Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
Dev Genes Evol ; 230(1): 13-26, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-32002661

RESUMO

The group Xiphosurida (horseshoe "crabs") is today only represented by four species. However, in the fossil record, several dozen species have been described, especially from the Carboniferous (about 300 million years ago). Several species have been interpreted as representatives of Euproops or Belinurus, but there is ongoing discussion which of these species are valid and how they can be differentiated. Recent studies suggested that differences in the timing of individual development could provide information for species distinction, exemplified by studies on Euproops danae (Mazon Creek, USA) and Euproops sp. ("Piesproops"; Piesberg, Germany). For this study, we reinvestigated all Carboniferous xiphosurids from the British Coal Measures stored in the collections of the Natural History Museum London. Size comparisons of the specimens revealed nine size groups; the smaller specimens were originally labelled as Belinurus, the larger ones as Euproops. The nine size groups exhibit five different morphotypes differing in structures surrounding the posterior shield (= thoracetron): spines of different lengths and, in larger specimens, a more or less developed flange. Two of these morphotypes show significantly longer spines than the remaining specimens and could be conspecific as E. anthrax. The remaining specimens are interpreted as growth series of another species, presumably of E. rotundatus. An ontogenetic flange formation is also known from E. danae and the "Piesproops", but the timing differs between all three species. In E. rotundatus, the flange develops rather late, but then comparably abruptly, which makes this development more metamorphic in relation to development in the other species.


Assuntos
Caranguejos Ferradura/classificação , Animais , Fósseis , Caranguejos Ferradura/anatomia & histologia , Caranguejos Ferradura/crescimento & desenvolvimento , Museus , História Natural
2.
Proc Natl Acad Sci U S A ; 113(20): 5542-6, 2016 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-27140601

RESUMO

A three-dimensionally preserved 2-mm-long larva of the arthropod Leanchoilia illecebrosa from the 520-million-year-old early Cambrian Chengjiang biota of China represents the first evidence, to our knowledge, of such an early developmental stage in a short-great-appendage (SGA) arthropod. The larva possesses a pair of three-fingered great appendages, a hypostome, and four pairs of well-developed biramous appendages. More posteriorly, a series of rudimentary limb Anlagen revealed by X-ray microcomputed tomography shows a gradient of decreasing differentiation toward the rear. This, and postembryonic segment addition at the putative growth zone, are features of late-stage metanauplii of eucrustaceans. L. illecebrosa and other SGA arthropods, however, are considered representative of early chelicerates or part of the stem lineage of all euarthropods. The larva of an early Cambrian SGA arthropod with a small number of anterior segments and their respective appendages suggests that posthatching segment addition occurred in the ancestor of Euarthropoda.


Assuntos
Artrópodes/anatomia & histologia , Biota , Larva/anatomia & histologia , Animais , Artrópodes/ultraestrutura , China , Larva/ultraestrutura , Tomografia Computadorizada por Raios X
3.
BMC Evol Biol ; 17(1): 76, 2017 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-28279151

RESUMO

BACKGROUND: Isopods (woodlice, slaters and their relatives) are common crustaceans and abundant in numerous habitats. They employ a variety of lifestyles including free-living scavengers and predators but also obligate parasites. This modern-day variability of lifestyles is not reflected in isopod fossils so far, mostly as the life habits of many fossil isopods are still unclear. A rather common group of fossil isopods is Urda (190-100 million years). Although some of the specimens of different species of Urda are considered well preserved, crucial characters for the interpretation of their lifestyle (and also of their phylogenetic position), have so far not been accessible. RESULTS: Using up-to-date imaging methods, we here present morphological details of the mouthparts and the thoracopods of 168 million years old specimens of Urda rostrata. Mouthparts are of a sucking-piercing-type morphology, similar to the mouthparts of representatives of ectoparasitic isopods in groups such as Aegidae or Cymothoidae. The thoracopods bear strong, curved dactyli most likely for attaching to a host. Therefore, mouthpart and thoracopod morphology indicate a parasitic lifestyle of Urda rostrata. Based on morphological details, Urda seems deeply nested within the parasitic isopods of the group Cymothoida. CONCLUSIONS: Similarities to Aegidae and Cymothoidae are interpreted as ancestral characters; Urda is more closely related to Gnathiidae, which is therefore also interpreted as an ingroup of Cymothoida. With this position Urda provides crucial information for our understanding of the evolution of parasitism within isopods. Finally, the specimens reported herein represent the oldest parasitic isopods known to date.


Assuntos
Evolução Biológica , Isópodes/fisiologia , Animais , Ecossistema , Fósseis , Isópodes/classificação , Parasitos/fisiologia , Filogenia
4.
BMC Evol Biol ; 15: 208, 2015 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-26416251

RESUMO

BACKGROUND: Holometabolous insects are the most diverse, speciose and ubiquitous group of multicellular organisms in terrestrial and freshwater ecosystems. The enormous evolutionary and ecological success of Holometabola has been attributed to their unique postembryonic life phases in which nonreproductive and wingless larvae differ significantly in morphology and life habits from their reproductive and mostly winged adults, separated by a resting stage, the pupa. Little is known of the evolutionary developmental mechanisms that produced the holometabolous larval condition and their Paleozoic origin based on fossils and phylogeny. RESULTS: We provide a detailed anatomic description of a 311 million-year-old specimen, the oldest known holometabolous larva, from the Mazon Creek deposits of Illinois, U.S.A. The head is ovoidal, downwardly oriented, broadly attached to the anterior thorax, and bears possible simple eyes and antennae with insertions encircled by molting sutures; other sutures are present but often indistinct. Mouthparts are generalized, consisting of five recognizable segments: a clypeo-labral complex, mandibles, possible hypopharynx, a maxilla bearing indistinct palp-like appendages, and labium. Distinctive mandibles are robust, triangular, and dicondylic. The thorax is delineated into three, nonoverlapping regions of distinctive surface texture, each with legs of seven elements, the terminal-most bearing paired claws. The abdomen has ten segments deployed in register with overlapping tergites; the penultimate segment bears a paired, cercus-like structure. The anterior eight segments bear clawless leglets more diminutive than the thoracic legs in length and cross-sectional diameter, and inserted more ventrolaterally than ventrally on the abdominal sidewall. CONCLUSIONS: Srokalarva berthei occurred in an evolutionary developmental context likely responsible for the early macroevolutionary success of holometabolous insects. Srokalarva berthei bore head and prothoracic structures, leglet series on successive abdominal segments - in addition to comparable features on a second taxon eight million-years-younger - that indicates Hox-gene regulation of segmental and appendage patterning among earliest Holometabola. Srokalarva berthei body features suggest a caterpillar-like body plan and head structures indicating herbivory consistent with known, contemporaneous insect feeding damage on seed plants. Taxonomic resolution places Srokalarva berthei as an extinct lineage, apparently possessing features closer to neuropteroid than other holometabolous lineages.


Assuntos
Fósseis , Insetos/anatomia & histologia , Insetos/genética , Animais , Evolução Biológica , Olho/anatomia & histologia , Genes Homeobox , Cabeça/anatomia & histologia , Insetos/crescimento & desenvolvimento , Insetos/fisiologia , Larva/anatomia & histologia , Larva/genética , Larva/fisiologia , Filogenia
5.
BMC Evol Biol ; 14: 159, 2014 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-25927449

RESUMO

BACKGROUND: Thylacocephala is a group of enigmatic extinct arthropods. Here we provide a full description of the oldest unequivocal thylacocephalan, a new genus and species Thylacares brandonensis, which is present in the Silurian Waukesha fauna from Wisconsin, USA. We also present details of younger, Jurassic specimens, from the Solnhofen lithographic limestones, which are crucial to our interpretation of the systematic position of Thylacocephala. In the past, Thylacocephala has been interpreted as a crustacean ingroup and as closely related to various groups such as cirripeds, decapods or remipeds. RESULTS: The Waukesha thylacocephalan, Thylacares brandonensis n. gen. n. sp., bears compound eyes and raptorial appendages that are relatively small compared to those of other representatives of the group. As in other thylacocephalans the large bivalved shield encloses much of the entire body. The shield lacks a marked optical notch. The eyes, which project just beyond the shield margin, appear to be stalked. Head appendages, which may represent antennulae, antennae and mandibles, appear to be present. The trunk is comprised of up to 22 segments. New details observed on thylacocephalans from the Jurassic Solnhofen lithographic limestones include antennulae and antennae of Mayrocaris bucculata, and endites on the raptorial appendages and an elongate last trunk appendage in Clausocaris lithographica. Preserved features of the internal morphology in C. lithographica include the muscles of the raptorial appendage and trunk. CONCLUSIONS: Our results indicate that some 'typical' thylacocephalan characters are unique to the group; these autapomorphies contribute to the difficulty of determining thylacocephalan affinities. While the new features reported here are consistent with a eucrustacean affinity, most previous hypotheses for the position of Thylacocephala within Eucrustacea (as Stomatopoda, Thecostraca or Decapoda) are shown to be unlikely. A sister group relationship to Remipedia appears compatible with the observed features of Thylacocephala but more fossil evidence is required to test this assertion. The raptorial appendages of Thylacocephala most likely projected 45 degrees abaxially instead of directly forward as previously reconstructed. The overall morphology of thylacocephalans supports a predatory mode of life.


Assuntos
Artrópodes/anatomia & histologia , Artrópodes/classificação , Crustáceos/anatomia & histologia , Crustáceos/classificação , Fósseis , Animais , Decápodes/classificação , Ecossistema , Olho/anatomia & histologia , Fósseis/anatomia & histologia , Cabeça/anatomia & histologia , Paleontologia , Filogenia
8.
BMC Biol ; 11: 64, 2013 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-23721223

RESUMO

BACKGROUND: The Burgess Shale is well known for its preservation of a diverse soft-bodied biota dating from the Cambrian period (Series 3, Stage 5). While previous paleoecological studies have focused on particular species (autecology) or entire paleocommunities (synecology), studies on the ecology of populations (demecology) of Burgess Shale organisms have remained mainly anecdotal. RESULTS: Here, we present evidence for mass molting events in two unrelated arthropods from the Burgess Shale Walcott Quarry, Canadaspis perfecta and a megacheiran referred to as Alalcomenaeus sp. CONCLUSIONS: These findings suggest that the triggers for such supposed synchronized molting appeared early on during the Cambrian radiation, and synchronized molting in the Cambrian may have had similar functions in the past as it does today. In addition, the finding of numerous juvenile Alalcomenaeus sp. molts associated with the putative alga Dictyophycus suggests a possible nursery habitat. In this nursery habitat a population of this animal might have found a more protected environment in which to spend critical developmental phases, as do many modern species today.


Assuntos
Artrópodes/fisiologia , Fenômenos Ecológicos e Ambientais , Fósseis , Animais , Colúmbia Britânica , Alemanha , Muda , Fatores de Tempo
9.
Insect Sci ; 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39010665

RESUMO

We report a 35 million-year-old lacewing larva from Ukrainian amber. This insect larva has a morphology up to now only known from 100 million-year-old amber. Therefore, this morphology survived more than 60 million years longer than previously assumed. Our find contradicts the common notion that the fauna 35 million years ago was already very modern.

10.
PeerJ ; 12: e17014, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38426144

RESUMO

Background: The biogeographical and ecological history of true flies (Diptera) in New Zealand is little known due to a scarcity of fossil specimens. Here, we report a fauna of immature aquatic dipterans from freshwater diatomites of the early Miocene Foulden Maar Fossil-Lagerstätte in southern New Zealand. Methods: We document 30 specimens of immature dipterans, mostly pupae, and compare their external morphology to extant aquatic Diptera. Based on the reconstructed paleoenvironment of Foulden Maar, we discuss taxonomic, ecological and taphonomic implications of this early Miocene fauna. Results: Among Chironomidae, one pupal morphotype is attributed to Tanypodinae, one pupal morphotype and one larval morphotype are placed into Chironomus (Chironominae) and a further morphotype into Chironominae incertae sedis. Chaoboridae are represented by a pupal morphotype congeneric or very close to the extant Chaoborus, today globally distributed except for New Zealand. Additional immature specimens are likely larvae and puparia of brachyceran flies but cannot be identified to a narrower range. These finds document an aquatic dipteran fauna in New Zealand in the earliest Miocene and highlight Neogene extinction as a factor in shaping the extant Diptera fauna in New Zealand. Immature aquatic dipterans were a common and likely ecologically important component of the early Miocene Foulden Maar lake. Preservation of larvae and pupae may have been promoted by diatomaceous microbial mats and the light colour of the diatomite likely facilitated spotting of these minute fossils in the field.


Assuntos
Chironomidae , Fósseis , Animais , Nova Zelândia , Larva , Lagos , Pupa
11.
Sci Rep ; 14(1): 8682, 2024 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622222

RESUMO

Brachyura and Anomala (or Anomura), also referred to as true and false crabs, form the species-rich and globally abundant group of Meiura, an ingroup of Decapoda. The evolutionary success of both groups is sometimes attributed to the process of carcinization (evolving a crab-like body), but might also be connected to the megalopa, a specific transitional larval phase. We investigate these questions, using outline analysis of the shields (carapaces) of more than 1500 meiuran crabs. We compare the morphological diversity of different developmental phases of major ingroups of true and false crabs. We find that morphological diversity of adults is larger in false crabs than in true crabs, indicating that taxonomic diversity and morphological diversity are not necessarily linked. The increasing morphological disparity of adults of true and false crabs with increasing phylogenetic distance furthermore indicates diverging evolution of the shield morphology of adult representatives of Meiura. Larvae of true crabs also show larger diversity than their adult counterparts, highlighting the importance of larvae for biodiversity studies. The megalopa phase of Meiura appears to be plesiomorphic, as it overlaps between true and false crabs and shows little diversity. Causes may be common evolutionary constraints on a developmental phase specialized for transitioning.


Assuntos
Anomuros , Braquiúros , Besouros , Animais , Braquiúros/anatomia & histologia , Filogenia , Anomuros/anatomia & histologia , Larva
12.
Insects ; 15(6)2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38921095

RESUMO

Resin is a plastic-like product of trees. Older occurrences of such resin are referred to as amber and are considered fossil resin. Younger resins are termed copals. Even younger ones have been dubbed defaunation resins. Non-fossil resins remain in a terminological limbo, often referred to as "sub-fossils". We report two lepidopteran caterpillars preserved in non-fossil resin: one from Madagascar, one from Brazil. Prominent hairs (=setae) and spines (=spine-like setae) of the specimens make it likely that they represent larvae of Erebidae (e.g., tussock moths and others). So far, most known caterpillars preserved in resins are either "naked" or bear protective cases; only few are armoured with spines or hairs. In particular, long-haired caterpillars such as the ones reported here are so far almost absent. Only one specimen with comparable setae has been reported from 15-million-year-old Dominican amber, but no significant details of this specimen are accessible. We briefly also review the record of caterpillars known from the Holocene, recognising that it is very sparse. The new specimens demonstrate that very hairy caterpillars can readily be preserved in resins in fine detail. Furthermore, the specimens increase the known size range of caterpillars preserved in resins, with one measuring more than 12 mm.

13.
Insect Sci ; 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39049545

RESUMO

Mantodea (praying mantises) is a group of exclusively predatory insects, which, together with nonraptorial blattodeans (cockroaches and termites) and groups exclusively found in the fossil record, form the group Dictyoptera. A central characteristic of Mantodea is the specialization of their first pair of legs as raptorial grasping appendages, but the evolution from walking to raptorial legs is not yet fully understood. Here, we trace the evolution of the raptorial appendages in Dictyoptera through time using a morphometric (morphospaces) approach. We also describe two new mantodean nymphs preserved in amber from the Cretaceous and Eocene, which expand the scarce mantodean fossil record. Blattodean and mantodean appendages appear distinct in morphospace, but several appendages of fossil non-mantodeans can be considered raptorial, providing a potential transitional link between walking and raptorial morphotypes. Therefore, we discuss potential mantodean affinities for other predatory fossil dictyopterans. We examine changes across extant mantodeans, characterized by a straightening of the tibia especially associated with the rise of the diversification of the Mantidea and discuss whether a thickening of the femur could reflect an early adaptation to cursorial hunting.

14.
Insects ; 15(4)2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38667400

RESUMO

Diptera are one of the four megadiverse groups of holometabolan insects. Flies perform numerous ecological functions, especially in their larval stages. We can assume that this was already the case in the past; however, fly larvae remain rare in most deposits. Here we report new dipteran larvae preserved in Cretaceous (about 99 Ma) Kachin amber from Myanmar and, even older, Jurassic (about 165 Ma) compression fossils from China. Through light microscopy and micro-CT scanning we explore their peculiar morphology and discuss their possible phylogenetic affinities. Several larvae seem to represent the lineage of Stratiomyomorpha. A few others present characters unique to Xylophagidae (awl-flies), as well as to Athericidae (water sniper-flies), resulting in a chimeric morphology. Understanding the exact relationships of most of these specimens with a particular lineage remains challenging, since they differ considerably from any other known dipteran larvae and present some unique traits. Additionally, we report new specimens of Qiyia jurassica Chen et al., 2014, supposedly parasitic larvae, most likely representatives of Athericidae. These new findings offer valuable insights into the evolution of the early diversification of the brachyceran flies and underscore the importance of immature stages in understanding the evolutionary history and ecology of flies.

15.
iScience ; 27(1): 108621, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38213619

RESUMO

Holometabolan larvae are a major part of the animal biomass and an important food source for many animals. Many larvae evolved anti-predator strategies and some of these can even be recognized in fossils. A Lagerstätte known for well-preserved holometabolan larvae is the approximately 100-million-year-old Kachin amber from Myanmar. Fossils can not only allow to identify structural defensive specializations, but also lifestyle and even behavioral aspects. We review here the different defensive strategies employed by various holometabolan larvae found in Kachin amber, also reporting new cases of a leaf-mining hymenopteran caterpillar and a hangingfly caterpillar with extensive spines. This overview demonstrates that already 100 million years ago many modern strategies had already evolved in multiple lineages, but also reveals some cases of now extinct strategies. The repetitive independent evolution of similar strategies in distantly related lineages indicates that several strategies evolved convergently as a result of similar selective pressures.

16.
Dev Genes Evol ; 223(6): 363-73, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24002583

RESUMO

Modern achelate lobsters, slipper and spiny lobsters, have a specific post-embryonic developmental pattern with the following phases: phyllosoma, nisto (slipper lobsters) or puerulus (spiny lobsters), juvenile and adult. The phyllosoma is a peculiar larva, which transforms through a metamorphic moult into another larval form, the nisto or puerulus which largely resembles the juvenile. Unlike the nisto and puerulus, the phyllosoma is characterised by numerous morphological differences to the adult, e.g. a thin head shield, elongate appendages, exopods on these appendages and a special claw. Our reinvestigation of the 85 million years old fossil "Eryoneicus sahelalmae" demonstrates that it represents an unusual type of achelatan lobster larva, characterised by a mixture of phyllosoma and post-phyllosoma characters. We ascribe it to its own genus: Polzicaris nov. gen. We study its significance by comparisons with other cases of Mesozoic fossil larvae also characterised by a mixture of characters. Accordingly, all these larvae are interpreted as ontogenetic intermediates between phyllosoma and post-phyllosoma morphology. Remarkably, most of the larvae show a unique mixture of retained larval and already developed post-larval features. Considering the different-and incompatible-mixture of characters of each of these larvae and their wide geographical and temporal distribution, we interpret all these larvae as belonging to distinct species. The particular character combinations in the different larvae make it currently difficult to reconstruct an evolutionary scenario with a stepwise character acquisition. Yet, it can be concluded that a larger diversity of larval forms and developmental patterns occurred in Mesozoic than in modern faunas.


Assuntos
Evolução Biológica , Metamorfose Biológica , Palinuridae/crescimento & desenvolvimento , Animais , Fósseis , Larva/metabolismo , Palinuridae/anatomia & histologia , Palinuridae/classificação
17.
Sci Rep ; 13(1): 6127, 2023 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-37059818

RESUMO

Loss of biodiversity and especially insect decline are widely recognised in modern ecosystems. This decline has an enormous impact due to the crucial ecological roles of insects as well as their economic relevance. For comparison, the fossil record can provide important insights on past biodiversity losses. One group of insects, for which a significant decline over the last 100 million years has often been postulated, but not demonstrated quantitatively, is Neuroptera (lacewings). Many adult lacewings are pollinators, while the larvae are mostly predators, which becomes very obvious from their prominent stylet-like mouthparts. We investigated the fossil record of larvae of all neuropteran lineages as well as a large share of extant neuropteran larvae. Based on these, we performed an outline analysis of the head with stylets. This analysis provides a quantitative frame for recognising the decline of lacewings since the Cretaceous, indicating also a severe loss of ecological roles.


Assuntos
Ecossistema , Holometábolos , Animais , Larva , Insetos/anatomia & histologia , Fósseis , Biodiversidade
18.
Insects ; 14(2)2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36835743

RESUMO

Lacewings have been suggested to be a relict group. This means that the group of lacewings, Neuroptera, should have been more diverse in the past, which also applies to many ingroups of Neuroptera. Psychopsidae, the group of silky lacewings, is one of the ingroups of Neuroptera which is relatively species-poor in the modern fauna. Larvae of the group Psychopsidae, long-nosed antlions, can be easily identified as such in being larvae of antlion-like lacewings without teeth in their stylets (=compound structure of mandible and maxilla), with empodia (=attachment structures on legs) and with a prominent forward-protruding labrum. Therefore, such larvae can also be recognised in the fossil record. An earlier study demonstrated a decline in the morphological diversity of long-nosed antlion larvae over the past 100 million years. Here, we report several dozen new long-nosed antlion larvae and expand the earlier quantitative study. Our results further corroborate the decline of silky lacewings. Yet, a lack of an indication of saturation indicates that we have still not approached the original diversity of long-nosed antlions in the Cretaceous.

19.
Insect Sci ; 30(3): 880-886, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36527289

RESUMO

We report a fossil aphidlion-like larva preserved with its egg case in 100 million year old Kachin amber, Myanmar. It appears to have been enclosed very shortly after hatching, especially when comparing it with extant aphidlions during hatching. Although hatching aphidlion-like larvae are known from amber from other localities, this is the first case from Myanmar amber, despite the comparably high number of lacewing larvae known from the latter.


Assuntos
Âmbar , Fósseis , Animais , Larva , Mianmar
20.
Insects ; 14(9)2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37754717

RESUMO

Nevrorthidae, the group of dragon lacewings, has often been considered a relic group. Today, dragon lacewings show a scattered distribution, with some species occurring in southern Europe, Japan, Australia, and one in China. The idea that this distribution is only a remnant of an originally larger distribution is further supported by fossils of the group preserved in ambers from the Baltic region (Eocene, ca. 35-40 MaBP) and Myanmar (Kachin amber, Cretaceous, ca. 100 MaBP). Larvae of the group are slender and elongated and live mostly in water. Yet, larvae are in fact very rare. So far, only slightly more than 30 larval specimens, counting all extant and fossil larvae, have been depicted in the literature. Here, we report numerous additional specimens, including extant larvae, but also fossil ones from Baltic and Kachin amber. Together with the already known ones, this sums up to over 100 specimens. We analysed quantitative aspects of the morphology of these larvae and compared them over time to identify changes in the diversity. Despite the enriched sample size, the data set is still unbalanced, with, for example, newly hatched larvae (several dozen specimens) only known from the Eocene. We expected little change in larval morphology over geological time, as indicated by earlier studies. However, on the contrary, we recognised morphologies present in fossils that are now extinct. This result is similar to those for other groups of lacewings which have a relic distribution today, as these have also suffered a loss in diversity in larval forms.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA