Células Cultivadas , Inibidor de Quinase Dependente de Ciclina p21/deficiência , Inibidor de Quinase Dependente de Ciclina p21/genética , Citoplasma/metabolismo , Proteína Forkhead Box O3 , Fatores de Transcrição Forkhead/antagonistas & inibidores , Fatores de Transcrição Forkhead/efeitos dos fármacos , Fatores de Transcrição Forkhead/fisiologia , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Hipertrofia/prevenção & controle , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Lovastatina/antagonistas & inibidores , Lovastatina/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Fosforilação/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/fisiologia , Interferência de RNA , Ratos , Transcrição Gênica/fisiologia , Quinases Associadas a rho
9.
J Neurosci ; 27(17): 4562-71, 2007 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-17460069

RESUMO

The role of glucocorticoids in the regulation of apoptosis remains incongruous. Here, we demonstrate that corticosterone protects neurons from apoptosis by a mechanism involving the cyclin-dependent kinase inhibitor p21(Waf1/Cip1). In primary cortical neurons, corticosterone leads to a dose- and Akt-kinase-dependent upregulation with enhanced phosphorylation and cytoplasmic appearance of p21(Waf1/Cip1) at Thr 145. Exposure of neurons to the neurotoxin ethylcholine aziridinium (AF64A) results in activation of caspase-3 and a dramatic loss of p21(Waf1/Cip1) preceding apoptosis in neurons. These effects of AF64A are reversed by pretreatment with corticosterone. Corticosterone-mediated upregulation of p21(Waf1/Cip1) and neuroprotection are completely abolished by glucocorticoid and mineralocorticoid receptor antagonists as well as inhibitors of PI3- and Akt-kinase. Both germline and somatically induced p21(Waf1/Cip1) deficiency abrogate the neuroprotection by corticosterone, whereas overexpression of p21(Waf1/Cip1) suffices to protect neurons from apoptosis. We identify p21(Waf1/Cip1) as a novel antiapoptotic factor for postmitotic neurons and implicate p21(Waf1/Cip1) as the molecular target of neuroprotection by high-dose glucocorticoids.


Assuntos
Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Glucocorticoides/farmacologia , Neurônios/enzimologia , Fármacos Neuroprotetores/farmacologia , Transdução de Sinais/fisiologia , Animais , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Células Cultivadas , Inibidor de Quinase Dependente de Ciclina p21/genética , Citoplasma/enzimologia , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica/fisiologia , Camundongos , Camundongos Endogâmicos , Camundongos Knockout , Neurônios/citologia , Neurônios/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos , Transcrição Gênica/fisiologia
10.
Mol Cell Biol ; 22(7): 2147-58, 2002 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-11884602

RESUMO

The E2F family of transcription factors comprises six related members which are involved in the control of the coordinated progression through the G(1)/S-phase transition of cell cycle or in cell fate decision. Their activity is regulated by pocket proteins, including pRb, p107, and p130. Here we show that E2F1 directly interacts with the ETS-related transcription factor GABPgamma1 in vitro and in vivo. The binding domain interacting with GABPgamma1 was mapped to the C-terminal amino acids 310 to 437 of E2F1, which include its transactivation and pRb binding domain. Among the E2F family of transcription factors, the interaction with GABPgamma1 is restricted to E2F1. DNA-binding E2F1 complexes containing GABPgamma1 are characterized by enhanced E2F1-dependent transcriptional activity. Moreover, GABPgamma1 suppresses E2F1-dependent apoptosis by mechanisms other than the inhibition of the transactivation capacity of E2F1. In summary, our results provide evidence for a novel pRb-independent mechanism regulating E2F1-dependent transcription and apoptosis.


Assuntos
Apoptose , Proteínas de Ciclo Celular , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica , Fatores de Transcrição/metabolismo , Transcrição Gênica/genética , Animais , Western Blotting , Linhagem Celular , Proteínas de Ligação a DNA/genética , Fatores de Transcrição E2F , Fator de Transcrição E2F1 , Ensaio de Desvio de Mobilidade Eletroforética , Citometria de Fluxo , Fator de Transcrição de Proteínas de Ligação GA , Humanos , Marcação In Situ das Extremidades Cortadas , Miocárdio/citologia , Miocárdio/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Especificidade por Substrato , Fatores de Transcrição/química , Fatores de Transcrição/genética , Técnicas do Sistema de Duplo-Híbrido
11.
Mol Cell Biol ; 23(2): 555-65, 2003 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-12509454

RESUMO

Cell cycle withdrawal associated with terminal differentiation is responsible for the incapability of many organs to regenerate after injury. Here, we employed a cell-free system to analyze the molecular mechanisms underlying cell cycle arrest in cardiomyocytes. In this assay, incubation of S phase nuclei mixed with cytoplasmic extract of S phase cells and adult primary cardiomyocytes results in a dramatic reduction of proliferating cell nuclear antigen (PCNA) protein levels. This effect was blocked by the proteasome inhibitors MG132 and lactacystin, whereas actinomycin D and cycloheximide had no effect. Immunodepletion and addback experiments revealed that the effect of cardiomyocyte extract on PCNA protein levels is maintained by p21 but not p27. In serum-stimulated cardiomyocytes PCNA expression was reconstituted, whereas the protein level of p21 but not that of p27 was reduced. Cytoplasmic extract of serum-stimulated cardiomyocytes did not influence the PCNA protein level in S phase nuclei. Moreover, the hypertrophic effect of serum stimulation was blocked by ectopic expression of p21 and the PCNA protein level was found to be upregulated in adult cardiomyocytes derived from p21 knockout mice. Our data provide evidence that p21 regulates the PCNA protein level in adult cardiomyocytes, which has implications for cardiomyocyte growth control.


Assuntos
Ciclinas/fisiologia , Proteínas Musculares , Miocárdio/citologia , Antígeno Nuclear de Célula em Proliferação/biossíntese , Adenoviridae/genética , Animais , Diferenciação Celular , Divisão Celular , Núcleo Celular/metabolismo , Sistema Livre de Células , Inibidor de Quinase Dependente de Ciclina p21 , Ciclinas/metabolismo , Cicloeximida/farmacologia , Citoplasma/metabolismo , Dactinomicina/farmacologia , Relação Dose-Resposta a Droga , Regulação para Baixo , Eletroforese em Gel de Poliacrilamida , Técnica Indireta de Fluorescência para Anticorpo , Immunoblotting , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Proteínas dos Microfilamentos/metabolismo , Miocárdio/metabolismo , Plasmídeos/metabolismo , Inibidores da Síntese de Proteínas/farmacologia , Fase S , Regulação para Cima
12.
Sci Rep ; 7: 41490, 2017 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-28148912

RESUMO

Cardiac homeostasis requires proper control of protein turnover. Protein degradation is principally controlled by the Ubiquitin-Proteasome System. Mule is an E3 ubiquitin ligase that regulates cellular growth, DNA repair and apoptosis to maintain normal tissue architecture. However, Mule's function in the heart has yet to be described. In a screen, we found reduced Mule expression in left ventricular samples from end-stage heart failure patients. Consequently, we generated conditional cardiac-specific Mule knockout (Mule fl/fl(y);mcm) mice. Mule ablation in adult Mule fl/fl(y);mcm mice prevented myocardial c-Myc polyubiquitination, leading to c-Myc accumulation and subsequent reduced expression of Pgc-1α, Pink1, and mitochondrial complex proteins. Furthermore, these mice developed spontaneous cardiac hypertrophy, left ventricular dysfunction, and early mortality. Co-deletion of Mule and c-Myc rescued this phenotype. Our data supports an indispensable role for Mule in cardiac homeostasis through the regulation of mitochondrial function via maintenance of Pgc-1α and Pink1 expression and persistent negative regulation of c-Myc.


Assuntos
Mitocôndrias/patologia , Miocárdio/patologia , Estresse Oxidativo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Proteínas Quinases/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Apoptose , Cardiomegalia/complicações , Cardiomegalia/metabolismo , Cardiomegalia/patologia , Regulação para Baixo/genética , Metabolismo Energético , Fibrose , Deleção de Genes , Perfilação da Expressão Gênica , Insuficiência Cardíaca/complicações , Insuficiência Cardíaca/patologia , Humanos , Camundongos Knockout , Mitocôndrias/metabolismo , Especificidade de Órgãos , Biogênese de Organelas , Fosforilação Oxidativa , Estabilidade Proteica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
13.
PLoS One ; 12(12): e0189861, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29267372

RESUMO

The maintenance of normal heart function requires proper control of protein turnover. The ubiquitin-proteasome system is a principal regulator of protein degradation. Mdm2 is the main E3 ubiquitin ligase for p53 in mitotic cells thereby regulating cellular growth, DNA repair, oxidative stress and apoptosis. However, which of these Mdm2-related activities are preserved in differentiated cardiomyocytes has yet to be determined. We sought to elucidate the role of Mdm2 in the control of normal heart function. We observed markedly reduced Mdm2 mRNA levels accompanied by highly elevated p53 protein expression in the hearts of wild type mice subjected to myocardial infarction or trans-aortic banding. Accordingly, we generated conditional cardiac-specific Mdm2 gene knockout (Mdm2f/f;mcm) mice. In adulthood, Mdm2f/f;mcm mice developed spontaneous cardiac hypertrophy, left ventricular dysfunction with early mortality post-tamoxifen. A decreased polyubiquitination of myocardial p53 was observed, leading to its stabilization and activation, in the absence of acute stress. In addition, transcriptomic analysis of Mdm2-deficient hearts revealed that there is an induction of E2f1 and c-Myc mRNA levels with reduced expression of the Pgc-1a/Ppara/Esrrb/g axis and Pink1. This was associated with a significant degree of cardiomyocyte apoptosis, and an inhibition of redox homeostasis and mitochondrial bioenergetics. All these processes are early, Mdm2-associated events and contribute to the development of pathological hypertrophy. Our genetic and biochemical data support a role for Mdm2 in cardiac growth control through the regulation of p53, the Pgc-1 family of transcriptional coactivators and the pivotal antioxidant Pink1.


Assuntos
Miocárdio/metabolismo , Estresse Oxidativo , Proteínas Proto-Oncogênicas c-mdm2/genética , Animais , Apoptose , Ecocardiografia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Microscopia de Fluorescência , Mitocôndrias Cardíacas/enzimologia , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteína Supressora de Tumor p53/metabolismo
14.
Cell Cycle ; 16(17): 1585-1600, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28745540

RESUMO

Defining the roadblocks responsible for cell cycle arrest in adult cardiomyocytes lies at the core of developing cardiac regenerative therapies. p53 and Mdm2 are crucial mediators of cell cycle arrest in proliferative cell types, however, little is known about their function in regulating homeostasis and proliferation in terminally differentiated cell types, like cardiomyocytes. To explore this, we generated a cardiac-specific conditional deletion of p53 and Mdm2 (DKO) in adult mice. Herein we describe the development of a dilated cardiomyopathy, in the absence of cardiac hypertrophy. In addition, DKO hearts exhibited a significant increase in cardiomyocyte proliferation. Further evaluation showed that proliferation was mediated by a significant increase in Cdk2 and cyclin E with downregulation of p21Cip1 and p27Kip1. Comparison of miRNA expression profiles from DKO mouse hearts and controls revealed 11 miRNAs that were downregulated in the DKO hearts and enriched for mRNA targets involved in cell cycle regulation. Knockdown of these miRNAs in neonatal rat cardiomyocytes significantly increased cytokinesis with an upregulation in the expression of crucial cell cycle regulators. These results illustrate the importance of the cooperative activities of p53 and Mdm2 in a network of miRNAs that function to impose a barrier against aberrant cardiomyocyte cell cycle re-entry to maintain cardiac homeostasis.


Assuntos
Pontos de Checagem do Ciclo Celular , Homeostase , MicroRNAs/metabolismo , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Envelhecimento , Animais , Cardiomiopatias/genética , Cardiomiopatias/patologia , Ciclo Celular/genética , Pontos de Checagem do Ciclo Celular/genética , Proliferação de Células/genética , Ciclina E/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Regulação para Baixo/genética , Deleção de Genes , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Mutantes , MicroRNAs/genética , Ratos Wistar
15.
Circ Res ; 91(9): 782-9, 2002 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-12411392

RESUMO

Apoptotic cell death is an important mode of cell loss contributing to heart dysfunction. To analyze the importance of the E2F-dependent regulation of gene transcription in cardiomyocyte apoptosis, the function of cell cycle factors impinging on the retinoblastoma protein (pRb)/E2F pathway was investigated. In isolated neonatal ventricular myocytes, apoptotic cell death induced by hypoxia (deferoxamine, 100 micro mol/L) specifically activated cyclin-dependent kinases (cdks) 2 and 3. Apoptotic cell death was inhibited by ectopic expression of cdk inhibitors p21(CIP) and p27(KIP1) but not p16(INK4). In addition, apoptosis was also abrogated by forced expression of kinase dead mutant proteins of cdk2/3 but not of cdk4/6. Introduction of cdk inhibitors or dominant-negative cdk2/3 blocked pRb hyperphosphorylation and abrogated E2F-dependent gene transcription, including that of the E2F-responsive genes of proapoptotic caspase 3 and caspase 7. Moreover, introduction of constitutively active pRb and transcriptionally inert mutant E2F1/DP1 efficiently protected cardiomyocytes from apoptosis. In conclusion, these data demonstrate that cdk-specific inactivation of pRb and the subsequent activation of E2F-dependent gene transcription are required for cardiomyocyte apoptosis.


Assuntos
Apoptose/fisiologia , Hipóxia Celular/fisiologia , Proteínas de Ligação a DNA , Miocárdio/metabolismo , Proteína do Retinoblastoma/metabolismo , Transdução de Sinais/fisiologia , Animais , Animais Recém-Nascidos , Caspases/genética , Caspases/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Células Cultivadas , Inibidor p16 de Quinase Dependente de Ciclina/genética , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Inibidor de Quinase Dependente de Ciclina p21 , Inibidor de Quinase Dependente de Ciclina p27 , Quinases Ciclina-Dependentes/antagonistas & inibidores , Quinases Ciclina-Dependentes/genética , Quinases Ciclina-Dependentes/metabolismo , Ciclinas/genética , Ciclinas/metabolismo , Fatores de Transcrição E2F , Fator de Transcrição E2F1 , Inibidores Enzimáticos/farmacologia , Genes Reporter , Miocárdio/citologia , Fosforilação/efeitos dos fármacos , Regiões Promotoras Genéticas/fisiologia , Ratos , Ratos Wistar , Proteína do Retinoblastoma/genética , Transdução de Sinais/efeitos dos fármacos , Fator de Transcrição DP1 , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica/efeitos dos fármacos , Transcrição Gênica/fisiologia , Transfecção , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
16.
Peptides ; 83: 38-48, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27486069

RESUMO

The cyclin-dependent kinase inhibitor p21(CIP1/WAF1) (p21) is highly expressed in the adult heart. However, in response to stress, its expression is downregulated. Therefore, we investigated the role of p21 in the regulation of cardiac hypertrophic growth. At 2 months of age, p21 knockout mice (p21KO) lack an overt cardiac phenotype. In contrast, by 10 months of age, p21KO developed age-dependent cardiac hypertrophy and heart failure. After 3 weeks of trans-aortic banding (TAB), the heart/body weight ratio in 11 week old p21KO mice increased by 57%, as compared to 42% in wild type mice indicating that p21KO have a higher susceptibility to pressure overload-induced cardiac hypertrophy. We then chronically infused 8 week old wild type mice with Angiotensin II (2.0mg/kg/min) or saline subcutaneously by osmotic pumps for 14 days. Recombinant TAT conjugated p21 protein variants (10mg/kg body weight) or saline were intraperitoneally injected once daily for 14 days into Angiotensin II and saline-infused animals. Angiotensin II treated mice developed pathological cardiac hypertrophy with an average increase of 38% in heart/body weight ratios, as compared to saline-treated controls. Reconstitution of p21 function by TAT.p21 protein transduction prevented Angiotensin II-dependent development of cardiac hypertrophy and failure. Taken together, our genetic and biochemical data show an important function of p21 in the regulation of growth-related processes in the heart.


Assuntos
Angiotensina II/metabolismo , Cardiomegalia/genética , Inibidor de Quinase Dependente de Ciclina p21/genética , Insuficiência Cardíaca/genética , Angiotensina II/administração & dosagem , Animais , Cardiomegalia/fisiopatologia , Cardiomegalia/terapia , Inibidor de Quinase Dependente de Ciclina p21/biossíntese , Regulação da Expressão Gênica/genética , Coração/crescimento & desenvolvimento , Coração/fisiopatologia , Insuficiência Cardíaca/fisiopatologia , Insuficiência Cardíaca/terapia , Humanos , Camundongos , Camundongos Knockout , Proteína Oncogênica v-akt/genética , Proteínas Proto-Oncogênicas c-myc/genética , Proteína do Retinoblastoma/genética
17.
Methods Mol Biol ; 296: 239-45, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-15576936

RESUMO

The E2F-family of transcripion factors exerts fascinating and contrasting functions in transcriptional repression and activation of genes regulating proliferation, apoptosis, and differentiation. E2F is principally regulated by its temporal association with retinoblastoma pocket protein (pRb) family members. In turn, pRb is regulated through phosphorylation by cyclin-dependent kinase (cdk). The activity of cdk is negatively regulated by cdk-inhibitors, exemplified by p16INK4a, p21CIP1, and p27KIP1. Therefore, positive and negative signaling events converge on E2F activity resulting in distinct growth-controling and apoptotic activities. Here we describe the immunocytochemical detection of E2F, genomic DNA, BrdU-incorporation, and mitosis in cardiomyoctes. A detailed protocol is given to illustrate this technique in primary heart muscle cells.


Assuntos
Proteínas de Ciclo Celular/fisiologia , Ciclo Celular/fisiologia , Proteínas de Ligação a DNA/fisiologia , Proteína do Retinoblastoma/fisiologia , Fatores de Transcrição/fisiologia , Animais , Animais Recém-Nascidos , Bromodesoxiuridina , Separação Celular/métodos , Células Cultivadas , Células Imobilizadas , Fatores de Transcrição E2F , Técnica Indireta de Fluorescência para Anticorpo/métodos , Imuno-Histoquímica/métodos , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Ratos
18.
Nat Med ; 14(3): 315-24, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18311148

RESUMO

p27(Kip1) (p27) blocks cell proliferation through the inhibition of cyclin-dependent kinase-2 (Cdk2). Despite its robust expression in the heart, little is known about both the function and regulation of p27 in this and other nonproliferative tissues, in which the expression of its main target, cyclin E-Cdk2, is known to be very low. Here we show that angiotensin II, a major cardiac growth factor, induces the proteasomal degradation of p27 through protein kinase CK2-alpha'-dependent phosphorylation. Conversely, unphosphorylated p27 potently inhibits CK2-alpha'. Thus, the p27-CK2-alpha' interaction is regulated by hypertrophic signaling events and represents a regulatory feedback loop in differentiated cardiomyocytes analogous to, but distinct from, the feedback loop arising from the interaction of p27 with Cdk2 that controls cell proliferation. Our data show that extracellular growth factor signaling regulates p27 stability in postmitotic cells, and that inactivation of p27 by CK2-alpha' is crucial for agonist- and stress-induced cardiac hypertrophic growth.


Assuntos
Caseína Quinase II/metabolismo , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Miocárdio/metabolismo , Envelhecimento , Angiotensina II/farmacologia , Animais , Cardiomegalia/genética , Caseína Quinase II/genética , Proliferação de Células , Células Cultivadas , Inibidor de Quinase Dependente de Ciclina p27/deficiência , Inibidor de Quinase Dependente de Ciclina p27/genética , Humanos , Camundongos , Camundongos Knockout , Miocárdio/patologia , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Ligação Proteica , Ratos , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA