RESUMO
A library of regioisomeric monoterpene-based aminodiols was synthesised and applied as chiral catalysts in the addition of diethylzinc to benzaldehyde. The synthesis of the first type of aminodiols was achieved starting from (-)-8,9-dihydroperillaldehyde via reductive amination, followed by Boc protection and dihydroxylation with the OsO4/NMO system. Separation of formed stereoisomers resulted in a library of aminodiol diastereoisomers. The library of regioisomeric analogues was obtained starting from (-)-8,9-dihydroperillic alcohol, which was transformed into a mixture of allylic trichloroacetamides via Overman rearrangement. Changing the protecting group to a Boc function, the protected enamines were subjected to dihydroxylation with the OsO4/NMO system, leading to a 71:16:13 mixture of diastereoisomers, which were separated, affording the three isomers in isolated form. The obtained primary aminodiols were transformed into secondary derivatives. The regioselectivity of the ring closure of the N-benzyl-substituted aminodiols with formaldehyde was also investigated, resulting in 1,3-oxazines in an exclusive manner. To explain the stability difference between diastereoisomeric 1,3-oxazines, a series of comparative theoretical modelling studies was carried out. The obtained potential catalysts were applied in the reaction of aromatic aldehydes and diethylzinc with moderate to good enantioselectivities (up to 94% ee), whereas the opposite chiral selectivity was observed between secondary aminodiols and their ring-closed 1,3-oxazine analogues.
Assuntos
Monoterpenos , Compostos Organometálicos , Estereoisomerismo , Catálise , Monoterpenos/química , Benzaldeídos/química , Amino Álcoois/química , Amino Álcoois/síntese química , Estrutura Molecular , Aldeídos/químicaRESUMO
Four new pentadentate N5-donor ligands, [N-(1-methyl-2-imidazolyl)methyl-N-(2-pyridyl)-methyl-N-(bis-2-pyridylmethyl)-amine] (L1), [N-bis(1-methyl-2-imidazolyl)methyl-N-(bis-2-pyridylmethyl)amine] (L2), (N-(isoquinolin-3-ylmethyl)-1,1-di(pyridin-2-yl)-N-(pyridin-2-ylmethyl)methanamine (L3), and N,N-bis(isoquinolin-3-ylmethyl)-1,1-di(pyridin-2-yl)methanamine (L4), have been synthesized based on the N4Py ligand framework, where one or two pyridyl arms of the N4Py parent are replaced by (N-methyl)imidazolyl or N-(isoquinolin-3-ylmethyl) moieties. Using these four pentadentate ligands, the mononuclear complexes [FeII(CH3CN)(L1)]2+ (1a), [FeII(CH3CN)(L2)]2+ (2a), [FeII(CH3CN)(L3)]2+ (3a), and [FeII(CH3CN)(L4)]2+ (4a) have been synthesized and characterized. The half-wave potentials (E1/2) of the complexes become more positive in the order: 2a < 1a < 4a ≤ 3a ≤ [Fe(N4Py)(CH3CN)]2+. The order of redox potentials correlates well with the Fe-Namine distances observed by crystallography, which are 2a > 1a ≥ 4a > 3a ≥ [Fe(N4Py)(CH3CN)]2+. The corresponding ferryl complexes [FeIV(O)(L1)]2+ (1b), [FeIV(O)(L2)]2+ (2b), [FeIV(O)(L3)]2+ (3b), and [FeIV(O)(L4)]2+ (4b) were prepared by the reaction of the ferrous complexes with isopropyl 2-iodoxybenzoate (IBX ester) in acetonitrile. The greenish complexes 3b and 4b were also isolated in the solid state by the reaction of the ferrous complexes in CH3CN with ceric ammonium nitrate in water. Mössbauer spectroscopy and magnetic measurements (using superconducting quantum interference device) show that the four complexes 1b, 2b, 3b, and 4b are low-spin (S = 1) FeIVâO complexes. UV/vis spectra of the four FeIVâO complexes in acetonitrile show typical long-wavelength absorptions of around 700 nm, which are expected for FeIVâO complexes with N4Py-type ligands. The wavelengths of these absorptions decrease in the following order: 721 nm (2b) > 706 nm (1b) > 696 nm (4b) > 695 nm (3b) = 695 nm ([FeIV(O) (N4Py)]2+), indicating that the replacement of the pyridyl arms with (N-methyl) imidazolyl moieties makes L1 and L2 exert weaker ligand fields than the parent N4Py ligand, while the ligand field strengths of L3 and L4 are similar to the N4Py parent despite the replacement of the pyridyl arms with N-(isoquinolin-3-ylmethyl) moieties. Consequently, complexes 1b and 2b tend to be less stable than the parent [FeIV(O)(N4Py)]2+ complex: the half-life sequence at room temperature is 1.67 h (2b) < 16 h (1b) < 45 h (4b) < 63 h (3b) ≈ 60 h ([FeIV(O)(N4Py)]2+). Compared to the parent complex, 1b and 2b exhibit enhanced reactivity in both the oxidation of thioanisole in the oxygen atom transfer (OAT) reaction and the oxygenation of C-H bonds of aromatic and aliphatic substrates, presumed to occur via an oxygen rebound process. Furthermore, the second-order rate constants for hydrogen atom transfer (HAT) reactions affected by the ferryl complexes can be directly related to the C-H bond dissociation energies of a range of substrates that have been studied. Using either IBX ester or H2O2 as an oxidant, all four new FeII complexes display good performance in catalytic reactions involving both HAT and OAT reactions.
RESUMO
Despite the crucial role of CDK2 in tumorigenesis, few inhibitors reached clinical trials for managing lung cancer, the leading cause of cancer death. Herein, we report combinatorial stereoselective synthesis of rationally designed spiroindeno[1,2-b]quinoxaline-based CDK2 inhibitors for NSCLC therapy. The design relied on merging pharmacophoric motifs and biomimetic scaffold hopping into this privileged skeleton via cost-effective one-pot multicomponent [3 + 2] cycloaddition reaction. Absolute configuration was assigned by single crystal x-ray diffraction analysis and reaction mechanism was studied by Molecular Electron Density Theory. Initial MTT screening of the series against A549 cells and normal lung fibroblasts Wi-38 elected 6b as the study hit regarding potency (IC50 = 54 nM) and safety (SI = 6.64). In vitro CDK2 inhibition assay revealed that 6b (IC50 = 177 nM) was comparable to roscovitine (IC50 = 141 nM). Docking and molecular dynamic simulations suggested that 6b was stabilised into CDK2 cavity by hydrophobic interactions with key aminoacids.
Assuntos
Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Quinase 2 Dependente de Ciclina , Neoplasias Pulmonares , Humanos , Antineoplásicos/química , Benzimidazóis/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Proliferação de Células , Quinase 2 Dependente de Ciclina/antagonistas & inibidores , Ensaios de Seleção de Medicamentos Antitumorais , Neoplasias Pulmonares/tratamento farmacológico , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Estrutura Molecular , Inibidores de Proteínas Quinases/química , QuinoxalinasRESUMO
A series of 16 novel spirooxindole analogs 8a-p were designed and constructed via cost-effective single-step multicomponent [3+2] cycloaddition reaction of azomethine ylide (AY) generated in situ from substituted isatin (6a-d) with suitable amino acids (7a-c) and ethylene-engrafted pyrazole derivatives (5a,b). The potency of all compounds was assayed against a human breast cancer cell line (MCF-7) and a human liver cell line (HepG2). Spiro compound 8c was the most active member among the synthesized candidates, with exceptional cytotoxicity against the MCF-7 and HepG2 cell lines, with IC50 values of 0.189 ± 0.01 and 1.04 ± 0.21 µM, respectively. The candidate 8c exhibited more potent activity (10.10- and 2.27-fold) than the standard drug roscovitine (IC50 = 1.91 ± 0.17 µM (MCF-7) and 2.36 ± 0.21 µM (HepG2)). Compound 8c was investigated for epidermal growth factor receptor (EGFR) inhibition; it exhibited promising IC50 values of 96.6 nM compared with 67.3 nM for erlotinib. The IC50 value of 8c (34.98 nM) exhibited cyclin-dependent kinase 2 (CDK-2) inhibition, being more active than roscovitine the (IC50 = 140 nM) in targeting the CDK-2 kinase enzyme. Additionally, for apoptosis induction of compound 8c in MCF-7, it upregulated the expression levels of proapoptotic genes for P53, Bax, caspases-3, 8, and 9 at up to 6.18, 4.8, 9.8, 4.6, 11.3 fold-change, respectively, and downregualted the level of the antiapoptotic gene for Bcl-2 by 0.14-fold. Finally, a molecular docking study of the most active compound 8c highlighted a good binding affinity with Lys89 as the key amino acid for CDK-2 inhibition.
Assuntos
Antineoplásicos , Humanos , Oxindóis/farmacologia , Oxindóis/química , Linhagem Celular Tumoral , Relação Estrutura-Atividade , Roscovitina/farmacologia , Simulação de Acoplamento Molecular , Antineoplásicos/química , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Estrutura Molecular , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/química , ApoptoseRESUMO
The hydrazones 3a-c, were synthesized from the reaction of indole-3-carbaldehyde and nicotinic acid hydrazide, isonicotinic acid hydrazide, and benzoic acid hydrazide, respectively. Their structures were confirmed using FTIR, 1HNMR, and 13CNMR spectroscopic techniques. Exclusively, hydrazones 3b and 3c were confirmed using single crystal X-ray crystallography to exist in the Eanti form. With the aid of DFT calculations, the most stable configuration of the hydrazones 3a-c in gas phase and in nonpolar solvents (CCl4 and cyclohexane) is the ESyn form. Interestingly, the DFT calculations indicated the extrastability of the EAnti in polar aprotic (DMSO) and polar protic (ethanol) solvents. Hirshfeld topology analysis revealed the importance of the N H, O H, H C, and π π intermolecular interactions in the molecular packing of the studied systems. Distribution of the atomic charges for the hydrazones 3a-c was presented. The hydrazones 3a-c showed a polar character where 3b has the highest polarity of 5.7234 Debye compared to the 3a (4.0533 Debye) and 3c (5.3099 Debye). Regarding the anti-toxoplasma activity, all the detected results verified that 3c had a powerful activity against chronic toxoplasma infection. Compound 3c showed a considerable significant reduction percent of cyst burden in brain homogenates of toxoplasma infected mice representing 49%.
Assuntos
Antineoplásicos , Antipsicóticos , Animais , Camundongos , Raios X , Hidrazonas , Radiografia , HidrazinasRESUMO
New 2-thioxopyrimidin-4-ones capable of participating in regioselective reactions with functionally diverse hydrazonoyl chlorides towards angular regioisomers, rather than linear ones, were designed and synthesized to form stereoisomeric cis- and trans-hexahydro [1,2,4]triazolo[4,3-a]quinazolin-9-ones to be tested as antitumor candidates. The angular regiochemistry of the products was verified through crystallographic experiments and NMR studies. In addition, the regioselectivity of the reaction was found to be independent of the stereochemistry of the used 2-thioxopyrimidin-4-one. Only compound 4c demonstrated satisfactory growth inhibition against all the cancer cells used among all the produced drugs.
RESUMO
The present work provided in vitro anticancer investigation of novel spirooxindole based benzimidazole scaffold SP1 and its nanoformulation with in vivo evaluation of anticancer and antimetastatic activity as potential drug for breast adenocarcinoma. The synthesized compound SP1 exhibited potent growth inhibitory efficacy against four types of human cancer (breast, prostate, colon and lung) cell lines with IC50 = 2.4, 3.4, 7.24 and 7.81 µM and selectivity index 5.79, 4.08, 1.93 and 1.78 respectively. Flow cytometric analysis illustrated that SP1 exhibited high apoptotic effect on all tested cancer cell lines (38.22-52.3 %). The mode of action of this promising compound was declared by its ability to upregulate the gene expression of p21 (2.29-3.91 folds) with suppressing cyclin D (1.9-8.93 folds) and NF-κB (1.26-1.44 fold) in the treated cancer cells. Also, it enhanced the protein expression of apoptotic marker p53 and moderate binding affinity for MDM2 (KD;7.94 µM). Notwithstanding these promising impressive findings, its selectivity against cancer cell lines and safety on normal cells were improved by nanoformulation. Therefore, SP1 was formulated as ultra-flexible niosomal nanovesicles (transethoniosomes). The ultra-deformability is attributable to the synergism between ethanol and edge activators in improving the flexibility of the nanovesicular membrane. F8 exhibited high deformability index (DI) of (23.48 ± 1.4). It was found that % SP1 released from the optimized transethoniosomal formula (F8) after 12 h (Q12h) was 84.17 ± 1.29 % and its entrapment efficiency (%EE) was 76.48 ± 1.44 %. Based upon the very encouraging and promising in vitro results, an in vivo study was carried out in female Balb/c mice weighing (15-25 g). SP1 did halt the proliferation of breast cancer cells as well as suppressed the metastasis in other organs like liver, lung and heart.
Assuntos
Adenocarcinoma , Antineoplásicos , Neoplasias da Mama , Camundongos , Animais , Feminino , Humanos , Neoplasias da Mama/tratamento farmacológico , NF-kappa B , Benzimidazóis/farmacologia , Linhagem Celular , Adenocarcinoma/tratamento farmacológico , Antineoplásicos/farmacologia , Antineoplásicos/química , Proliferação de Células , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos AntitumoraisRESUMO
In the present work, a novel heterocyclic hybrid of a spirooxindole system was synthesized via the attachment of ferrocene and triazole motifs into an azomethine ylide by [3 + 2] cycloaddition reaction protocol. The X-ray structure of the heterocyclic hybrid (1â³R,2â³S,3R)-2â³-(1-(3-chloro-4-fluorophenyl)-5-methyl-1H-1,2,3-triazole-4-carbonyl)-5-methyl-1â³-(ferrocin-2-yl)-1â³,2â³,5â³,6â³,7â³,7aâ³-hexahydrospiro[indoline-3,3â³-pyrrolizin]-2-one revealed very well the expected structure, by using different analytical tools (FTIR and NMR spectroscopy). It crystallized in the triclinic-crystal system and the P-1-space group. The unit cell parameters are a = 9.1442(2) Å, b = 12.0872(3) Å, c = 14.1223(4) Å, α = 102.1700(10)°, ß = 97.4190(10)°, γ = 99.1600(10)°, and V = 1484.81(7) Å3. There are two molecules per unit cell and one formula unit per asymmetric unit. Hirshfeld analysis was used to study the molecular packing of the heterocyclic hybrid. H···H (50.8%), H···C (14.2%), Cl···H (8.9%), O···H (7.3%), and N···H (5.1%) are the most dominant intermolecular contacts in the crystal structure. O···H, N···H, H···C, F···H, F···C, and O···O are the only contacts that have the characteristic features of short and significant interactions. AIM study indicated predominant covalent characters for the Fe-C interactions. Also, the electron density (ρ(r)) at the bond critical point correlated inversely with the Fe-C distances.
Assuntos
Triazóis , Cristalografia por Raios X , Reação de Cicloadição , Espectroscopia de Ressonância Magnética , MetalocenosRESUMO
The reaction of PtCl2 with s-triazine-type ligand (HTriaz) (1:1) in acetone under heating afforded a new [Pt(Triaz)Cl] complex. Single-crystal X-ray diffraction analysis showed that the ligand (HTriaz) is an NNO tridentate chelate via two N-atoms from the s-triazine and hydrazone moieties and one oxygen from the deprotonated phenolic OH. The coordination environment of the Pt(II) is completed by one Cl-1 ion trans to the Pt-N(hydrazone). Hirshfeld surface analysis showed that the most dominant interactions are the H···H, H···C and O···H intermolecular contacts. These interactions contributed by 60.9, 11.2 and 8.3% from the whole fingerprint area, respectively. Other minor contributions from the Cl···H, C···N, N···H and C···C contacts were also detected. Among these interactions, the most significant contacts are the O···H, H···C and H···H interactions. The amounts of the electron transfer from the ligand groups to Pt(II) metal center were predicted using NBO calculations. Additionally, the electronic spectra were assigned based on the TD-DFT calculations.
RESUMO
Coordination compounds of platinum(II) participate in various noncovalent axial interactions involving metal center. Weakly bound axial ligands can be electrophilic or nucleophilic; however, interactions with nucleophiles are compromised by electron density clashing. Consequently, simultaneous axial interaction of platinum(II) with two nucleophilic ligands is almost unprecedented. Herein, we report structural and computational study of a platinum(II) complex possessing such intramolecular noncovalent Iâ â â Ptâ â â I interactions. Structural analysis indicates that the two iodine atoms approach the platinum(II) center in a "side-on" fashion and act as nucleophilic ligands. According to computational studies, the interactions are dispersive, weak and anti-cooperative in the ground electronic state, but strengthen substantially and become partially covalent and cooperative in the lowest excited state. Strengthening of Iâ â â Ptâ â â I contacts in the excited state is also predicted for the sole previously reported complex with analogous axial interactions.
RESUMO
Two isostructural trans-[MI2(CNXyl)2]·I2 (M = Pd or Pt; CNXyl = 2,6-dimethylphenyl isocyanide) metallopolymeric cocrystals containing uncommon bifurcated iodine···(metal-iodide) contact were obtained. In addition to classical halogen bonding, single-crystal X-ray diffraction analysis revealed a rare type of metal-involved stabilizing contact in both cocrystals. The nature of the noncovalent contact was studied computationally (via DFT, electrostatic surface potential, electron localization function, quantum theory of atoms in molecules, and noncovalent interactions plot methods). Studies confirmed that the I···I halogen bond is the strongest noncovalent interaction in the systems, followed by weaker I···M interaction. The electrophilic and nucleophilic nature of atoms participating in I···M interaction was studied with ED/ESP minima analysis. In trans-[PtI2(CNXyl)2]·I2 cocrystal, Pt atoms act as weak nucleophiles in I···Pt interaction. In the case of trans-[PdI2(CNXyl)2]·I2 cocrystal, electrophilic/nucleophilic roles of Pd and I are not clear, and thus the quasimetallophilic nature of the I···Pd interaction was suggested.
RESUMO
Five new C2-symmetric chiral ligands of 2,5-bis(imidazolinyl)thiophene (L1-L3) and 2,5-bis(oxazolinyl)thiophene (L4 and L5) were synthesized from thiophene-2,5-dicarboxylic acid (1) with enantiopure amino alcohols (4a-c) in excellent optical purity and chemical yield. The utility of these new chiral ligands for Friedel-Crafts asymmetric alkylation was explored. Subsequently, the optimized tridentate ligand L5 and Cu(OTf)2 catalyst (15 mol%) in toluene for 48 h promoted Friedel-Crafts asymmetric alkylation in moderate to good yields (up to 76%) and with good enantioselectivity (up to 81% ee). The bis(oxazolinyl)thiophene ligands were more potent than bis(imidazolinyl)thiophene analogues for the asymmetric induction of the Friedel-Crafts asymmetric alkylation.
RESUMO
Straightforward regio- and diastereoselective synthesis of bi-spirooxindole-engrafted rhodanine analogs 5a-d were achieved by one-pot multicomponent [3 + 2] cycloaddition (32CA) reaction of stabilized azomethine ylide (AYs 3a-d) generated in situ by condensation of L-thioproline and 6-chloro-isatin with (E)-2-(5-(4-chlorobenzylidene)-2,4-dioxothiazolidin-3-yl)-N-(2-morpholinoethyl)acetamide. The bi-spirooxindole-engrafted rhodanine analogs were constructed with excellent diastereo- and regioselectivity along with high chemical yield. X-ray crystallographic investigations for hybrid 5a revealed the presence of four contiguous stereocenters related to C11, C12, C19 and C22 of the spiro structure. Hirshfeld calculations indicated the presence of many short intermolecular contacts such as Cl...C, S...S, S...H, O...H, N...H, H...C, C...C and H...H interactions. These contacts played a very important role in the crystal stability. The polar nature of the 32CA reaction was studied by analysis of the conceptual DFT reactivity indices. Theoretical study of this 32CA reaction indicated that it takes place through a non-concerted two-stage one-step mechanism associated with the nucleophilic attack of AY 3a to the electrophilic ethylene derivative.
RESUMO
A library of pinane-based 2-amino-1,3-diols was synthesised in a stereoselective manner. Isopinocarveol prepared from (-)-α-pinene was converted into condensed oxazolidin-2-one in two steps by carbamate formation followed by a stereoselective aminohydroxylation process. The relative stereochemistry of the pinane-fused oxazolidin-2-one was determined by 2D NMR and X-ray spectroscopic techniques. The regioisomeric spiro-oxazolidin-2-one was prepared in a similar way starting from the commercially available (1R)-(-)-myrtenol (10). The reduction or alkaline hydrolysis of the oxazolidines, followed by reductive alkylation resulted in primary and secondary 2-amino-1,3-diols, which underwent a regioselective ring closure with formaldehyde or benzaldehyde delivering pinane-condensed oxazolidines. During the preparation of 2-phenyliminooxazolidine, an interesting ring-ring tautomerism was observed in CDCl3.
RESUMO
The theoretical data for the half-lantern complexes [{Pt( C N ^ )(µ- S N ^ )}2 ] [1-3; C N ^ is cyclometalated 2-Ph-benzothiazole; S N ^ is 2-SH-pyridine (1), 2-SH-benzoxazole (2), 2-SH-tetrafluorobenzothiazole (3)] indicate that the Ptâ â â Pt orbital interaction increases the nucleophilicity of the outer d z 2 orbitals to provide assembly with electrophilic species. Complexes 1-3 were co-crystallized with bifunctional halogen bonding (XB) donors to give adducts (1-3)2 â (1,4-diiodotetrafluorobenzene) and infinite polymeric [1â 1,1'-diiodoperfluorodiphenyl]n . X-ray crystallography revealed that the supramolecular assembly is achieved through (Aryl)Iâ â â d z 2 [PtII ] XBs between iodine σ-holes and lone pairs of the positively charged (PtII )2 centers acting as nucleophilic sites. The polymer includes a curved linear chain â â â Pt2 â â â I(areneF )Iâ â â Pt2 â â â involving XB between iodine atoms of the perfluoroarene linkers and (PtII )2 moieties. The 195 Pt NMR, UV/Vis, and CV studies indicate that XB is preserved in CH(D)2 Cl2 solutions.
RESUMO
Square planar platinum(ii) complexes are attractive building blocks for multifunctional soft materials due to their unique optoelectronic properties. However, for soft materials derived from synthetically simple discrete metal complexes, achieving a combination of optical properties, thermoresponsiveness and excellent mechanical properties is a major challenge. Here, we report the rapid self-recovery of luminescent metallogels derived from platinum(ii) complexes of perfluoroalkyl and alkyl derivatives of terpyridine ligands. Using single crystal X-ray diffraction studies, we show that the presence of synergistic platinum-platinum (PtPt) metallopolymerization and fluorine-fluorine (FF) interactions are the major driving forces in achieving hierarchical superstructures. The resulting bright red gels showed the presence of highly entangled three-dimensional networks and helical nanofibres with both (P and M) handedness. The gels recover up to 87% of their original storage modulus even after several cycles under oscillatory step-strain rheological measurements showing rapid self-healing. The luminescence properties, along with thermo- and mechanoresponsive gelation, provide the potential to utilize synthetically simple discrete complexes in advanced optical materials.
RESUMO
The new luminescent carbonyl compounds [Mn(Oxa-H)(CO)3Br] (1) and [Mn(Oxa-NMe2)(CO)3Br] (2) were synthesized and fully characterized. Complexes 1 and 2 showed CO release under blue light (λ453). Spectroscopic techniques and TD-DFT and SOC-TD-DFT calculations indicated that 1 and 2 release the Oxa-H and Oxa-NMe2 coligands in addition to the carbonyl ligands, increasing the luminescence during photoinduction.
RESUMO
The regioselective synthesis of cis and trans stereoisomers of variously functionalized octahydro[1,2,4]triazolo[4,3-a]quinazolin-5-ones was performed. The 2-thioxopyrimidin-4-ones used in the synthesis reacted with hydrazonoyl chlorides in a regioselective manner to produce the angular regioisomers [1,2,4]triazolo[4,3-a]quinazolin-5-ones rather than the linear isomers [1,2,4]triazolo[4,3-a]quinazolin-5-ones. The synthesis process took place with electronic control. The angular regiochemistry of the products was confirmed by X-ray experiments and two-dimensional NMR studies.
Assuntos
Cloretos/química , Pirimidinas/química , Quinazolinas/química , Triazóis/química , Estereoisomerismo , Relação Estrutura-AtividadeRESUMO
A study exploring halofluorination and fluoroselenation of some cyclic olefins, such as diesters, imides, and lactams with varied functionalization patterns and different structural architectures is described. The synthetic methodologies were based on electrophilic activation through halonium ions of the ring olefin bonds, followed by nucleophilic fluorination with Deoxo-Fluor®. The fluorine-containing products thus obtained were subjected to elimination reactions, yielding various fluorine-containing small-molecular entities.
RESUMO
Herein we report silver(i) directed infinite coordination polymer network (ICPN) induced self-assembly of low molecular weight organic ligands leading to metallogelation. Structurally simple ligands are derived from 3-aminopyridine and 4-aminopyridine conjugates which are composed of either pyridine or 2,2'-bipyridine cores. The cation specific gelation was found to be independent of the counter anion, leading to highly entangled fibrillar networks facilitating the immobilization of solvent molecules. Rheological studies revealed that the elastic storage modulus (G') of a given gelator molecule is counter anion dependent. The metallogels derived from ligands containing a bipyridine core displayed higher G' values than those with a pyridine core. Furthermore, using single crystal X-ray diffraction studies and 1H-15N two-dimensional (2D) correlation NMR spectroscopy, we show that the tetracoordination of silver ions enables simultaneous coordination polymerization and metallosupramolecular cross-linking. The resulting metallogels show spontaneous, in situ nanoparticle (d < 2-3 nm) formation without any additional reducing agents. The silver nanoparticle formation was followed using spectroscopic studies, and the self-assembled fibrillar networks were imaged using transmission electron microscopy (TEM) imaging.